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Abstract. Computer reconstruction of digital images is an important
problem in many areas such as image processing, computer vision, med-
ical imaging, sensor systems, robotics, and many others. A very popular
approach in that regard is the use of different kernels for various mor-
phological image processing operations such as dilation, erosion, blurring,
sharpening, and so on. In this paper, we extend this idea to the recon-
struction of digital fractal images. Our proposal is based on a new affine
kernel particularly tailored for fractal images. The kernel computes the
difference between the source and the reconstructed fractal images, lead-
ing to a difficult nonlinear constrained continuous optimization problem,
solved by using a powerful nature-inspired metaheuristics for global op-
timization called the bat algorithm. An illustrative example is used to
analyze the performance of this approach. Our experiments show that the
method performs quite well but there is also room for further improve-
ment. We conclude that this approach is promising and that it could be
a very useful technique for efficient fractal image reconstruction.

Keywords: image processing · image reconstruction · affine kernel ·
fractal image · bat algorithm.

1 Introduction

Computer reconstruction of digital images is a classical problem in fields such
as image processing and computer vision. The topic has gained strong relevance
during the last few decades owing to its important applications in several areas,
including medical imaging (computer tomography, magnetic resonance), sensor
systems, robotics, smart cities, internet of things, and many others. Roughly
speaking, the problem consists of reproducing a given image described in terms
of digital data (typically, raster or bitmapped images) by following procedures
involving either a set of equations and operators, or a set of rules, or some
kind of heuristics (even sometimes combinations of them). In this paper, we are
interested in this problem for the case of fractal images, which exhibit a property
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called self-similarity, meaning that the images follow (at least, approximately)
a self-similar pattern across different scales [2, 4].

Several methods have been traditionally applied to the image reconstruc-
tion problem. When dealing with fractal images, some popular methods include
the Brownian motion, escape-time fractals, finite subdivision rules, L-systems,
strange attractors of dynamical systems [11], and many others [2, 8, 13]. For
a general (non-fractal) image, other methods based on image processing tech-
niques are more commonly applied [10]. Among them, a popular approach in
image processing is the use of different kernels for various morphological image
processing operations such as dilation, erosion, blurring, sharpening, and so on.
In this work, we are interested to follow this approach regarding its potential
application to the case of fractal images.

In this paper, we introduce a new method for digital fractal image reconstruc-
tion. Our proposal is based on a new affine kernel particularly tailored for fractal
images. The kernel computes the difference between the source and the recon-
structed fractal images, according to a given metrics. This leads to a difficult
nonlinear constrained continuous optimization problem that has been proved to
be not well suited for classical mathematical optimization techniques. To tackle
this issue, we make use of a powerful nature-inspired metaheuristics for global
optimization called bat algorithm (see Section 3 for details).

The structure of this paper is as follows: Section 2 summarizes the mathe-
matical background required to follow the paper. Section 3 describes the main
features of the bat algorithm, the global optimization metaheuristics used in this
paper. Our proposed method is described in detail in Section 4 and then applied
to an illustrative example in Section 5. The paper closes with the conclusions
and some ideas for future work.

2 Basic Concepts and Definitions

2.1 Digital Images

In this work, we consider a digital image I to be numerically represented as a two-
dimensional raster or bitmapped image. We exclude in our study other possible
computer representations such as vector images. The convolution operator of two
functions φ and ψ, denoted by φ b ψ, is a mathematical operation describing
how the shape of one function is modified by the other. Analytically, it is given
by an integral transform of both functions defined as:

pφb ψqpρq �

8»
�8

φpτqψpρ� τqdτ (1)

In the context of image processing, the convolution operator is carried out
in a discrete fashion by using a kernel applied on a given image I via matrix
convolution. Let K be such a kernel. The convolution is given by:

I 1x,y � pK b Iqx,y �
µ̧

α��µ

ν̧

β��ν

Kα,βIx�α,y�β (2)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_30

https://dx.doi.org/10.1007/978-3-030-22744-9_30


Bat Algorithm for Kernel Computation in Fractal Image Reconstruction 3

where I 1 is the transformed image, the subscripts indicate the image pixels, and
K � tKα,βuα,β , with �µ ¤ α ¤ µ, ν ¤ β ¤ ν. Depending on the particular
purposes, different kernels can be considered: for instance, classical operations
in morphological image processing such as dilation and erosion are expressed by
specific filtering kernels operating on a input binary image. Other operations such
as opening, closing, and boundary detection can be obtained as a combination
of such kernels (see [10] for details).

