
Heuristic Rules for Coordinated Resources
Allocation and Optimization in Distributed

Computing

Victor Toporkov[0000−0002−1484−2255]

and Dmitry Yemelyanov[0000−0002−9359−8245]

National Research University “Moscow Power Engineering Institute”, Moscow, Russia
ToporkovVV@mpei.ru, YemelyanovDM@mpei.ru

Abstract. In this paper, we consider heuristic rules for resources uti-
lization optimization in distributed computing environments. Existing
modern job-flow execution mechanics impose many restrictions for the
resources allocation procedures. Grid, cloud and hybrid computing ser-
vices operate in heterogeneous and usually geographically distributed
computing environments. Emerging virtual organizations and incorpo-
rated economic models allow users and resource owners to compete for
suitable allocations based on market principles and fair scheduling poli-
cies. Subject to these features a set of heuristic rules for coordinated
compact scheduling are proposed to select resources depending on how
they fit a particular job execution and requirements. Dedicated simu-
lation experiment studies integral job flow characteristics optimization
when these rules are applied to conservative backfilling scheduling pro-
cedure.

Keywords: Distributed computing · Resource allocation · Scheduling ·
Slot · Backfilling · Economic model · Optimization.

1 Introduction and Related Works

Modern high-performance distributed computing systems (HPCS), including
Grid, cloud and hybrid infrastructures provide access to large amounts of re-
sources [1, 2]. These resources are typically required to execute parallel jobs
submitted by HPCS users and include computing nodes, data storages, network
channels, software, etc.

There are two important classes of users’ parallel jobs. Bags of tasks (BoT)
represent parallel applications incorporating a large number of independent or
weakly connected tasks. Typical examples of BoT are parameter sweeps, Monte
Carlo simulations or exhaustive search. Workflows consist of multiple tasks with
control or data dependencies. Such applications may be presented as directed
graphs and represent complex computational or data processing problems in
many domains of science [2–4].

Most BoT and workflow applications require some assurances of quality of
services (QoS) from the computing system. In order to ensure QoS requirements

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


2 Toporkov V. and Yemelyanov D.

and constraints, a coordinated allocation of suitable resources should be per-
formed [5–7]. Most QoS requirements are based on either time or cost constraints
such as total job execution cost, deadline, response time, etc. [8–11].

Some of the most important efficiency indicators of a distributed compu-
tational environment include both system resources utilization level and users’
jobs time and cost execution criteria [4, 8, 9, 12]. In distributed environments
with non-dedicated resources, such as utility Grids, the computational nodes
are usually partly utilized and reserved in advance by jobs of higher prority [10].
Thus, the resources available for use are represented with a set of slots - time in-
tervals during which the individual computational nodes are capable to execute
parts of independent users’ parallel jobs. These slots generally have different
start and finish times and a performance difference. The presence of a set of
slots impedes the problem of coordinated selection of the resources necessary to
execute the job-flow from computational environment users. Resource fragmen-
tation also results in a decrease of the total computing environment utilization
level [12, 13].

High-performance distributed computing systems organization and support
bring certain economical expenses: purchase and installation of machinery equip-
ment, power supplies, user support, etc. As a rule, HPCS users and service
providers interact in economic terms and the resources are provided for a cer-
tain payment. In such conditions, resource management and job scheduling based
on the economic models is considered as an efficient way to take into account
contradictory preferences of computing participants [3, 14–16].

A metascheduler or a metabroker is considered as an intermediate link be-
tween the users, local resource management and job batch processing systems [8,
17]. It defines uniform rules of a resource sharing and consumption to improve
the overall scheduling efficiency [12, 13, 16].

The main contribution of this paper is a set of heuristic rules for a coordi-
nated resources allocation for parallel jobs execution. The algorithm takes into
account the system slots configuration as well as individual jobs features: size,
runtime, cost, etc. When used in HPCS metaschedulers during the resources al-
location step, it may improve overall system utilization level by matching jobs
with resources and providing better jobs placement.

