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Abstract. Portfolio optimization in stock markets has been investigated
by many researchers. It looks for a subset of assets able to maintain a
good trade-off control between risk and return. Several algorithms have
been proposed to portfolio management. These algorithms use known
return and correlation data to build subset of recommended assets. Dy-
namic stock correlation networks, whose vertices represent stocks and
edges represent the correlation between them, can also be used as input
by these algorithms. This study proposes the definition of constants of
the classical mean-variance analysis using machine learning and weighted
link prediction in stock networks (method named as MLink). To as-
sess the performance of MLink, experiments were performed using real
data from the Brazilian Stock Exchange. In these experiments, MLink
was compared with mean-variance analysis (MVA), a popular method
to portfolio optimization. According to the experimental results, using
weighted link prediction in stock networks as input considerably increases
the performance in portfolio optimization task, resulting in a gross cap-
ital increase of 41% in 84 days.

Keywords: Stock Market · Dynamic Stock Networks · Machine Learn-
ing · Portfolio Optimization.

1 Introduction

Portfolio optimization in stock markets is the process of selecting a subset of
assets that maintain an expected trade-off control between risk and return[16].
The portfolio selection process consists of finding, in a large collection of stocks,
the participation (i.e. individual proportion) of each stock that minimizes the
portfolios risk at a given portfolio return, or maximizes the portfolios return at a
given risk [8]. This topic has been investigated by many researchers from many
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areas, such as optimization, machine learning (ML) and economics. Usually,
portfolio selection algorithms use return and risk measures from a set of assets
to make decision. This trade-off between risk and return is used to suggest a
subset of assets that will be in the portfolio. Commonly used measures include
price mean-return and price variance.

The correlation between asset prices is also important for portfolio manage-
ment. It has been used in several works to create a network perspective that
characterizes the complex structures in the stock market, also known as stock
networks or financial networks [15] [18][5]. The correlation is so important that
some authors suggest the use of topological information derived from financial
networks for portfolio management [24] [32] [13]. As an example, we can cre-
ate portfolios by applying clustering algorithms or centrality measures in stock
networks. However, despite its importance, we did not find works exploring the
prediction of weighted links in financial networks to improve the performance
of portfolio optimization algorithms. However, we found works using price and
return forecasting to improve portfolio management results [19].

This study proposes a new approach to define the constants of the classic
mean-variance analysis (MVA) from [16]. The new measures for expected re-
turn and asset correlation are calculated using by a new method. The proposed
method, ML Weighted Link Prediction Analysis (MLink), provides information
to the mathematical model of Markowitz, which is often used as basis for port-
folio optimization. MLink was applied to dynamic temporal stock networks to
induce a predictive model for return price forecast and weighted link predic-
tion. We executed several experiments to assess the performance of our method.
When it was compared with MVA, experimental results shows that MLink has
56% over MVA. In addition, MLink has better results than other variant meth-
ods. These variants use ARIMA, Median and Mean to return forecast combined
with Weighted Link Prediction, named as ARIMA-MLink, Median-MLink and
Mean-MLink, respectively.

2 Problem Definition and Related Works

The analysis of the behavior and interaction between assets in stock markets
has been widely studied in the literature [30] [3] [4]. To formally describe it,
consider i and j two distinct assets belonging to a specific set A. Let Si and
Sj be time series related to i and j, respectively. A weighted stock network can
be represented by a graph G = (V,E), where V is the set of assets belonging
to A, V ⊂ A, and E contains all possible pairs of assets i, j | i, j ∈ V . The
relationship between i and j is measured using correlation metrics, assigning a
weight w to each edge in E. A set of time ordered sequence of weighted stock
networks graphs represents Dynamic Temporal Stock Networks [10].

In this work, we want to to answer the following question: given a set of graphs
G1, G2, ..., GN related to a temporal sequence of weighted stock networks in time
N andGN+1 a graph whose link weights were predicted using ML algorithms, can
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Improving portfolio optimization using weighted link prediction 3

the combination of weighted link prediction by ML with mathematical models
of portfolio optimization improve the trade-off between risk and return?