2.2 Fractal Images

In this paper, a digital fractal image is defined as a digital image with the prop-
erty of self-similarity and whose fractal dimension is larger than its topological
dimension [4, 12]. Suppose a set of affine mappings Λ � tΛ1, . . . , Ληu defined on
a complete metric space M � pΩ,Ψq, where Ω � Rn and Ψ is a distance on
Ω. Such affine mappings Λκ can be represented by a 3 � 3 augmented matrix
Θκ � tθκi,jui,j�1,2,3 in homogeneous coordinates, with: θκ3,j � δ3,j , where δ rep-
resents the Kronecker delta. In that case, ΛκpAq � Θκ.A

�, @A � R2, where the
superscript � denotes the augmented matrix. We assume that all mappings Λκ
are contractive, with contractivity factor λκ ¡ 0.

Consider now the set of all compact subsets of the plane, H. We can define
the Hutchinson operator, Ξ as:

ΞpSq �
η¤
κ�1

ΛκpSq (3)

for each S P H. Since all Λκ are contractions, this operator Ξ is also a contraction
inH with the induced Hausdorff metric [3, 14]. Then, according to the fixed point
theorem, Ξ has a unique fixed point, called the attractor of Λ.

The reconstruction of digital fractal images is driven by a famous result by M.
Barnsley called the Collage Theorem [2]. Roughly speaking, it states that every
digital image can be represented as the attractor of a system Λ. In particular,
given a non-empty B P H, the induced Hausdorff metric Hp., .q on H, a non-
negative real threshold value ε ¥ 0, and a system of affine contractive mappings
Λ with contractivity factor 0   λ   1 , given by: λ � max tλκuκ�1,...,η, if

H pB,ΞpBqq ¤ ε then H pB,Aq ¤ ε

1� λ
, where A is the attractor of Λ, or

equivalently: H pB,Aq ¤ 1
1� λ

H

�
B,

η¤
κ�1

φκpBq

�
.

3 The Bat Algorithm

The bat algorithm is a bio-inspired swarm intelligence algorithm originally pro-
posed by Xin-She Yang in 2010 to solve continuous optimization problems [21–
23]. The algorithm is based on the echolocation behavior of microbats, which
use a type of sonar called echolocation, with varying pulse rates of emission and
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loudness, to detect prey, avoid obstacles, and locate their roosting crevices in
the dark. The idealization of the echolocation of microbats is as follows:

1. Bats use echolocation to sense distance and distinguish between food, prey
and background barriers.

2. Each virtual bat flies randomly with a velocity vi at position (solution)
xi with a fixed frequency fmin, varying wavelength λ and loudness A0 to
search for prey. As it searches and finds its prey, it changes wavelength (or
frequency) of their emitted pulses and adjust the rate of pulse emission r,
depending on the proximity of the target.

3. It is assumed that the loudness will vary from an (initially large and positive)
value A0 to a minimum constant value Amin.

Some additional assumptions are advisable for further efficiency. For instance,
we assume that the frequency f evolves on a bounded interval rfmin, fmaxs. This
means that the wavelength λ is also bounded, because f and λ are related to each
other by the fact that the product λ.f is constant. For practical reasons, it is also
convenient that the largest wavelength is chosen such that it is comparable to
the size of the domain of interest (the search space for optimization problems).
For simplicity, we can assume that fmin � 0, so f P r0, fmaxs. The rate of pulse
can simply be in the range r P r0, 1s, where 0 means no pulses at all, and 1 means
the maximum rate of pulse emission.