The rest of the paper is organized as follows. Section 2 presents resources
allocation problem in relation to job-flow scheduling algorithms and backfill-
ing (Subsection 2.2). Different approaches for a coordinated resources allocation
are described and proposed in Section 3. Section 4 contains algorithms imple-
mentation details along with simulation results and analysis. Finally, Section 5
summarizes the paper and describes further research topics.

2 Resources Allocation for Job-flow Scheduling

2.1 Computing Model

In order to cover a wide range of computing systems we consider the following
model for a heterogeneous resource domain.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


Heuristic Rules for Coordinated Resources Allocation 3

Constituent computing nodes of a domain have different usage costs and
performance levels. A space-shared resources allocation policy simulates a local
queuing system (like in CloudSim [14, 15] or SimGrid [4, 18]) and, thus, each
node can process only one task at any given time. Economic scheduling model
[14, 15] assumes that users and resource owners operate with some currency
to coordinate resources allocation transactions. This model allows to regulate
interaction between different organizations and to settle on fair equilibrium prices
for resources usage.

Thus we consider a set R of heterogeneous computing nodes with different
performance pi and price ci characteristics.

A node may be turned off or on by the provider, transferred to a mainte-
nance state, reserved to perform computational jobs. Thus each node has a local
utilization schedule known in advance for a considered scheduling horizon time
L.

The execution cost of a single task depends on the allocated node’s price and
execution time, which is proportional to the node’s performance level. In order
to execute a parallel job one needs to allocate the specified number of simulta-
neously idle nodes ensuring user requirements from the resource request. The
resource request specifies number n of nodes required simultaneously, their min-
imum applicable performance p, job’s computational volume V and a maximum
available resources allocation budget C. These parameters constitute a formal
generalization for resource requests common among distributed computing sys-
tems and simulators [12, 14, 18].

In heterogeneous environment the required window length is defined based
on a slot with the minimum performance. For example, if a window consists of
slots with performances p ∈ {pi, pj} and pi < pj , then we need to allocate all the
slots for a time T = V

pi
. In this way V really defines a computational volume for

each single job subtask. Common start and finish times ensure the possibility of
internode communications during the whole job execution. The total cost of a
window allocation is then calculated as C =

∑n
i=1 T ∗ ci.

2.2 Job-flow Scheduling and Backfilling

The simplest way to schedule a job-flow execution is to use the First-Come-First-
Served (FCFS) policy. However this approach is inefficient in terms of resources
utilization and Backfilling [19] was proposed to improve system utilization.

Backfilling procedure makes use of advanced resources reservations which is
an important mechanism preventing starvation of jobs requiring large number
of computing nodes. Resources reservations in FCFS may create idle slots in the
nodes’ local schedules thus decreasing system performance. So the main idea
behind backfilling is to backfill jobs into those idle slots to improve the overall
system utilization. And the backfilling procedure implements this by placing
smaller jobs from the back of the queue to these idle slots ahead of the priority
order.

There are two common variations to backfilling - conservative and aggressive
(EASY). Conservative Backfilling enforces jobs’ priority fairness by making sure

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


4 Toporkov V. and Yemelyanov D.

that jobs submitted later can’t delay the start of jobs arrived earlier. EASY
Backfilling aggressively backfills jobs as long as they do not delay the start of
the single currently reserved jobs. Conservative Backfilling considers jobs in the
order of their arrival and either immediately starts a job or makes an appropriate
reservation upon the arrival. The jobs priority in the queue may be additionally
modified in order to improve system-wide job-flow execution efficiency metrics.
Under default FCFS policy the jobs are arranged by their arrival time. Other
priority reordering-based policies like Shortest job First or eXpansion Factor
may be used to improve overall resources utilization level [9, 10, 13].

