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Abstract. In the present work, the European style fixed strike Asian
call option with arithmetic and continuous averaging is numerically eval-
uated where the volatility, the risk free interest rate and the dividend
yield are functions of the time. A finite difference scheme consisting of
second order HODIE scheme for spatial discretization and two-step back-
ward differentiation formula for temporal discretization is applied. The
scheme is proved to be second order accurate in space and time both.
The numerical results are in accordance with analytical results.
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1 Introduction

Asian options are path-dependent exotic options. The payoffs of Asian options
depend on some sort of average of the underlying asset price over a specified
time interval. The averaging can be arithmetic (mean of the asset prices) or ge-
ometric (exponential of the mean of the logarithm of the asset prices). The price
of geometric average Asian option are analytically evaluated as the geometric
average of the asset prices follows the lognormal distribution ([16, 9]) whereas
the distribution of arithmetic average of the asset prices is not explicitly known.
Hence the analytical solution of arithmetic average Asian option is not known.
The averaging can be weighted or unweighted. These options are among the
most popular derivative securities as they reduce the risk of market manipula-
tion by big and influential traders of the market near the maturity time. Also
the average-value options are always economical than the standard European
options ([16]).

Asian option in a complete and arbitrage free financial market consisting of
a risky asset, with asset price Sτ , as the underlying security and a risk free asset
with interest rate r, follows the following stochastic differential equation

dSτ = (r −D)Sτdτ + σdWτ , (1)
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where Sτ is the asset price at time τ , r is the risk free interest rate, D is the
dividend yield, σ is the market volatility and Wτ is the standard Wiener process
under the risk-neutral measure.

The payoff of European call option is

max(S −K, 0). (2)

The payoff of the “fixed strike” Asian call option is obtained by replacing Sτ in
the payoff of European call option by the average of asset prices, keeping the
strike price K fixed and is given as

max

(

1

T

∫ T

0

Szdz −K, 0

)

. (3)

Whereas the payoff of the “floating strike” Asian call option is obtained by
replacing the strike price K in the payoff of European call option by the average
of asset prices and given as

max

(

S −
1

T

∫ T

0

Szdz, 0

)

. (4)

The closed form solution of Asian option pricing model is not known.
Asian options were first explained in [13]. We consider the arithmetic average

fixed strike Asian option. The existence, uniqueness and regularity of solution of
arithmetic and geometric average Asian options was discussed in [2]. The partial
differential equation for pricing Asian options consists of Black-Scholes equation
along with an advection term, which can not be reduced to heat equation and
its closed form solution is not known. Different approaches were used to solve
various models for pricing Asian options such as applied statistics ([26, 19, 20]),
applied probability ([25, 24]) and mathematical analysis ([14, 32]). Various nu-
merical schemes are also applied to approximate the option price. The work [3]
described reducing the dimension of the partial differential equation governing
the option price and then solving it using finite difference scheme. An explicit
and an implicit finite difference methods were described in [21] for pricing Asian
options. A hybrid finite difference along with Crank-Nicolson method was used
in [6] to get a second order convergent scheme for evaluating the option price. A
radial basis function based finite difference approximation for spacial operator
along with θ-method for temporal approximation was applied in [17] to obtain
a second order convergent scheme for pricing the Asian option. In all these
works where a numerical approximation was given for pricing option value, only
non-dividend paying contract was considered. Hence after the dimension reduc-
ing transformation, the reaction term was not there in the partial differential
equation to be solved numerically. Also the parameters σ and r were taken as
constants. In the works [22, 23], these parameters along with dividend yield were
taken to be functions of asset price and time variables and numerical solution of
such generalized Black-Scholes model in dividend paying market was computed
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for different European style options. The generalizing of Black-Scholes model
for pricing European call option by making the parameters r, σ and D vari-
ables was also done in [15, 27, 30, 4, 8] and then the option price was numerically
approximated. The other related works were [11, 29].

In the present work we have developed a numerical scheme for a generalized
Asian option pricing model, transformed from two dimensional partial differen-
tial equation to one dimensional partial differential equation. Two step backward
differentiation formula for temporal discretization and the High Order Difference
approximation with Identity Expansion (HODIE) scheme for spacial discretiza-
tion is applied simultaneously yielding second order accuracy in both time and
space.

Rest of the paper is organized as follows: Section 2 introduces the Asian
Option pricing model and the applied modifications for solving it numerically.
In Section 3, the discrete scheme is presented. In Section 4, the convergence of
the approximate solution is proved. Section 5 gives the numerical experiments
based on our scheme and Section 6 concludes the paper.

