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Abstract. Detecting communities of interconnected nodes is a frequently
addressed problem in situation that be modeled as a graph. A com-
mon practical example is this arising from Social Networks. Anyway,
detecting an optimal partition in a network is an extremely complex and
highly time-consuming task. This way, the development and application
of meta-heuristic solvers emerges as a promising alternative for dealing
with these problems. The research presented in this paper deals with
the optimal partitioning of graph instances, in the special cases in which
connections among nodes change dynamically along the time horizon.
This specific case of networks is less addressed in the literature than
its counterparts. For efficiently solving such problem, we have modeled
and implements a set of meta-heuristic solvers, all of them inspired by
different processes and phenomena observed in Nature. Concretely, con-
sidered approaches are Water Cycle Algorithm, Bat Algorithm, Firefly
Algorithm and Particle Swarm Optimization. All these methods have
been adapted for properly dealing with this discrete and dynamic prob-
lem, using a reformulated expression for the well-known modularity for-
mula as fitness function. A thorough experimentation has been carried
out over a set of 12 synthetically generated dynamic graph instances,
with the main goal of concluding which of the aforementioned solvers is
the most appropriate one to deal with this challenging problem. Statis-
tical tests have been conducted with the obtained results for rigorously
concluding the Bat Algorithm and Firefly Algorithm outperform the rest
of methods in terms of Normalized Mutual Information with respect to
the true partition of the graph.

Keywords: Bio-inspired computation · Nature-inspired heuristics · Evolv-
ing Graphic Streams · Community Detection

1 Introduction

With the impactful arrival of Social Networks, a remarkable number of tools
and methods have been developed for excerpting information and insights from
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the multiple interrelations between their users [1]. In this regard, the knowledge
that can be drawn using these methods range from evaluating the influence of
a specific node in the whole graph (centrality), to enriched ways of network
visualizing or the finding of shortest paths amidst a pair or groups of nodes.
As has been seen in late years, all this information can be used for interesting
practical goals, such as the identification of radicalization risk [2, 3], or child
abuse detections [4, 5].

Among all the valuable knowledge that can be inferred from these Social Net-
works, the detection of different communities within the nodes is probably one
of the most recurrent tasks, being the main focus of lots of recently developed
scientific studies. Specifically, a community refers to a group of nodes which
meet the general principles of strong intra-connectivity (strong links between
members of the same community) and weak inter-connectivity (weak connectiv-
ity with nodes belonging to other partitions). Furthermore, the redefinition of
these measured parameters leads to the characterization of different networks
(weighted, multiple edges, directed, self loops), quantifying the cohesiveness of
any candidate community.

Additionally, diverse efficient metrics have been projected in the literature
for evaluating the quality of proposed partitions. Each of these metrics take
different assumptions for measuring the connectivity, yielding to a single quality
value for the community. Permanence [6], Surprise [7] and Newman and Girvan’s
Modularity [8] are some frequently used examples. In this specific study, the last-
mentioned Modularity is considered.

In terms of computational solvers, many different approaches have been pro-
posed in recent years for finding communities towards (explicitly or implicitly)
optimizing one of the aforementioned metrics. Related with the research pre-
sented in this manuscript, a growing community is currently emerging devoted
to adapting well-known (or even develop new) heuristic optimization algorithms,
directly adopting one modularity metric as objective function. Many of these
works can be found in the recent literature, focused on assorting combinations
of algorithmic approaches, network instances and quality measurement metric
functions. In this context, Genetic Algorithms (GA) crop up as one of the most
often employed methods for discovering partitions in networks of different char-
acteristics [9, 10]. Besides GAs, many techniques that fall inside the umbrella of
Evolutionary Computation and Swarm Intelligence have been proposed in last
years, with the main goal of solving same or similar problem. Some of these
solvers are the Ant Colony Optimization [11] or Particle Swarm Optimization
[12]. Furthermore, interestingly for the scope of this work, a growing strand of
the related literature is currently committed to the adaptation of modern nature-
inspired algorithms for community detection in networks. Some examples are the
Firefly Algorithm [13], Bat Algorithm [14] or Artificial Bee Colony [15].