Multiple Queues backfilling separates jobs into different queues based on
metadata, such as jobs resource requirements: small, medium, large, etc. The
idea behind this metaheuristic is that earlier arriving jobs and smaller-sized jobs
should have higher execution priority. The number of queues and the strategy for
dividing tasks among them can be set by the system administrators. Sometimes
different queues may be assigned to a dedicated resource domain segments and
function independently. In a single domain the metaheuristic cycles through the
different queues in a round-robin fashion and may consider more jobs from the
queues with smaller-sized tasks [13].

The look-ahead optimizing scheduler [10] implements dynamic programming
scheme to examine all the jobs in the queue in order to maximize the current
system utilization. So, instead of scanning queue for single jobs suitable for the
backfilling, look-ahead scheduler attempts to find a combination of jobs that
together will maximize the resources utilization.

2.3 Resources Selection Algorithms

Backfilling as well as many other job-flow scheduling algorithms in fact describe
a general procedure determining high level policies for jobs prioritization and
advanced resources reservations. However, the resources selection and allocation
step remains sidelined since its more system specific nature. Consequently re-
source selection algorithms specifications usually either too hardware specific or
lack certain restrictions or model features in order to cover a broader class of
computing systems.

On the other hand, applying different resources allocation policies based on
system or user preferences may affect scheduling results not only for individual
jobs but for a whole job-flow.

In [6, 7] we presented a Slot Subset Allocation (SSA) dynamic programming
scheme for resources selection in heterogeneous computing environments based
on economic principles. In a general case system nodes may be shared and re-
served in advance by different users and organizations (including resource own-
ers). So it’s convenient to represent all available resources as a set of time-slots
(see Section 2.1). Each slot corresponds to one computing node on which it
is allocated. SSA algorithm takes these time slots as input and performs re-
sources selection for a specified job in accordance with the computing model
and constraints described in Section 2.1. The resulting window satisfies user

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


Heuristic Rules for Coordinated Resources Allocation 5

QoS requirements from the resource request and may be reserved for the job
execution.

Additionally SSA may perform window search optimization by a general ad-
ditive criterion Z =

∑n
i=1 z(si), where z(si) = zi is a target optimization char-

acteristic value provided by a single slot si of window W . For this purpose SSA
implements the following dynamic programming recurrent scheme to allocate
n–size window with a maximum total cost C from m simultaneously available
slots:

fi(Cj , nk) = max{fi−1(Cj , nk), fi−1(Cj − ci, nk − 1) + zi}, (1)

k = 1, . . . , n, i = 1, . . . ,m, j = 1, . . . , C,

where fi(Cj , nk) defines the maximum Z criterion value for nk - size window
allocated out of first i available slots for a budget Cj . After the forward induction
procedure (1) is finished, the maximum criterion value can be found as Zmax =
fm(C, n). Corresponding resources are then obtained by a backward induction
procedure.

These criterion values zi may represent different slot characteristics: time,
cost, power, hardware and software features, etc. Thus SSA-based resources al-
location is proved to be a flexible tool for a preference-based job-slow execution
[6].

3 Coordinated Resources Allocation Heuristics

3.1 Dependable Job Placement Problem

One important aspect for a resources allocation efficiency is the resources place-
ment in regard to an actual slots configuration. So as a practical implementation
for a general zi parameter maximization we propose to study a resources allo-
cation placement problem. Fig. 1 shows Gantt chart of 4 slots co-allocation
(hollow rectangles) in a computing environment with resources pre-utilized with
local and high-priority jobs (filled rectangles).

As can be seen from Fig. 1, even using the same computing nodes (1,3,4,5)
there are usually multiple window placement options with respect to the slots
start time. The slots’ actual placement generally may affect such job execution
properties as cost, finish time, computing energy efficiency, etc. Besides that,
slots proximity to neighboring tasks reserved on the same computing nodes may
affect the efficiency of the resources utilization. For example, reserving a slot
close to a neighboring task may increase resources load by minimizing the cor-
responding node’s idle time. On the other hand, leaving larger idle distances to
the occupied or reserved slots sometimes may prove practical for the subsequent
queue jobs scheduling.