2 Asian Option pricing model

The European style Asian arithmetic average fixed strike call option price V (S,A, τ)
is determined by ([31, 13])

V (S,A, τ) = exp

(

−

∫ T

τ

r(z)dz

)

v(S,A, τ), (5)

where the risk free interest rate r(τ) is taken as function of time variable, T is
the maturity time of the contract, A is the continuous arithmetic running sum
defined as

A(τ) =

∫ τ

0

S(z)dz (6)

and v(S,A, τ) is governed by the following partial differential equation

∂v

∂τ
+

1

2
σ2(τ)S2 ∂

2v

∂S2
+ (r(τ) −D(τ))S

∂v

∂S
+ S

∂v

∂A
− r(τ)v = 0, (7)

along with the terminal condition

v(S,A, T ) = max

(

A

T
−K, 0

)

, (8)

where σ(τ) and D(τ) are taken as functions of time, and K is the strike price.
The current asset price S and the history of asset prices are independent. Hence
the variables S, A and τ are independent variables. The equation (7) is a two
dimensional ultra-parabolic partial differential equation which is numerically ex-
pensive to approximate. Inspired from Rogers and Shi [24] and Alziary, Décamps
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and Koehl [1], we use the following change of variables to transform the prob-
lem (7)-(8) from final value problem to initial value problem and to reduce the
dimension of the problem

x̃ =
K −A/T

S
, τ = T − t and v(S,A, τ) = Sũ(x̃, t), (9)

where x̃ and t are the new space and time variables respectively. Introducing the
new variables

σ̂(t) = σ(τ),
r̂(t) = r(τ),

D̂(t) = D(τ).

The transformed problem is as follows

∂ũ

∂t
=

1

2
σ̂2(t)x̃2 ∂

2ũ

∂x̃2
−

(

1

T
+ (r̂(t)− D̂(t))x̃

)

∂ũ

∂x̃

− D̂(t)ũ, x̃ ∈ (0,∞), t ∈ (0, T ], (10)

along with the terminal condition

ũ(x̃, 0) = max(−x̃, 0). (11)

The boundary conditions for the problem (7)-(8) are well established in [12].
The left boundary condition is

v(0, A, τ) = exp

(

−

∫ T

τ

r(z)dz

)

max

(

A

T
−K, 0

)

. (12)

The value of Asian call and put options are interrelated by the put-call parity. A
closed form solution for the Asian option price for the case A > KT is derived
using the put-call parity ([10, 1, 16]), which is as follows

v(S,A, τ) =

(

A

T
−K

)

exp

(

−

∫ T

τ

r(z)dz

)

+
S

T

∫ T

τ

exp

(

−

(

∫ y

τ

D(z)dz +

∫ T

y

r(z)dz

))

dy, τ ∈ [0, T ]. (13)

Hence we will solve the problem (7)-(8) only for the case A ≤ KT . Applying the
transformations (9) to the formula (13), we get

ũ(x̃, t) = −x̃ exp

(

−

∫ t

0

r̂(z)dz

)

+
1

T

∫ t

0

exp

(

−

(
∫ y

0

r̂(z)dz +

∫ t

y

D̂(z)dz

))

dy,

for A ≤ KT, x̃ ∈ [0,∞), t ∈ [0, T ]. (14)
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The left boundary condition of the problem (10)-(11) is obtained from (14)

ũ(0, t) =
1

T

∫ t

0

exp

(

−

(
∫ y

0

r̂(z)dz +

∫ t

y

D̂(z)dz

))

dy,

for A ≤ KT, t ∈ [0, T ]. (15)

The right boundary condition of the problem (10)-(11) for large x̃ is obtained
from (12)

ũ(∞, t) = 0, for A ≤ KT, t ∈ [0, T ]. (16)

Let us introduce another change of variable

x = exp(−x̃), (17)

which converts the semi-infinite space domain (0,∞) into a finite space domain
(0, 1) ([1]). Accordingly the partial differential equation (10) is transformed as

∂u

∂t
=

1

2
σ̂2(t) (ln(x))2 x2 ∂

2u

∂x2

+

(

1

2
σ̂2(t) (ln(x))

2
+

1

T
−
(

r̂(t)− D̂(t)
)

ln(x)

)

x
∂u

∂x
− D̂(t)u, (18)

and the initial and boundary conditions (11), (15) and (16) are transformed as

u(x, 0) = 0, x ∈ [0, 1], (19)

u(1, t) =
1

T

∫ t

0

exp

(

−

(
∫ y

0

r̂(z)dz +

∫ t

y

D̂(z)dz

))

dy,

for A ≤ KT, t ∈ [0, T ] (20)

and

u(0, t) = 0, for A ≤ KT, t ∈ [0, T ] (21)

respectively. Let Ωx = (0, 1) be the space domain, Ωt = (0, T ] be the time
domain and Ω = Ωx ×Ωt. The final problem to be solved numerically is

Lu(x, t) ≡
∂u

∂t
− a2(x, t)

∂2u

∂x2
− a1(x, t)