At this point, it is worth to mention a specific case of networks, which are
characterized by their dynamism. Since time immemorial, relationships between
human beings tend to be different over time. In this sense, people are used to
strengthen existing (or build new) relations over their whole lives, meanwhile
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some others are weakened (or even broken up). For this reason, if we analyze
the relationship history of a single person in a long enough time lapse, we will
surely find some dynamism. Of course, this evolution is also reflected in Social
Networks. This way, Dynamic Networks are special cases of graphs in which the
number of links among nodes, the strength of these links or even the number of
nodes can suffer changes along the time. Thus, a Dynamic Network can be seen
as an Evolving Graph Stream, in which the evolution of the network is described
step by step.

Dynamic Networks have also been the subject matter of a recently published
interesting works, focused on dynamic community finding [16]. In [17], for exam-
ple, a multi-objective Bat Algorithm is presented for dealing with this problem.
GAs have also been occasionally adapted to this kind of graphs, as can be seen
in [18] or [19]. In any case, the amount of scientific material related to this topic
is much fewer than the one associated to stationary networks.

With all this, the research presented in this paper aims at taking a step fur-
ther over this scarce state of the art by elaborating on several directions: 1) we
face the problem of finding communities in dynamic networks, far less used than
stationary ones; 2) we adopt the Hamming Distance as a metric to assess the
similarity between different solutions and partitions, and 3) we evaluate these
algorithmic features with a group of ad-hoc adopted nature-inspired solvers: Wa-
ter Cycle Algorithm (WCA, [20]), Bat Algorithm (BA, [21]), Firefly Algorithm
(FA, [22]) and Particle Swarm Optimization (PSO, [23]). Along the paper, de-
tails on how these methods have been adapted to the proposed problem are
exposed, as well as a justification of their expected benefits. In order to measure
the performance of each method, results reached over 12 synthetically generated
datasets are compared and discussed, based on their efficiency on discovering
their ground-of-truth partition. Furthermore, with the intention of drawing fair
and rigorous conclusions, two different statistical tests (Friedman’s and Holm’s)
are employed with the obtained outcomes.

The rest of the paper is structured as follows: in the next Section 2, the
problem of detecting communities in dynamic networks is formulated. After that,
the heuristic solvers are described in Section 3, while the experimentation is
displayed in Section 4. This manuscript ends with conclusions and further work
in Section 5.

2 Problem Statement

In order to properly deal with the aforementioned community detection problem,
we start by modeling the dynamic network as a graph G .

= {V, E}, where V rep-
resent the group of |V| = V vertex or nodes of the network, whilst E corresponds
to a set that describes the dynamic situation of the links (or edges connecting
every pair of nodes) along the whole time horizon. At this point, it is interesting
to clarify that the time horizon is comprised by a set of graph snapshots, each
one describing the specific situation of the network at one exact moment. This
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way, E .
= {e1, . . . , eN}, corresponding en to the set of edges at timestamp n. In

our study, we have established N in 30 and 40.
Another noteworthy point is that, while the relation between the nodes vary

along the time, the number and situation of all vertex remains constant along
the time horizon. Furthermore, the weight of each link connecting every pair of
nodes v and v′ is wv,v′ = 1. We also assume that wv,v = 0 (i.e. no self-loops) and
that wv,v′ = 0 if nodes v and v′ are not connected. For notational convenience,
we define an adjacency matrix W given by W

.
= {wv,v′ : v, v′ ∈ V}, and

fulfilling Tr(W) = 0. Finally, symmetry is always assumed in G, meaning that
wv,v′ = wv′,v. From now on, and in order to properly contemplate the dynamism
inherent to the problem, weights are represented as wnv,v′ , depicting the weight
at timestamp n.

With all this, the problem of finding communities in the graph G is conceived
in this study as the partition of the vertex set V into a number of non-empty
and disjoint groups, each with a non-fixed size. Assuming that M is the number
of groups of partition Ṽ .

= {V1, . . . ,VM}, such that ∪Mm=1Vm = V and Vm ∩
Vm′ = ∅ ∀m′ 6= m (i.e. no overlapping communities). We can thus denote the

community to which node v belongs as Vv ∈ Ṽ. Analogously, from now on, the
set of partitions will be represented as Vn, depicting Ṽn

.
= {Vn1 , . . . ,VnM} the

group communities found at a specific timestamp n. This way, dynamism can
be contemplated in this formulation.