For a quantitative placement criterion for each window slot we can estimate
times to the previous task finish time: Lleft and to the next task start time:
Lright (Fig. 1). Using these values we consider the following criteria for the
whole window allocation optimization:

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


6 Toporkov V. and Yemelyanov D.

Fig. 1: Dependable window co-allocation metrics

– LΣ = 1
n

∑n
i=1(Llefti + Lrighti) represents average time distance between

window and the neighboring tasks reserved on the same nodes;
– LminΣ = 1

n

∑n
i=1 min(Llefti, Lrighti) displays average time distance to the

nearest neighboring tasks.

Based on LΣ or LminΣ criteria idle space minimization or maximization
strategies can be implemented using SSA algorithm.

3.2 Job Placement Heuristics

However these LΣ or LminΣ criteria alone can’t improve the whole job-flow
scheduling solution according to the conventional makespan or average finish
time criteria. Preliminary experiments showed 30%-100% longer makespan for
LminΣ → min resources allocation strategy compared to a traditional backfilling
procedure [9, 13] with jobs finish time minimization.

The reason for this result is that finish time minimization criterion in some
degree incorporates and combines Lleft minimization for early start time with
a suitable (by performance) resources types selection. Consequently a greedy
application of a finish time criterion in backfilling procedure provides efficient
overall job-flow scheduling solution. But still there are some additional more
complex heuristics which may improve scheduling results when combined with
a finish time criterion.

For example in [13] a special set of breaking a tie rules is proposed to choose
between slots providing the same earliest job start time. These rules for Picking
Earliest Slot for a Task (PAST) procedure may be summarized as following.

1. Minimize number of idle slots left after the window allocation; i.e. slots adja-
cent (succeeding or preceding) to already reserved slots have higher priority.

2. Maximize length of idle slots left after the window allocation; so the algo-
rithm tends to left longer slots for the subsequent jobs in the queue.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


Heuristic Rules for Coordinated Resources Allocation 7

With similar intentions we propose the following Coordinated Placement
(CoP) heuristic rules slightly different from PAST [13].

0. Prioritize slots allocated on nodes with lower performance. The main idea is
that when deciding between two slots providing the same window finish time
it makes sense to leave higher performance slot vacant for the subsequent
jobs. This breaking a tie principle is applicable for heterogeneous resources
environments and do not consider slots placement configuration. However,
during the preliminary simulations this heuristic alone was able to noticeably
improve scheduling results so we will use it as an addition to the placement
rules.

1. Prioritize slots with relatively small distances to the neighbor tasks: Llefti <<
T or Lrighti << T . The general idea is similar to the first rule in PAST, but
CoP don’t expect perfect match and defines threshold values for a satisfac-
tory window fit.

2. Penalize slots leaving significant, but insufficient to execute a full job dis-
tances Llefti or Lrighti. For example when T

3 > Lrighti >
T
5 , the resulting

slot may be to short to execute any of the subsequent jobs and will remain
idle, thus, reducing the resources overall utilization.

3. On the other hand equally prioritize slots leaving sufficient compared to the
job’s runtime distances Llefti or Lrighti. For example with Llefti > T .

So the main idea behind CoP is to fill in the gaps in the resources reserva-
tion schedule by providing quite an accurate resources allocation matching jobs
runtime. Unlike PAST, CoP do not expect perfect matches but makes realistic
heuristic decisions to minimize general resources fragmentation.

A simple resources allocation example on Fig. 2 demonstrates differences
between these approaches. Fig. 2 represents a computing environment segment
consisting of eight nodes with some resources already allocated or reserved for
six jobs A - F. Each job is represented as a filled rectangle (or a set of rectangles)
spanning in both resource and time axes.