∂u

∂x
− a0(t)u = f(x, t), (x, t) ∈ Ω, (22a)

where

a2(x, t) =
1

2
σ̂2(t) (ln(x))

2
x2,

a1(x, t) =

(

1

2
σ̂2(t) (ln(x))

2
+

1

T
−
(

r̂(t)− D̂(t)
)

ln(x)

)

x,

a0(t) = −D̂(t),
f(x, t) = 0,
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with the initial condition

u(x, 0) = 0, x ∈ Ω̄x, (22b)

and the boundary conditions

u(0, t) = 0, t ∈ Ω̄t (22c)

and

u(1, t) =
1

T

∫ t

0

exp

(

−

(
∫ y

0

r̂(z)dz +

∫ t

y

D̂(z)dz

))

dy, t ∈ Ω̄t. (22d)

In a financial market, it is reasonable to assume that r̂ ≥ D̂ ([28]). Also
assume that

∣

∣

∣

∣

∂m+nu

∂xm∂tn
(x, t)

∣

∣

∣

∣

≤ C on Ω̄; 0 ≤ n ≤ 3 and 0 ≤ m+ n ≤ 4. (23)

Note that C is a generic constant.

3 Discretization

Discretize the domain Ω̄ uniformly in both the space and time directions. Let the
discrete space direction be Ω̄h = {xm|m = 0, 1, ...M} where M is the total num-
ber of grid intervals in space direction with uniform spacing h = xm−xm−1, m =
1, 2, ...M . Let the discrete time direction be Ω̄k = {tn|n = 0, 1, ...N} where
N is the total number of grid intervals in time direction with uniform spac-
ing k = tn − tn−1, n = 1, 2, ...N . Now the problem (22) is discretized si-
multaneously in both the space and time directions using two-step backward
differentiation formula for temporal discretization and the High Order Differ-
ence approximation with Identity Expansion (HODIE) scheme with the stencil
points {xm−1, xm, xm+1, m = 1, 2, ...M − 1} and two nodal auxiliary points
{xm, xm+1, m = 1, 2, ...M − 1}, for the spacial discretization. The discretization
of the partial differential equation (22a) is as follows

βn
m,c(δtU

n
m) + βn

m,+(δtU
n
m+1) + [αn

m,−U
n
m−1 + αn

m,cU
n
m + αn

m,+U
n
m+1] =

βn
m,cf

n
m + βn

m,+f
n
m+1, m = 1, 2, ...,M − 1, n = 1, 2, ..., N, (24)

where α′s and β′s are the HODIE coefficients to be computed, Un
m, m =

0, 1, ...M, n = 0, 1, ...N is the numerical approximation of the solution u(x, t) of
the problem (22) at the grid point (xm, tn), m = 0, 1, ...M, n = 0, 1, ...N and
the operator δt is defined as follows

δtU
n
m = (Un

m − Un−1
m )/k, n = 1,

δtU
n
m =

(

3

2
Un
m − 2Un−1

m +
1

2
Un−2
m

)

/k, n = 2, 3, ..., N,
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We make the equation (24) exact on P3, the space of polynomials with degree
less than or equal to 3 and use the following normalization condition

βn
m,c + βn

m,+ = 1, m = 1, 2, ...M − 1, n = 1, 2, ..., N, (25)

to compute the HODIE coefficients uniquely, which are as follows

αn
m,− =

βn
m,c(−2an2,m + han1,m) + βn

m,+(−2an2,m+1 − han1,m+1)

2h2
, (26)

αn
m,+ =

βn
m,c(−2an2,m − han1,m) + βn

m,+(−2an2,m+1 − 3han1,m+1 − 2h2an0 )

2h2
, (27)

αn
m,c =

βn
m,c(4a

n
2,m − 2h2an0 ) + βn

m,+(4a
n
2,m+1 + 4han1,m+1)

2h2
, (28)

βn
m,c =

6han2,m+1 + 2h2an1,m+1

6han2,m+1 + 2h2an1,m+1 + h2an1,m
(29)

and

βn
m,+ =

h2an1,m
6han2,m+1 + 2h2an1,m+1 + h2an1,m

. (30)

Now using these coefficients, the final scheme to compute the numerical ap-
proximation to the solution of the problem (22) is as follows

Lk
hU

n
m ≡ αn

m,−U
n
m−1 +

(

αn
m,c +

1

k
βn
m,c

)

Un
m + (αn

m,+ +
1

k
βn
m,+)U

n
m+1

= βn
m,c

(

fn
m +

1

k
Un−1
m

)

+ βn
m,+

(

fn
m+1 +

1

k
Un−1

m+1

)

= Fn
m (say), m = 1, 2, ...M − 1, n = 1, (31a)

Lk
hU

n
m ≡ αn

m,−U
n
m−1 +

(

αn
m,c +

3

2k
βn
m,c

)