2.1 Portfolio Optimization using Stock Network and Forecast

Several works apply ML or optimization algorithms for portfolio management [16]
[17]. Despite its relevance, few papers investigate the use of stock network struc-
ture to portfolio management. In [24], the authors explore centrality in complex
networks to improve portfolio selection process via targeting a group of stocks
belonging to certain region of the stock market network. The work [32], like
this paper, analyze time evolving stock markets by using temporal network rep-
resentation. The authors also propose a portfolio selection tool using temporal
centrality in stock networks. A portfolio optimization based on network topology,
using cross-correlation of the daily price returns for the American and Chinese
stock markets to create networks, is proposed in [13]. Taking into account the
importance of correlation matrices, and the possible presence of noise values in
these matrices, [22] introduces an approach that allows a systematic investi-
gation of the effect of the different sources of noise in financial correlations in
the portfolio and risk management context. We also analyzed different aspects
related to noise presence, like the size of time series.

Other works use price and return forecasting to improve portfolio manage-
ment [19]. In [8], a neural network is used to predict future stock returns. The
prediction errors are used as a risk measure. [1] also shows that, for asset allo-
cation decisions, the use of models able to predict return is better than using
historical averages. This motivated the proposal of the new method MLink that
uses prediction of weighted link formation to improve results of portfolio opti-
mization models. The problem of predicting links in weighted networks is an
extension of the problem of link prediction, whose main objective is the detec-
tion of hidden links or links that will be formed [28]. In weighted link prediction
problem, it is necessary to predict both link and edge weight [14].

3 Methodology

The MLink framework has two steps: (i) ML to predict stock returns and
weighted links in dynamic stock networks; (ii) mathematical portfolio optimiza-
tion model using stock returns and predicted weighted stock networks as input.
Figure 1 illustrates this framework.

This section introduces the data set (Section 3.1), the weighted link predic-
tion method (Section 3.2), return forecast (Section 3.3) and the mathematical
model (Section 3.4).

3.1 Market Data Set

The real data set used in this work was collected from the Brazilian Stock Ex-
change (BM&F Bovespa) between January 2018 e October 2018. We performed
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Fig. 1. Framework of the MLink

experiments using data regarding Bovespa Index assets (Ibovespa) 4. According
to its dynamical structure, this theoretical portfolio has 65 assets currently, but
we used 56 assets that remained in Ibovespa list during the entire period. The
list of assets used in the experiments can be seen at link below 5. In the first step,
our objective is to identifying link weight between all pairs of assets in a com-
plete weighted network. As traditional portfolio management algorithms, we are
interested in reorganize the portfolio every day. Thus, the data were processed
to obtain daily price time series. Note that our approach can be easily adapted
for weekly, monthly or intraday strategies, according to the main purpose of the
investor. It is important to emphasize that these data include an election period
with high stock price variations.

3.2 Weighted Link Prediction in Dynamic Stock Networks

In this work, we use a modified version of the method proposed in [15] to create
weighted dynamic financial networks. In this method, nodes of the graph repre-
sent assets and edges represent the relationship between them. This relationship
is based on price time series correlation. Let Si and Sj both price time series
with length L regarding two distinct assets i and j. We can transform these
non stationary price time series into a stationary return time series using the
following equation:

Yi = ln(Pi(t))− ln(Pi(t− 1))

4 www.bmfbovespa.com.br
5 iccs2019.douglascastilho.com
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where, Pi(t) ∈ Si is the closing price of asset i at day t. In terms of market defi-
nitions, this transformation represents the logarithmic return price. The average
of this type of time series tends to be close to zero. Next, we applied the Pear-
son [23] correlation coefficient between all possible pairs of stocks logarithmic
return time series Yi and Yj :

ρij =
cov(Yi,Yj)√

var(Yi)·var(Yj)

The number of points L to measure the correlation between all possible pairs
of stocks is another aspect to be considered. We performed experiments using
L = {10, 15, 20, 25, 30}, as suggested by [31]. The correlation between assets is
assigned to edges weights. This information is used as input to mathematical
portfolio optimization algorithm. We used correlation ρij between all possible
pairs of stocks present in the Bovespa Index to create an adjacency matrix C. By
definition, the elements ρij are in the range of −1 to 1, where −1 corresponds to
perfect anti-correlation, 1 corresponds to perfect correlation and 0 corresponds to
absence of correlation. Consider that C represents a complete undirected stock
network. Optimization models generally use similar correlation matrix as input
to create a subset of assets with reasonable trade-off between return and risk.
In this work, instead using the known correlation matrix at day t, we propose
to use a step forward correlation matrix to improve the results of optimization
portfolio. Our first main problem is to create machine learning (ML) algorithms
able to induce models that can predict the weight of all edges in a future dynamic
stock network ∆t+1. For such,

we created a method using ML to predict these values. This method uses three
different sources of features to build models able to predict correlation values,
represented by edge weights. In addition, since our networks are undirected,
the number of weighted edges for each graph G = (V,E) is given by |E| =
|V | ∗ (|V | − 1)/2. Thus, we have |E| = 56 ∗ (55)/2 = 1540 number of values to
predict for each day.