Consider a scenario when a next job requires three simultaneously available
slots and the earliest finish time is achievable by using slots 1,2,3 or 4 from Fig.
2. In this case backfilling without any heuristic breaking a tie rules will choose
slots 1,2 and 3 just according to a simple slots order. PAST would choose slots
1,3 and 4, minimizing resources fragmentation and leaving longer slot for the
subsequent jobs. CoP would allocate slots 2,3 and 4 as they provide better fit
for the job, while slot 1 if allocated will leave two short slots likely unprofitable
for future use.

4 Simulation Study

4.1 Implementation and Simulation Details

Based on heuristic rules described in Section 3.2 we implemented the following
scheduling algorithms and criteria for SSA-based resources allocation.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


8 Toporkov V. and Yemelyanov D.

Fig. 2: Job placement heuristic rules example

1. Firstly we consider two conservative backfilling variations. BFstart succes-
sively implements start time minimization for each job during the resources
selection step. As SSA performs criterion maximization, BFstart criterion
for i-th slot has the following form: zi = −si.startT ime
By analogy BFfinish implements a more solid strategy of a finish time min-
imization which is different from BFstart in computing environments with
heterogeneous resources. BFfinish criterion for SSA algorithm is the follow-
ing: zi = −si.finishT ime

2. PAST-like backfilling approach has a more complex criterion function which
may be described with the following set of rules:

(a) zi = −si.finishT ime; finish time is the main criterion value
(b) zi = zi − α1 ∗ si.nodePerformance; node performance amendment
(c) if(Lrighti == 0) : zi = zi + δ1; PAST rule 1
(d) if(Llefti == 0) : zi = zi + δ1; PAST rule 1
(e) zi = zi − α2 ∗ Lrighti; PAST rule 2

3. CoP resources allocation algorithm for backfilling may be represented with
the following criterion calculation:

(a) zi = −si.finishT ime; finish time is the main criterion value
(b) zi = zi − α1 ∗ si.nodePerformance; node performance amendment
(c) if(Lrighti < ε1 ∗ T ) : zi = zi + δ1; CoP rule 1
(d) if(Llefti < ε1 ∗ T ) : zi = zi + δ1; CoP rule 1
(e) if(Lrighti > ε2 ∗ T&Lrighti < ε3 ∗ T ) : zi = zi − δ1; CoP rule 2
(f) if(Llefti > ε2 ∗ T&Llefti < ε3 ∗ T ) : zi = zi − δ1; CoP rule 2
(g) if(Lrighti > T ) : zi = zi + δ2; CoP rule 3
(h) if(Llefti > T ) : zi = zi + δ2; CoP rule 3

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


Heuristic Rules for Coordinated Resources Allocation 9

4. Finally as an additional reference solution we simulate another abstract back-
filling variation BFshort which is able to reduce each job runtime for 1%
during the resources allocation step. In this way each job will benefit not
only from its own earlier completion time, but from earlier completion of all
the preceding jobs.

The criteria for PAST and CoP contain multiple constant values defining
rules behavior, namely α1, α2, δ1, δ2, ε1, ε2, ε3. εi coefficients define threshold val-
ues for a satisfactory job fit in CoP approach. αi and δi define each rule’s effect
on the criteria and are supposed to be much less compared to zi in order to
break a tie between otherwise suitable slots. However their mutual relationship
implicitly determine rules’ priority which can greatly affect allocation results.
Therefore there are a great number of possible αi, δi and εi values combinations
providing different PAST and CoP implementations. Based on heuristic consid-
erations and some preliminary experiment results the values we used during the
present experiment are presented in Table 1.

Table 1: PAST and CoP parameters values

Constant α1 α2 δ1 δ2 ε1 ε2 ε3

Value 0.1 0.0001 1 0.1 0.03 0.2 0.35

Because of heuristic nature of considered algorithms and their speculative
parametrization (see Table 1) hereinafter by PAST [13] we will mean PAST-like
approach customly implemented as an alternative to CoP.