Furthermore, as has been advanced in the introduction, the Newman and
Girvan’s Modularity formula has been adopted for measuring the quality of a
given partition. This well-known function has been employed in myriad of works
before, and its adequacy has been proven extensively [24–26]. This way, the
measure of modularity for the considered community can be computed by:

Q(Ṽn)
.
=

1

2|En|
∑
ij

[
wnv,v′ −

kni k
n
j

2|En|

]
δ(v, v′)n, (1)

where kni is the degree of node i, |En| is the total number of edges in the network,
and δ(v, v′)n represents the Kronecker delta symbol, all of them contextualized
in timestamp n. Clearly explained, δ(v, v′)n is a binary function δ : Vn × Vn 7→
{0, 1}, such that δ(v, v′n) = 1 if Vvn = Vv′n as per the partition set by Ṽn (and 0
otherwise). All of them also contextualized by the timestamp n.

Therefore, detecting a good partition Ṽ∗n of the considered network G can be
casted as:

Ṽ∗n = arg max
Ṽn∈BV

Q(Ṽn), (2)

denoting BV the group of possible partitions of Vn elements into nonempty
subgroups (i.e. the solution space of the above combinatorial problem). The
specific cardinality of this set is huge, which is given by the V -th Bell number
[27]. This means that if we consider a network composed by V = 20 nodes,
it can be partitioned in approximately 517.24 · 1012 different manners. Thus,
considering that a separated evaluation can be computed in 1 microsecond on
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average, we would need more than one and a half years to check all possible
combinations. This situation confirms the necessity of using a heuristic method
for the efficient exploration of the solution space.

Finally, it is worth-mentioning at this point that the main goal of this paper
is to solve the described problem in n consecutive timestamps, trying to reach
the highest precision possible. To do that, it is important to consider different
degrees of similarity between adjacent graph snapshots n and n+ 1.

3 Proposed Nature-inspired Solvers

With the aim of properly deal with the above described problem, several nature-
inspired methods have been proposed. Prior to the description of each considered
solver, some common design aspects are described in what follows, related to the
encoding strategy, solution repair mechanism and the method used for comparing
different solutions.

Being one of the most important aspects while heuristic developing, it is
interesting to mention that label-based representation [28] has been adopted for
encoding purposes. This way, each solutions is codified as a permutation x =
[c1, c2, . . . , cV ] of V integers from the range [1, . . . , V ], where V denotes the
number of nodes in the network. Furthermore, cv denotes the cluster label to
which node v belongs to. For instance, considering a V = 12 network, a possible
solution could be x = [1, 2, 2, 1, 1, 2, 2, 3, 2, 3, 3, 3], which means that the partition

depicted is Ṽ = {V1,V2,V3}, where V1 = {1, 4, 5}, V2 = {2, 3, 6, 7, 9} and V3 =
{8, 10, 11, 12}.

With the intention of avoiding ambiguities in the representation, a repairing
mechanism has been built, which is partly inspired from the one presented in
[29]. Thanks to this procedure, which is applied to every newly created solution,
ambiguities generated by solutions such as x = [4, 2, 2, 4, 4, 2, 2, 3, 2, 3, 3, 3] and
x = [7, 1, 1, 7, 7, 1, 1, 4, 1, 4, 4, 4] (which represent the same partition) are solved,
transforming both of them to the above shown x = [1, 2, 2, 1, 1, 2, 2, 3, 2, 3, 3, 3].

An additional important aspect of the developed methods is how the sim-
ilarity between different solutions is measured. This similarity is the basis of
the movement strategies inherent to each of the proposed techniques. Thus, the
well-known Hamming Distance has been chosen for this purpose. This function
has previously used in several studies with the same objective, as can be seen
in [30], verifying its adequacy in this context. Concretely, Hamming Distance is
calculated as the number of non-corresponding elements between two individ-
uals. This way, and considering two partitions x = [1, 2,2, 1,2, 2, 2, 3, 2, 3,1,1]
and x = [1, 2,1, 1,1, 2, 2, 3, 2, 3,3,3] their Hamming Distance DH(x,x′) would
equal 4.