With these idealized rules indicated above, the basic pseudo-code of the bat
algorithm is shown in Algorithm 1. Basically, the algorithm considers an initial
population of P individuals (bats). Each bat, representing a potential solution
of the optimization problem, has a location xi and velocity vi. The algorithm
initializes these variables with random values within the search space. Then, the
pulse frequency, pulse rate, and loudness are computed for each individual bat.
Then, the swarm evolves in a discrete way over iterations, like time instances
until the maximum number of iterations, Gmax, is reached. For each generation
g and each bat, new frequency, location and velocity are computed according to
the following evolution equations:

fgi � fgmin � βpfgmax � fgminq (4)

vgi � vg�1
i � rxg�1

i � x�s fgi (5)

xgi � xg�1
i � vgi (6)

where β P r0, 1s follows the random uniform distribution, and x� represents
the current global best location (solution), which is obtained through evaluation
of the objective function at all bats and ranking of their fitness values. The
superscript p.qg is used to denote the current generation g. The best current
solution and a local solution around it are probabilistically selected according
to some given criteria. Then, search is intensified by a local random walk. For
this local search, once a solution is selected among the current best solutions,
it is perturbed locally through a random walk of the form: xnew � xold � εAg,
where ε is a uniform random number on r�1, 1s and Ag �  Agi ¡, is the average
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Require: (Initial Parameters)
Population size: P ; Maximum number of iterations: Gmax ; Loudness: A
Pulse rate: r ; Maximum frequency: fmax ; Dimension of the problem: d
Objective function: φpxq, with x � px1, . . . , xdq

T ; Random number: θ P Up0, 1q
1: g Ð 0
2: Initialize the bat population xi and vi, pi � 1, . . . , nq
3: Define pulse frequency fi at xi

4: Initialize pulse rates ri and loudness Ai

5: while g   Gmax do
6: for i � 1 to P do
7: Generate new solutions by using eqns. (4)-(6)
8: if θ ¡ ri then
9: sbest Ð sg //select the best current solution

10: lsbest Ð lsg //generate a local solution around sbest

11: end if
12: Generate a new solution by local random walk
13: if θ   Ai and φpxiq   φpx�q then
14: Accept new solutions, increase ri and decrease Ai

15: end if
16: end for
17: g Ð g � 1
18: end while
19: Rank the bats and find current best x�

20: return x�

Algorithm 1: Bat algorithm pseudocode

loudness of all the bats at generation g. If the new solution achieved is better than
the previous best one, it is probabilistically accepted depending on the value of
the loudness. In that case, the algorithm increases the pulse rate and decreases
the loudness. This process is repeated for the given number of iterations. In
general, the loudness decreases once a new best solution is found, while the rate
of pulse emission decreases. For simplicity, the following values are commonly
used: A0 � 1 and Amin � 0, assuming that this latter value means that a bat has
found the prey and temporarily stop emitting any sound. The evolution rules for
loudness and pulse rate are as: Ag�1

i � αAgi and rg�1
i � r0i r1� expp�γgqs where

α and γ are constants. Note that for any 0   α   1 and any γ ¡ 0 we have:
Agi Ñ 0, rgi Ñ r0i as g Ñ8. Generally, each bat should have different values for
loudness and pulse emission rate, which can be achieved by randomization. To
this aim, we can take an initial loudness A0

i P p0, 2q while the initial emission
rate r0i can be any value in the interval r0, 1s. Loudness and emission rates will
be updated only if the new solutions are improved, an indication that the bats
are moving towards the optimal solution.

Bat algorithm is a very promising method that has already been successfully
applied to several problems, such as multilevel image thresholding [1], economic
dispatch [18], B-spline curve reconstruction [15], optimal design of structures in
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civil engineering [17], robotics [20], fuel arrangement optimization [16], planning
of sport training sessions [5], transport [19], and many others. The interested
reader is also referred to the general paper in [24] for a comprehensive review of
the bat algorithm, its variants and other interesting applications.