4.2 Simulation Results

The experiment was prepared as follows using a custom distributed environ-
ment simulator [12, 16]. For our purpose, it implements a heterogeneous re-
source domain model: nodes have different usage costs and performance levels.
A space-shared resources allocation policy simulates a local queuing system (like
in CloudSim or SimGrid [14, 18]) and, thus, each node can process only one task
at any given simulation time. The execution cost of each task depends on its
execution time, which is proportional to the dedicated node’s performance level.
The execution of a single job requires parallel execution of all its tasks. More
details regarding the simulation computing model were provided in Section 2.1.

Besides that, the simulator implements a graphical interface representing
Gantt diagram for the resulting job-flow scheduling outcome.

During each simulation experiment a new instance for the computing envi-
ronment segment consisting of 32 heterogeneous nodes was automatically gen-
erated. Each node performance level is given as a uniformly distributed random

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


10 Toporkov V. and Yemelyanov D.

value in the interval [2, 16]. This configuration provides a sufficient resources
diversity level while the difference between the highest and the lowest resource
performance levels will not exceed one order.

In this environment we considered job queue with 50, 100, 150 and 200 jobs
accumulated at the start of the simulation. The jobs are arranged in queues
by priority and no new jobs are submitted during the queue execution. Such
scheduling problem statement allows to statically evaluate algorithms’ efficiency
in conditions with different resources utilization level. The jobs were generated
with the following resources request requirements: number of simultaneously
required nodes is uniformly distributed in interval n ∈ [1; 8], computational
volume V ∈ [60; 1200] also contribute to a wide diversity in user jobs.

The results of 2000 independent simulation experiments are presented in
Tables 2-3. Each simulation experiment includes computing environment and job
queue generation, followed by a scheduling simulation independently performed
using considered algorithms. The main scheduling results are then collected and
contribute to the average values over all experiments.

Table 2 contain average finish time provided by algorithms BFstart, BFfinish,
BFshort, PAST and CoP for different number of jobs pre-accumulated in the
queue.

Table 2: Simulation results: average job finish time

Jobs NQ BFstart BFfinish BFshort PAST CoP

50 318,8 302,1 298,8 300,1 298
100 579,2 555 549,2 556,1 550,7
150 836,8 805,6 796,8 809 800,6
200 1112 1072,7 1060,3 1083,3 1072,2

As it can be seen, with a relatively small number NQ of jobs in the queue,
both CoP and PAST provide noticeable advantage by nearly 1% over a strong
BFfinish variation and CoP even surpasses BFshort results. At the same time
less successful BFstart approach provides almost 6% later average completion
time highlighting difference between a good (BFfinish) and a regular (BFstart)
possible scheduling solutions. So BFshort, CoP and PAST advantage should be
evaluated against this 6% interval.

However with increasing the jobs number CoP advantage over BFfinish de-
creases and tends to zero when NQ = 200. This trend may be observed on
Fig. 3 presenting relative finish time advantage over BFfinish for all considered
algorithms. BFshort graph is represented as an almost straight line 1% above
reference BFfinish solution, which is expected by design.

CoP graph starts above BFshort and gradually decreases to the BFfinish
0% line. However as PAST average performance decreases contemporaneously

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


Heuristic Rules for Coordinated Resources Allocation 11

with CoP, latter maintains 0.5%-1% advantage over PAST for all considered
simulation experiments.

The performance decrease trend for PAST and CoP heuristics may be ex-
plained by increasing accuracy requirements for jobs placement caused with
increasing NQ number. Indeed, when considering for some intermediate job re-
source selection the more jobs are waiting in the queue the higher the probability
that some future job will have a better fit for current resource during the backfill-
ing procedure. In order to adapt to higher resources utilization levels, threshold
parameters εi may be changed to encourage even better job placement fits during
the resources allocation. In a general case all the algorithms’ parameters αi, δi, εi
(more details we provided in Section 3.2) should be refined to correspond to the
actual computing environment utilization level.