Finally, four movement functions have been implemented for evolving individ-
uals along the search process. The use of these operators is based on the distance
between two different partitions. Specifically, these functions are named CE1,
CE3, CC1 and CC3. On the one hand, the subscript represents the number of
randomly selected nodes, which are extracted from its corresponding community.
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On the other hand, in CE∗ operators the taken nodes are re-inserted in already
existing clusters, while in CC∗ nodes can be inserted also in newly generated
ones.

Now, the details of the considered metaheuristics are introduced:

WCA : The Water Cycle Algorithm was firstly proposed in [31] for solving
continuous optimization problems. As has been made in other scientific works
[32], a discrete adaptation has been conducted for properly facing the problem
addressed in this research. Regarding this approach, and laying aside the as-
pects mentioned in the beginning of this section, the most crucial mechanism
to implement is the way in which streams and rivers flow to their correspond-
ing leading individual. Thus, and following the same philosophy of the basic
WCA, the movement of each stream pstr ∈ Pstr towards its river λ(pstr) at each
generation t ∈ {1, . . . , T} is set to:

xpstr (t+1)=Ψ
(
xpstr (t),min

{
V,
⌊
rand · θ ·DH(xpstr (t),xλ(pstr)(t))

⌋})
, (3)

where rand is a continuous random variable uniformly distributed in R[0, 1], θ
is a heuristic parameter. Furthermore, Ψ(x, Z) ∈ {CE1, CE3, CC1, CC3}, each
one parametrized by the number of times Z this function is applied to x. This
way, the best movement resulting from all the Z movements carried out on x is
selected as output. The same logic is adopted for the movements of a river or a
stream towards the sea, just replacing xλ(pstr)(t) by xpsea(t).

Additionally, the inclination mechanism recently proposed in [32] is also used
in the developed discrete WCA, with the main goal of boosting the exploration
ability of the method. This simple mechanism endows the algorithm with the
intelligence of properly selection the movement operator to use at each iteration
for every individual. This election depends on the specific situation of each rain-
drop. Concretely, each time an individual is about to perform a movement, the
aforementioned inclination ξ(x,x′) is computed using as reference the DH(x,x′)
to its designated river/sea x′. Particularly, ξ(·, ·) is equal to V/DH(·, ·). Accord-
ingly, the bigger DH(·, ·) is, the higher ξ(·, ·) should be, forcing the method to
perform a fast move with a higher probability. On the contrary, if DH(·, ·) is
small the inclination decreases, suggesting that the search is in a promising area
of the solution space, and performing a slow move with higher probability. In the
present study, four different movement functions have been considered, deeming
CC∗ as fast moves, and CE∗ as slow moves. Finally, the evaporation and rain-
ing procedures remain in the same way as in the original WCA. Specifically, the
raining process comprises a number R of consecutive CC3 movements.

BA : As for the WCA, the classic BA was firstly introduced for solving con-
tinuous optimization problems. For this reason, a discrete adaptation has been
conducted in order to correctly face the problem addressed in this paper. As in
many other adaptations [33], each bat represents a feasible solution of the prob-
lem. Both concepts of loudness Ai and pulse emission ri have been considered
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in exactly the same form as in the basic version of the method. Furthermore, in
order to simplify the complexity of the approach, frequency fi parameter has not
been deemed. Finally, the velocity vi has been adapted, considering the Ham-
ming Distance as measure function to evaluate the similarity between two bats.
This way, vti = Random[1,DH(xi,x∗)]. In other words, the vi of a bat i at time
step t is a random number, which follows a discrete uniform distribution between
1 and the difference between this i and the best bat of the swarm. Finally, the
way in which a bat moves is determined similarly to Expression (3), using vi
as the number of movements considered. Furthermore, the inclination concept
is also implemented in this discrete version of the BA, also following the same
philosophy as for the WCA, and using the best bat as reference.