In this work, we address the weighted link prediction problem as a regression
task. For such, we propose the use of supervised ML algorithms. We use three
sources of features to predict weighted link formation between assets in dynamic
stock networks: (i) complex network derived features; (ii) domain derived fea-
tures; (iii) return time series forecasts. Each example in the data set is labeled
with correlation value between a pair of stocks i and j for a future given period.
Next, we present the set of input features used to train the ML algorithms.

Network Derived Features are computed at each iteration using complex
network statistical measures. The measures can be divided according to the level
of analysis to be performed: at the node-level, where nodes represent assets, and
at the link-level [21]. To create each example for the supervised learning data set,
metrics related with node i and j are inserted for both nodes. Metrics related
with edges are inserted calculating the measures between nodes i and j[20].
Consider |i| as node degree or number of edges.
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– Node-Level Derived Features: related to the position of the node within
the overall structure of the complex network [21]. The following node metrics
presented in Table 1 were used as stock i derived features.

– Link-Level Derived Features: related to both contents and patterns of
edges in complex networks [21]. The following link metrics presented in Ta-
ble 2 were calculated between i and j stocks.

Table 1. Node-Level Derived Features

Name Description

Weighted degree
degw(i) =

∑
j∈|i| w<i,j>

Average neighbor weighted
degree

avgw(i) =
∑

j∈|i| |j|∗w<i,j>

|i|

Propensity of i to increase
its degree

γ(i) = |i|
degw(i)

Node betweenness

bv =
∑
i,j∈V \v

σij(v)

σij
, where σij(v) is the number of

shortest weighted paths between i and j passing
through v

Node eigenvector
xi

1
λ

∑n
j=1 dijxj , where dij represents an entry of the

adjacency matrix C and λ denotes the largest eigenvalue

Table 2. Link-Level Derived Features

Name Description

Correlation value value of C ij

Edge betweenness

be =
∑
i,j∈V

σij(e)

σij
, where σij(e) is the number of

shortest weighted paths between i and j passing
through edge e

Same Louvain
community [2]

value 1 if i and j belongs to the same Louvain
community, 0 otherwise

Same Girvan-Newman
community [9]

value 1 if i and j belongs to the same Girvan-Newman
community, 0 otherwise

Preferential attachment
weighted

PA(i, j) = degw(i) ∗ degw(j)

Domain Features are computed at each day using a set of Technical Analysis
Indicators (TAI). An indicator can be defined as a series of data points derived
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from assets price information applying a mathematical formula [26]. These met-
rics were calculated using the same set of daily price time series used to create
the networks. The relationship between these domain features and the graph
networks can be seen as characteristics to describe nodes in a complex network.
The domain features used are: Relative Strength Index (RSI), Simple Moving
Average (SMA), Exponential Moving Average (EMA), Moving Average Con-
vergence/Divergence (MACD), Average Directional Movement Index (ADX),
Aroon Indicator (Aroon), Bollinger Bands (BB), Commodity Channel Index
(CCI), Chande Momentum Oscillator (CMO), Rate of Change (ROC) and Av-
erage True Range (ATR). More information regarding how to calculate these
features can be found in [27] and [26].

To create each example for the ML algorithm training data set, the subset
of network derived features is concatenated to the subset of domain derived
features. Thus, TAI related to assets i and j are inserted for both nodes.

3.3 Logarithmic Return Forecast Using Machine Learning

Another issue to be considered in our MLink framework is the stock logarithmic
return. According to the mathematical optimization model, which will be pre-
sented in the following section, it is necessary a measure of return and risk of
each asset. Usually, the mean of the returns and the standard deviation are used
in optimization algorithms to estimating return and future risk, respectively.
For this, we used a ML algorithm (MLP) to forecast the logarithmic return of
all assets. For comparative analysis, we also used three statistical methods to
estimate assets return. These methods are:

– MLP - Multilayer Perceptron neural network - has powerful approximation
capabilities and its self-adaptive data driven modelling approach allow them
great flexibility in modelling time series data [12]. The MLP network used
has one hidden layer with 5 neurons and is trained using the resilient back-
propagation algorithm, a fast weighted update mechanism to feedforward
artificial neural networks [25].