4 The Method

4.1 Optimization Problem

Suppose that we are given a digital fractal image, I. The Collage Theorem
states that I can be closely approximated by an iterative process driven by a
set of contractive affine mappings, Λ � tΛ1, . . . , Ληu, on the two-dimensional
real plane. In particular, for any arbitrary S0 P H, consider Sj � ΛκpSj�1q �
Θκ.Sj�1, where κ is randomly chosen from the set of indices t1, . . . , ηu according
to a set of probabilities W � tω1, . . . , ωηu, with

°η
κ�1 ωκ � 1, for each iteration

step j. Then, the sequence tSjuj converges to I as j Ñ8.
In other words, any given digital fractal image I can be accurately approxi-

mated by the action of a finite collection of affine kernels tΘκuκ�1,...,η according
to a similarity function S, which measures the graphical distance between I and

the reconstructed image I 1 �
η�
κ�1

ΛκpIq. In line with this, the problem consists

of computing the kernels Θκ and can be formulated as the following optimization
problem:

minimize
tΘκi,ju,tωκu

S

�
I,

η¤
κ�1

ΛκpIq

�
(7)

The minimization in Eq. (7) is a continuous nonlinear constrained optimiza-
tion problem, because all free variables tΘκi,jui,j,κ, tωκuκ are real-valued and must
satisfy the condition that the corresponding functions Λκ have to be contractive.
It is also a multimodal problem, as there can be several global or local minima
of the similarity function. The problem is so difficult that only partial solutions
have been reported so far in the literature. However, the general problem still
remains unsolved. In this paper we address this problem by applying the bat
algorithm described in previous section.

4.2 The Procedure

In our method, we consider an initial population of χ individuals called bats,
tB0

i ui�1,...,χ, where each bat is a real-valued vector comprised of all free variables
in Eq. (7) and the superscrit denotes the iteration number. These individuals are
initialized with uniform random values in r�1, 1s for the variables in tΘκi,jui,j,κ,
and in r0, 1s for the tωκuκ, such that

°η
κ�1 ω

i
κ � 1. After this initialization

step, we compute the contractive factors λκ and reinitialize all functions Λκ
with λκ ¥ 1 to ensure that only contractive functions are included in the initial
population. Regarding the fitness function, it is given by the Hamming distance:
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Fig. 1. Six different individuals (bats) from the initial random population.
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Fig. 2. (l-r, t-b) Evolution of the global best of the population from 100 to 600 iterations
with step size 100, respectively.

the fractal images are stored as binary bitmap images for a given resolution
defined by a mesh size parameter, ms. Then, we divide the number of mismatches
between the original and the reconstructed matrices by the total number of boxes
in the image. This yields the normalized similarity error rate index (NSERI)
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Fig. 2. (cont’d) (l-r, t-b) Evolution of the global best of the population from 800 to
1400 iterations with step size 200, respectively.

between both images, denoted by |SpI, I 1q|. This is the fitness function used in
this work.

4.3 Parameter Tuning

A critical issue when working with swarm intelligence techniques is the parameter
tuning, which is well-known to be problem-dependent. Our choice has been fully
empirical, based on computer simulations for different parameter values. The
different parameters used in this work are arranged in rows in Table 1. For each
parameter, the table shows (in columns) its symbol, meaning, range of values,
and the parameter value chosen in this paper. Regarding the stopping criterion,
our method is run for a fixed number of iterations, Gmax. From our experiments,
we found that Gmax � 2500 iterations is enough to reach convergence in all our
simulations, so this is the value used in this work. Finally, our method requires
to define the mesh size, ms, set to ms � 100 in this work.

With this choice of parameter values, we run the bat algorithm iteratively.
Positions and velocities of the bats are computed according to the evolution
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Symbol Meaning Range of Values Selected Value

P population size 50� 200 100

Gmax maximum number of iterations 1000-5000 2500

A0 initial loudness p0, 2q 0.5

Amin minimum loudness r0, 1s 0

r0 initial pulse rate r0, 1s 0.2

fmax maximum frequency r0, 10s 1.5

α multiplicative factor p0, 1q 0.3

γ exponential factor r0, 1s 0.2

Table 1. Bat algorithm parameters and their values in this paper.

equations (4)-(6) and then ranked according to the fitness function explained
above. This iterative process stops when the maximum number of iterations
Gmax is reached. The best solution achieved at the final iteration is taken as the
solution of the optimization problem.