FA : Again, the classic FA cannot be applied directly to address discrete prob-
lems. For this reason, some modifications have been performed over the orig-
inal version of the FA. As for the BA, each firefly in the swarm represents a
solution for the problem. Additionally, the concept of light absorption is con-
sidered, which is essential for the adjustment of fireflies’ attractiveness. As has
been mentioned, the distance between two different individuals is calculated by
the Hamming Distance. Finally, the movement of a firefly attracted to another
brighter one is determined following the same logic depicted in Expression (3).
Besides that, when a firefly is prepared to perform a movement to another firefly,
it examines its distance. If it is higher than V/2, it can be assumed that it is far
from its counterpart. Therefore, it carries out a wide move, using a CC∗ opera-
tor. Otherwise, a short move is performed by a CE∗ function. This mechanism
has been added aiming the adapt the inclination functionality above described.

PSO : The last considered approach is the well-known Particle Swarm Opti-
mization, which has been already applied to discrete problems in multiple times
[34, 35]. Taking as inspiration previous discrete adaptations of the PSO, each
particle also deems a feasible solution for the dealt problem. Velocity parameter
vi has been considered analogously to what has been done for the BA. Ad-
ditionally, both movement operators and inclination mechanism have also been
contemplated for the PSO in the same way as for the FA, WCA and BA. Finally,
Hamming Distance has been taken as similarity measurement function.

4 Experimentation and Results

With the aim of properly evaluating the performance of the four developed
solvers, computer experiments have been run using a heterogeneous set of syn-
thetically generated network instances. All these instances have been created
using the well accepted DANCer platform [36, 37], and with the aim of covering
a diverse set of common situations in dynamic environments. Specifically, the
benchmark is composed by 12 different 100-noded datasets. The name of each
instance is built joining the values of five different parameters:

– Size of the problem: In all cases this value is 100.
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– Communities: The number of communities that compose the ground of truth
solution.

– Generations: Number of generations run for each Graph Snapshot ei.

– Variability : The difference between adjacent graph snapshot ei and ei+1. This
parameter can adopt three different values: Slight (variety of 5% between
adjacent snapshots), Medium (variety of 10%), and Dramatic (variety of
20%).

– Transition: Each instance is composed by 30 canonical snapshots, divided
into two different families of 15 timestamps. If Transition takes Abrupt value,
the transition between both families is directly made after the 15th times-
tamp. These instances are comprised just by these 30 snapshots. On the
hand, if Transition takes Gradual value, this transition is made gradually,
introducing 10 additional snapshots between the last timestamp of the first
family, and the first timestamps of the second one. These datasets are finally
composed by 40 snapshots.

This network construction approach allows us to measure the performance
of the developed solvers over noisy versions of a graph characterized by a con-
trolled underlying community distribution. This method opposes to the common
practice by which the comparison is done based on the fitness value obtained
by each technique. Finally, 10 independent runs have been executed for each
solver and dataset, aiming at reaching statistically reliable insights. Regarding
the ending criterion, it depends on both Generations and Transition parameters
of the instance. Thus, depending on the values taken by these parameters, solvers
end after 600, 800, 1500 or 2000 generations. The population size has been es-
tablished in 50 for each method. In the concrete case of WCA, the number of
rivers has been established in 9 (approximately 20% of the whole population),
leading to a number of 40 streams. On the other hand, the maximum distance
for evaporation) and R have been respectively set to 5% and a uniform ran-
dom value from N[0, b0.5V c]. On the other hand, for FA γ=0.95. Finally, for BA
α=β=0.98, A0

i=1.0 and r0i=0.1. For the development and parameterization of
these methods, the guidelines given in [32, 33, 38] have been followed.

Table 1. Obtained NMI results (average/best/standard deviation) using WCA, BA,
FA and PSO. Best average results have been highlighted in bold.