– ARIMA - Autoregressive Integrated Moving Average - models are fitted to
the time series data to predict future points in the series [6].

– Mean - Simple mean price return using time series data.

– Median - Simple median price return using time series data.

Based on each method result, we then calculated the risk measure, which
is given by standard deviation of logarithmic return time series. These return
forecasts are used as input to mathematical portfolio optimization model and
also as input feature to Mlink to predict weighted link in the stock network. To
create each example for the supervised learning data set regarding weighted link
prediction in MLink, these forecasted return values of each pair of assets i and
j are concatenated to input set of features.
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3.4 Mathematical Model to Portfolio Optimization

In [16] Markowitz proposed the first mean-variance model that served as the
basis for the Modern Portfolio Theory in financial management. In this theory,
an investor wishes to distribute an initial wealth in a set of investments in order
to minimize the risk and maximize the return. Naturally, these two objectives are
conflicting because if there is a minimum risk investment and maximum return
the decision is trivial. Usually the higher the risk the higher the expected return.

For this, [16] proposed a bi-objective quadratic programming model for find
the Markowitz efficient front. In mathematical terms: given n assets with return
vector µ ∈ Rn, estimated covariance matrix σ ∈ Rn×n, and the invested fraction
of each asset in optimal portfolio is x ∈ Rn. To computing the Markowitz efficient
front is given by maximizing expected return for a given level of the risk (mean-
variance model 1) or minimizing the risk for a given level of the expected return
(mean-variance model 2).

Maximize E =

n∑
i=1

xiµi

Subject to:

n∑
i=1

n∑
j=1

xixjσij ≤ v2, (1)

n∑
i=1

xi = 1,

xi ≥ 0, ∀ i = 1, ..., n.

In mean-variance model 1 the expected value of the portfolio (E) is maxi-
mized, subject to a minimum variation (v2), the sum from fraction of the port-
folio is equal 1, and no investment can be negative.

Minimize v2 =

n∑
i=1

n∑
j=1

xixjσij

Subject to:

n∑
i=1

xiµi ≥ E , (2)

n∑
i=1

xi = 1,

xi ≥ 0, ∀ i = 1, ..., n.

In mean-variance model 2 the objective is minimize the standard deviation
(v2) subject to a level of return (E). Note that, if we vary the of standard
deviation (v2) in mean-variance model 1 or the desired level return (E) in mean-
variance model 2 we can build the Markowitz efficient front, i.e. the trade-off
between risk and expected return.
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[11] examines an alternative formulation for the problem using a measures of
absolute and relative risk aversion. Consider u is a von Neumann-Morgenstern

utility function. The absolute risk aversion is defined by Ra = u′′(w)
u′(w) , where w is

the valuation of the portfolio. The formulation result is presented below:

Maximize F =

n∑
i=1

xiµi −
Ra

2

n∑
i=1

n∑
j=1

xixjσij

Subject to:

n∑
i=1

xi = 1 (3)

xi ≥ 0, ∀ i = 1, ..., n.

For the model 3 the objective is maximized the expected return of portfolio
less Ra

2 time standard deviation of portfolio. According to [11] the utility func-
tions (Ra) of negative exponential energy generate very risk-averse portfolios.
Thus, the efficient boundary can be obtained for values of Ra > 0. The empir-
ical results indicate that: risky portfolios have values of Ra ≤ 2; moderate risk
portfolios have 2 ≤ Ra ≤ 4; risk-averse portfolio have Ra ≥ 4.

4 Experiments

In this section we present results separately. First, we present results regard-
ing to price return forecast using different lengths of L. Second, we present
weighted link prediction results related to stock networks. We used the same
time series length L to perform both return forecast and weighted link pre-
diction experiments. Finally, we present financial results comparing MLink with
Ibovespa, MVA and the three proposed variants ARIMA-MLink, Median-MLink
and Mean-MLink.