Fig. 3: Simulation results: relative advantage over BFfinish by jobs finish time
criterion depending on the jobs queue size

Table 3: Simulation results: average job finish time for jobs distributed over half
of a makespan interval

Jobs NQ BFstart BFfinish BFshort PAST CoP

50 381,7 375,4 371,8 371,8 369,5
100 672,5 662,6 656,9 657,9 653,4
150 942,4 922,6 915,8 921 914,9
200 1208,2 1184,2 1173,2 1184,1 1173,8

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


12 Toporkov V. and Yemelyanov D.

However if we distribute jobs arrival time over some interval we may derive
similar results as average number of jobs waiting in the queue for backfilling will
be less. In the following experiment we perfromed job queue scheduling with the
same settings except that jobs had random arrival times in the range up to half
of the makespan obtained during the first experiment. Corresponding average
job finish times from another 2000 simulations is presented in Table 3.

Fig. 4: Simulation results: relative advantage over BFfinish by jobs finish time
criterion in scenario with jobs distributed over half of a makespan interval

Based on data from Table 3 Fig.4 shows relative advantage over BFfinish
against finish time criterion for BFshort, PAST and CoP aprroaches in scenario
with jobs’ arrival times dynamically distributed over a period of time. The trend
is different from the static scenario (Fig. 3) as CoP maintains 1% advantage even
for 200 jobs in the queue.

One important property of the proposed heuristic approach is that it gen-
erally preserves integral job-flow execution parameters of the base scheduling
algorithm: jobs’ priority and processing order, average execution cost. For ex-
ample, maximum average difference in jobs-flow execution cost between CoP and
BFfinish over all 4000 simulations reaches 0.25%.

5 Conclusion

In this work, we address the problem of a coordinated resources allocation for
parallel jobs scheduling optimization in heterogeneous computing environments.
Modern job-flow scheduling algorithms optimize integral job-flow scheduling
characteristics mainly by determining jobs prioritization and execution order,
leaving resources selection step aside as too system specific. Based on a Slots

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


Heuristic Rules for Coordinated Resources Allocation 13

Subset Allocation resources selection algorithm, we propose and implement a set
of heuristic job placement rules for jobs’ Coordinated Placement (CoP). The
main idea behind CoP approach is to fill in the gaps in the resources utilization
schedule by allocating resources tailored to particular jobs runtimes.

Simulation study shows overall job-flow scheduling efficiency improvement
just by using CoP rules during the resources allocation step in conservative
backfilling. The advantage over a basic resources allocation strategy reaches 1.5%
against average job-flow finish time criteria. At the same time CoP preserves job-
flow execution parameters, jobs priorities and processing order.

In our further work, we will refine job placement heuristics to include and
balance user preferences with global scheduling criteria during the resources
allocation step.

Acknowledgments.This work was partially supported by the Council on
Grants of the President of the Russian Federation for State Support of Young
Scientists (YPhD-2979.2019.9), RFBR (grants 18-07-00456 and 18-07-00534)
and by the Ministry on Education and Science of the Russian Federation (project
no. 2.9606.2017/8.9).

References

1. Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B.:Profit-driven Scheduling for Cloud
Services with Data Access Awareness. J. of Parallel and Distributed Computing,
72(4), 591–602 (2012)

2. Bharathi, S., Chervenak, A.L., Deelman, E., Mehta, G., Su, M., Vahi, K.: Charac-
terization of scientific workflows. In: 2008 Third Workshop on Workflows in Support
of Large-Scale Science, pp. 1–10 (2008)

3. Rodriguez, M.A., Buyya, R.: Scheduling dynamic workloads in multi-tenant scien-
tific workflow as a service platforms. Future Generation Computer Systems, 79(P2),
739–750 (2018)