WCA BA FA PSO

Instance Avg Best Std Avg Best Std Avg Best Std Avg Best Std

100 7 20 Sli Abr 0.617-0.439 0.724-0.632 0.029-0.036 0.668-0.484 0.811-0.676 0.035-0.062 0.646-0.571 0.739-0.682 0.038-0.034 0.573-0.460 0.665-0.608 0.024-0.0334
100 7 20 Sli Grad 0.619-0.482 0.772-0.632 0.030-0.034 0.676-0.461 0.757-0.588 0.027-0.053 0.658-0.571 0.760-0.681 0.034-0.036 0.580-0.463 0.657-0.590 0.021-0.042
100 7 50 Sli Abr 0.671-0.529 0.784-0.683 0.034-0.035 0.699-0.513 0.755-0.670 0.026-0.041 0.655-0.577 0.760-0.681 0.034-0.036 0.640-0.492 0.759-0.664 0.031-0.045
100 7 50 Sli Grad 0.662-0.540 0.784-0.708 0.029-0.034 0.689-0.500 0.777-0.635 0.032-0.054 0.650-0.580 0.751-0.689 0.033-0.030 0.638-0.486 0.758-0.700 0.031-0.039
100 8 20 Med Abr 0.619-0.445 0.860-0.648 0.029-0.040 0.660-0.500 0.869-0.653 0.040-0.042 0.633-0.519 0.811-0.618 0.030-0.033 0.561-0.474 0.698-0.597 0.027-0.030
100 8 20 Med Grad 0.620-0.463 0.840-0.620 0.027-0.040 0.654-0.460 0.861-0.652 0.041-0.043 0.643-0.526 0.799-0.642 0.031-0.040 0.571-0.464 0.701-0.571 0.026-0.031
100 8 50 Med Abr 0.681-0.495 0.861-0.663 0.029-0.036 0.710-0.483 0.870-0.635 0.036-0.035 0.640-0.522 0.802-0.657 0.031-0.036 0.601-0.498 0.835-0.633 0.033-0.034
100 8 50 Med Grad 0.674-0.492 0.861-0.684 0.030-0.039 0.683-0.482 0.861-0.691 0.032-0.049 0.650-0.524 0.812-0.644 0.031-0.032 0.612-0.466 0.848-0.610 0.030-0.034
100 9 20 Dram Abr 0.593-0.474 0.726-0.631 0.029-0.038 0.639-0.501 0.820-0.684 0.034-0.039 0.607-0.569 0.741-0.657 0.030-0.027 0.535-0.539 0.643-0.657 0.029-0.029
100 9 20 Dram Grad 0.589-0.515 0.696-0.641 0.029-0.033 0.641-0.543 0.793-0.697 0.025-0.063 0.606-0.570 0.753-0.706 0.031-0.029 0.538-0.538 0.643-0.644 0.024-0.030
100 9 50 Dram Abr 0.642-0.538 0.791-0.684 0.028-0.036 0.677-0.550 0.811-0.675 0.026-0.026 0.614-0.559 0.765-0.641 0.031-0.028 0.586-0.529 0.727-0.646 0.032-0.039
100 9 50 Dram Grad 0.638-0.544 0.820-0.694 0.024-0.030 0.651-0.548 0.826-0.664 0.042-0.038 0.620-0.553 0.764-0.643 0.035-0.026 0.585-0.514 0.701-0.641 0.028-0.031

Friedman’s non-parametric test (mean ranking)

Rank 2.5-3.0 1.0-2.83 2.5-1.0 4.0-3.16
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In Table 1, outcomes (average/best/standard deviation) obtained by the four
solvers are shown. Each of these values are divided into two different sub-values,
each one depicting separately the performance for the first and the second fam-
ily. As has been mentioned, each dataset is composed by 30 canonical Graph
Snapshots (plus 10 transitional ones for Gradual instances), which belong to
two different families. All results are shown in terms of the Normalized Mutual
Information (NMI) with respect to the ground of truth partition of the specific
timestamp. This means that the average depicted represents the mean NMI value
for all the 15 timestamps belonging to the same family. Analogously, best values
depict the maximum value reached at any timestamp of the whole family. The
NMI score measures the level of agreement between two community partitions:
if NMI(Ṽ, Ṽ ′) = 1 both distributions Ṽ and Ṽ ′ are equal to each other. This also
means that lower values denote that there are differences between them.

A first analysis reveals that BA is the best alternative in the 100% of the
cases for the first family, while the FA emerges as the best alternative in all
the datasets for the second families. On the other hand, the performance of
PSO is much lower than the other alternatives, while WCA is one step behind
BA and FA. In this sense, we can see how WCA is much worse than the BA
for the first families but similar to FA in this context. On the contrary, it is
much worse than FA for second families while it obtains similar outcomes than
BA. Although it may seem unintuitive, this switch in the quality of results has
a logical explanation, which is based in the fact that BA is a better for the
exploitation of the solution space, while FA shows a better adapting capacity
thank to its enhanced exploratory ability.