5 An Illustrative Example

5.1 Graphical Results

Our method has been applied to several examples. However, we restrict our
discussion in this paper to just one illustrative example because of limitations of
space. In the example, the original image, shown in Fig. 3(top), is reconstructed
with three affine transformations Λκ, κ � 1, 2, 3. We apply our method by using
an initial population of randomly chosen 100 bats. For illustration, six of them
are displayed in Fig. 1. As the reader can see, they are visually very different to
each other, and all them are very far from the original source image. Then, our
method is applied for Gmax � 2500 iterations as described above.

Fig. 2 shows the evolution of the global best of the population at specific
iteration values, ranging from 100 to 600 with step size 100, and then from
800 to 1400 with step size 200. From the picture, we can see that the global
best is very far from the source image at initial stages of the method, leading
to images that do not really resemble the goal image. However, as the number
of iterations increases, the global best image is getting visually closer to the
intended image. Also, note that the variation of the global shape of the image
over the iterations is more dramatic at initial stages, corresponding to a higher
explorative phase, while it varies slightly at later iterations, where the image
approaches to the target image by small incremental improvements of some local
features, corresponding to the exploitative phase of the method. Fig. 3 (bottom)
shows the reconstructed image after the convergence is reached. From Fig. 3 we
can see that the final reconstructed image is very similar visually to the source
image, capturing faithfully all major features of a very complicated and irregular
shape. This means that our method is able to reconstruct the general shape of
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Fig. 3. (top) Original image; (bottom) best reconstructed image.

the given image with a high visual accuracy. The corresponding convergence
diagram is shown in Fig. 4.
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Fig. 4. Convergence diagram of the NSERI fitting error for 2500 iterations.

5.2 Numerical Results

Regarding the numerical results, the similarity error between the original and
the reconstructed images is 0.4748 according to our metric, meaning that we
got a 47% of mismatches between both images for the given resolution. This
result may seem surprising in the light of the good visual results, but it must
be taken into account that our metrics computes the differences based on the
numerical values on the grid. Therefore, any minor distortion of the image (e.g.,
displacement, rotation, or scaling) can yield substantial increases in the similarity
error, even though the general shape might still be well replicated. Furthermore,
even if these variations happen at a local level, they have a dramatic effect
on the numerical results. Of course, this effect can be partially alleviated by
considering a less demanding fitness function. However, we preferred to preserve
this more stringent metric in order to push our method further looking for a
higher accuracy. As a conclusion, in spite of the good graphical results, the
numerical results show that the method is not optimal yet and there is probably
room for further improvement.

5.3 Computational Issues

All computations in this paper have been performed on a 2.6 GHz Intel Core i7
processor with 16 GB of RAM. The source code has been implemented by the
authors in the native programming language of the popular scientific program
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Matlab version 2015a using the numerical libraries for fractals in [6, 7, 9]. Regard-
ing the CPU times, they depend on the complexity of the image, the resolution
of the mesh, and other factors. For illustration, each single execution takes about
25�30 minutes. In general, we noticed that the method is time-consuming for
very high resolution images. This is the case for the image in our example, which
is drawn with 5� 105 points.

6 Conclusions and Future Work

This paper introduces a new approach for digital fractal image reconstruction.
The method is based on a new affine kernel inspired by those in morphologi-
cal image processing but specifically designed for fractal images. This approach
leads to a difficult multimodal nonlinear continuous optimization, solved by us-
ing a powerful nature-inspired metaheuristics: the bat algorithm. An illustrative
example is used to analyze the performance of this approach. Our experiments
show that the method obtains very good visual results. However, the numerical
results are not optimal yet, suggesting that there is also room for further im-
provement. We conclude that this approach is promising and it could potentially
become (after further improvement to reduce the computing times and enhance
its numerical accuracy) a very useful technique in the context of fractal image
reconstruction.

Regarding our future work, we want to modify our method to improve our
numerical and graphical results. In addition to a more optimized fitness function,
we are interested to hybridize the bat algorithm with local search procedures to
enhance the exploitation abilities of the method in the neighborhood of the local
optima for higher accuracy. We also wish to extend our results to the cases
of non-binary and colored images, with the possible addition of an extra color
channel. Reducing our CPU times for better performance is also part of our
plans for future work in the field.
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