4.1 Machine Learning for Return Forecast

In this section we present a set of experimental results using different methods to
asset return forecast. We used different time series lengths L = 10, 15, 20, 25, 30
as input to time series forecast algorithms. Figure 2 shows a comparative re-
sult of Mean Absolute Error (MAE) evaluation metric [29]. For each length L,
we plotted the Cumulative Distribution Function (CDF) related to each return
forecast model. Thus, we can see the behavior of each model when different time
series lengths are used.

An important result presented in Figure 2 is that Mean and Median have
great MAE values compared with ML model (MLP). ARIMA has better results
in small L values, but in L = 30 present the worst result. Besides that, MLP has
good results for large values of L.
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Fig. 2. Return forecast results for each size of L
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4.2 Machine Learning for Weighted Link Prediction

This section presents results related to weighted link prediction in dynamic stock
networks. To perform these experiments, the training and test set was built using
sliding window [26]. For such, we used 30 daily graph snapshots in the training
set. The test set corresponds to the next trading daily data. The sliding window
moves one day ahead to create new training and test set.

We used XGboost [7] as main ML model to weighted link prediction. It is
a fast, a highly effective and widely used machine learning method. We did not
perform an exhaustive search for model parameters because this is not our main
objective. Our intention is to show how predictive a machine learning model can
be using the set of features that we proposed. The set of model parameters are:

– booster = ”gbtree”;
– objective = ”reg:linear”,
– eta = 0.05,
– max depth = 2,
– min child weight = 100,

Figure 3 presents comparative results using CDF for both MAE and Root
Mean Square Error (RMSE) evaluation metrics.
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Fig. 3. Weight link prediction using different sizes of L

Figure 3 presents significant weighted link prediction results using the pro-
posed method. This comparison between the behaviors of the machine learning
model for the different values of L allows us to visualize that, for greater L val-
ues, the model can better predict the values of the edges weights (correlations).
A possible explanation is that: the greater the size of L, more stable the financial
network tends to be, facilitating the prediction of edges weights. With smaller
values of L, the network tends to be more unstable. Note that the value of L
influences both return forecast and weighted link prediction. Considering that

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_27

https://dx.doi.org/10.1007/978-3-030-22744-9_27


12 D. Castilho et al.

edge weights are between −1 and 1, MAE results for L = 30 are almost 95%
under 0.05, which is very expressive in terms of weighted link prediction. At each
day, the model predicts 1540 edge weights (correlations).

4.3 Portfolio Optimization Experiments

This section presents a comparative experiment using L = 30, which is the best
return forecast and weighted link prediction results. We executed the Markowitz
model using results of weighted link prediction and all methods applied to return
forecast. Figure 4 shows a financial simulated gross return for each approach.
Each execution uses 84 trading days. For a utility functions (Ra = 2) a threshold
value between a moderate risk and risky.

0 10 20 30 40 50 60 70 80 90
Days

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Si
m

ul
at

ed
 C

ap
ita

l

Ibovespa
Markowitz
Arima
MLP
Mean
Median

Fig. 4. Comparing accumulated return for each approach

Figure 4 shows that our MLink method outperforms MVA in over 56% com-
paring accumulated gross return. ARIMA-MLink, Median-MLink and Mean-
MLink also has better results than MVA and Bovespa Index. This is an impres-
sive result in terms of financial return.

5 Conclusions and Future Works

This study proposed determining the constants of the MVA from [16] using ma-
chine learning and a new weighted link prediction in stock networks defined in
this paper as MLink. Portfolio optimization models use data from the past to
create portfolios with a good trade-off between return and risk. Using the corre-
lation between asset price series in the stock networks, when vertices represent
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assets and edges represent the correlation between them, the proposed method
can predict the weights of all edges in dynamic stock networks. Like the MVA,
the proposed method also use return forecasts. The experimental results show
that using both return forecast and weighted link prediction data, the proposed
method performance is superior to the performance obtained by the MVA. The
experiments show that the MLink capital increases almost 41.34% in 84 days, a
difference of 56.68% for the MVA (which reduced the capital in 9.79%).

These findings open a range of possibilities for future works. Several analyzes
will be carried out, such as the use of different optimization models and run ex-
periments using known market data sets for portfolio optimization. In addition,
we can use other ways of predicting edge weights, such as tensor or deep learn-
ing, trying to improve weighted link prediction results. In addition, we can make
available the created data set for other researchers evaluate their optimization
models.
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