Following the guidelines in [39] and [40], two different tests have been car-
ried out to resolve the statistical relevance of the reported performance gaps. To
begin with, the Friedman’s non-parametric test for multiple comparison allows
proving if there are significant differences in the results obtained by all reported
methods. Last row of Table 1 displays the mean ranking returned by this non-
parametric test for each of the compared algorithms and families (the lower the
rank, the better the performance). Thus, for the first family the Friedman statis-
tic (distributed according to χ2 with 4 degrees of freedom) was equal to 32.4.
Furthermore, the confidence interval has been set to 99%, being 13.27 the critical
point in a χ2 distribution with 4 degrees of freedom. Since 32.4 > 13.27, it can be
concluded that there are significant differences among the results, thus BA can
be regarded as the method having the lowest rank. Regarding the second family,
and taking into account also the results shown in Table 1, the Friedman statistic
test is 22.0. Again, since 22.0 > 13.27, the same conclusion is also applicable in
this case.

The second statistical test is the Holm’s post-hoc test. For correctly con-
ducting this test, BA has been set as the control algorithm for the first family,
whilst for the second FA has been established. Table 2 gathers the unadjusted
and adjusted p-values obtained through the application of Holm’s post-hoc pro-
cedure. From these p-values it can be concluded that BA, for the first case, and
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FA, for the second one, are significantly better than their counterparts at a 95%
confidence level, since all p values are lower than 0.05.

Finally, and seeking for the completeness of the present research, we show
in Figure 1 and Figure 2 the evolution of the NMI and modularity along the
whole execution for the instance 100 7 50 Sli Abr. In Figure 1 the performance
of the BA is depicted, while Figure 2 is devoted to FA. Both graphs represent
the performance presented over the 10 runs.

Fam1 (BA as control) Fam2 (FA as control)

Algorithm Unadjusted p Adjusted p Algorithm Unadjusted p Adjusted p

WCA 0.004427 0.008853 WCA 0.000148 0.000296
FA 0.004427 0.008853 BA 0.000504 0.000504

PSO 0.0 0.0 PSO 0.000039 0.000118

Table 2. Unadjusted and adjusted p-values obtained as a result of the application of
Holm’s post-hoc procedure using BA and FA as control algorithms.

Fig. 1. Evolution of the NMI and fitness obtained by BA for 100 7 50 Sli Abr. Blue
line denotes the NMI. Red line depicts the modularity. Vertical grey line represents a
timestamp alteration. Vertical black line points the family change.

5 Conclusions and Future Research Lines

In this study, community finding in dynamic graphs has been dealt by using
four different nature-inspired meta-heuristics: Water Cycle Algorithm, Bat Al-
gorithm, Firefly Algorithm and Particle Swarm Optimization. For this purpose,
the detection of optimal partitions has been modeled as a discrete optimization
problem, using an adapted Newman and Girvan’s Modularity as evaluation func-
tion. All the four deemed methods have been adapted to face the particularities
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Fig. 2. Evolution of the NMI and fitness obtained by FA for 100 7 50 Sli Abr. Blue
line denotes the NMI. Red line depicts the modularity. Vertical grey line represents a
timestamp alteration. Vertical black line points the family change.

of the solution space, such as the potential representational ambiguity of label
encoding and the definition of distance between solutions to the problem. The
performance of each approach has been evaluated using a benchmark composed
by 12 dynamic networks, all of them comprised by 100 nodes, using as com-
parison criterion the Normalized Mutual Information (or NMI) regarding their
ground of truth partition. Obtained outcomes demonstrated that BA and FA
dominate over their counterparts with statistical significance.

As future work, we plan to conduct further efforts in different directions. The
most imminent one is the adaption of additional nature-inspired, evolutionary
and swarm intelligent methods, such as the Cuckoo Search [41] or Grey Wolf
Optimizer [42]. The performance shown by these techniques applied to other
optimization problems [43–46] lead us to consider them as potentially promising
methods. Moreover, we will also consider larger network instances that the ones
employed in this paper. Finally, we have the firm intention of exploring the
hybridization of these heuristic with local search techniques, trying to mimic the
operation of other heuristics found in the related state of the art, such as recently
contributed message passing procedures [47] and other techniques renowned for
their good scalability [48].
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