4. Nazarenko, A., Sukhoroslov, O.: An experimental study of workflow scheduling al-
gorithms for heterogeneous systems. In: V. Malyshkin (ed.) Parallel Computing
Technologies, pp. 327–341. Springer International Publishing (2017)

5. Netto, M. A. S., Buyya, R.: A Flexible Resource Co-Allocation Model based on
Advance Reservations with Rescheduling Support. In: Technical Report, GRIDSTR-
2007-17, Grid Computing and Distributed Systems Laboratory, The University of
Melbourne, Australia, October 9 (2007)

6. Toporkov, V., Yemelyanov, D.: Dependable slot selection algorithms for distributed
computing. Advances in Intelligent Systems and Computing. Vol. 761, pp. 482-491.
Springer Verlag (2019)

7. Toporkov, V., Yemelyanov, D.: Optimization of Resources Selection for Jobs
Scheduling in Heterogeneous Distributed Computing Environments. Lecture Notes
in Computer Science, 10861 LNCS, Springer Verlag, pp. 574–583 (2018)

8. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of
Grid Resource Management. In: Nabrzyski, J., Schopf, J.M., Weglarz J. (eds.) Grid
resource management. State of the art and future trends, pp. 271-293. Kluwer Aca-
demic Publishers (2003)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31


14 Toporkov V. and Yemelyanov D.

9. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Characterization of
Backfilling Strategies for Parallel Job Scheduling. In: Proceedings of the Interna-
tional Conference on Parallel Processing, ICPP’02 Workshops, pp. 514–519 (2002)

10. Shmueli, E., Feitelson, D.G.: Backfilling with lookahead to optimize the packing
of parallel jobs. Journal of Parallel and Distributed Computing, 65(9), 1090–1107
(2005)

11. Menasc’e, D.A., Casalicchio, E.: A Framework for Resource Allocation in Grid
Computing. In: The 12th Annual International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems (MASCOTS 2004),
pp. 259-267. Volendam, The Netherlands. (2004)

12. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin P.: Heuris-
tic Strategies for Preference-based Scheduling in Virtual Organizations of Utility
Grids. J. Ambient Intelligence and Humanized Computing, 6(6), 733–740 (2015)

13. Khemka, B., Machovec, D., Blandin, C., Siegel, H.J., Hariri, S., Louri, A., Tunc,
C., Fargo, F., Maciejewski, A.A.: Resource Management in Heterogeneous Parallel
Computing Environments with Soft and Hard Deadlines. In: Proceedings of 11th
Metaheuristics International Conference (MIC’15) (2015)

14. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya,R.:
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environ-
ments and Evaluation of Resource Provisioning Algorithms. J. Software: Practice
and Experience, 41(1),23-50 (2011)

15. Samimi, P., Teimouri, Y., Mukhtar M.: A combinatorial double auction resource al-
location model in cloud computing. J. Information Sciences, 357(C), 201-216 (2016)

16. Toporkov, V., Yemelyanov, D., Toporkova, A.: Fair Scheduling in Grid VOs with
Anticipation Heuristic. In R. Wyrzykowski et al. (Eds.): PPAM’17, pp. 145–155.
LNCS 10778, Springer International Publishing AG (2018)

17. Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.: Enabling inter-
operability among grid meta-schedulers. Journal of Grid Computing, 11(2), 311–336
(2013)

18. Casanova H., Giersch A., Legrand A., Quinson M., Suter F.: Versatile, scalable, and
accurate simulation of distributed applications and platforms. Journal of Parallel
and Distributed Computing, 74(10), 2899–2917 (2014)

19. Jackson, D., Snell, Q., Clement, M.. Core algorithms of the Maui scheduler. In:
Revised Papers from the 7th International Workshop on Job Scheduling Strategies
for Parallel Processing, JSSPP ’01, pp. 87-102 (2001)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_31

https://dx.doi.org/10.1007/978-3-030-22744-9_31