Un
m + (αn

m,+ +
3

2k
βn
m,+)U

n
m+1

= βn
m,c

(

fn
m +

2

k
Un−1
m −

1

2k
Un−2
m

)

+ βn
m,+

(

fn
m+1 +

2

k
Un−1
m+1 −

1

2k
Un−2
m+1

)

= Fn
m (say), m = 1, 2, ...,M − 1, n = 2, 3, ...N, (31b)

U0
m = 0, m = 0, 1, ...,M, (31c)

Un
0 = 0, n = 0, 1, ...N. (31d)

Un
M =

1

T

∫ tn

0

exp

(

−

(
∫ y

0

r̂(z)dz +

∫ tn

y

D̂(z)dz

))

dy, n = 0, 1, ...N, (31e)
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Now putting m = 1, 2, ...M in (31a) and (31b) and shifting the boundary com-
ponents to the right side of the equation, we can write the scheme in the matrix
form as

AnUn = bn, n = 1, 2, ..., N, (32)

where Un = [Un
1 , U

n
2 , ..., U

n
M−1]

T .

4 Error Analysis

Lemma 1. Assume that

hβn
m,ca

n
1,m ≤ 2(βn

m,ca
n
2,m + βn

m,+a
n
2,m+1) + hβn

m,+a
n
1,m+1,

m = 1, 2, ...,M − 1, n = 1, 2, ..., N, (33)

and

β
n
m,+

(

−a
n
0 +

3

2k

)

≤
2(βn

m,ca
n
2,m + βn

m,+a
n
2,m+1) + h(βn

m,ca
n
1,m + 3βn

m,+a
n
1,m+1)

2h2
,

m = 1, 2, ...,M − 1, n = 2, 3, ..., N. (34)

then

αn
m,− ≤ 0, m = 1, 2, ...,M − 1, n = 1, 2, ..., N, (35)

αn
m,+ +

3

2k
βn
m,+ ≤ 0, m = 1, 2, ...,M − 1, n = 2, 3, ..., N. (36)

Proof. The inequalities (35) and (36) can be easily obtained from (26), (27), (33)
and (34).

Remark 1. Similarly assume that

β
n
m,+

(

−a
n
0 +

1

k

)

≤
2(βn

m,ca
n
2,m + βn

m,+a
n
2,m+1) + h(βn

m,ca
n
1,m + 3βn

m,+a
n
1,m+1)

2h2
,

m = 1, 2, ...,M − 1, n = 1, (37)

then

αn
m,+ +

1

k
βn
m,+ ≤ 0, m = 1, 2, ...,M − 1, n = 1. (38)

Lemma 2. (Discrete Maximum Principle). Under the assumptions of the Lemma
1, the operator Lk

h defined by (31a)-(31b) satisfies discrete maximum princi-
ple, that is, if vnm and wn

m are mesh functions that satisfy vn0 ≤ wn
0 , vnM ≤

wn
M (n = 0, 1, ..., N), v0m ≤ w0

m, (m = 0, 1, ...,M) and Lk
hv

n
m ≤ Lk

hw
n
m (m =

1, 2, ...,M − 1, n = 1, 2, ..., N), then vnm ≤ wn
m for all m,n.

Proof. The row sum of the matrices An, n = 1, 2, ...N , are

αn
m,− +

(

αn
m,c +

3

2k
βn
m,c

)

+

(

αn
m,+ +

3

2k
βn
m,+

)

= −an0 +
3

2k
(39)

> 0, (40)
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m = 1, 2, ...,M − 1, n = 1, 2, ..., N . αn
m,−, m = 1, 2, ...,M − 1, n = 1, 2, ..., N

are the sub-diagonal elements and αn
m,+ + 3

2k
βn
m,+, m = 1, 2, ...,M − 1, n =

1, 2, ..., N are the super-diagonal elements of the tridiagonal matrices An, n =
1, 2, ...N . Under the hypothesis of the Lemma 1, the inequalities (35)-(36) and
(39) show that the coefficient matrices corresponding to the discrete operator Lk

h

are irreducible M-matrices which preserve the positivity. Hence the solution to
the linear system of equations (32) exists and if vnm and wn

m are mesh functions
as defined in Lemma, then vnm ≤ wn

m for all m,n.

The operator Lk
h, satisfying the discrete maximum principle, establishes the

stability of the scheme.

Theorem 1. Let u be the solution of the continuous problem (22) and Un
m be

the solution of the discrete problem (31). Then under the assumptions (23),

|un
m − Un

m| ≤ C(k2 + h2), m = 0, 1, ...,M, n = 0, 1, ..., N, (41)

where C is a positive constant independent of k and h.

Proof. From (24) we have

Lk
hu

n
m − (Lu)nm =

βn
m,c

k

(

3

2
un
m − 2un−1

m +
1

2
un−2
m

)

+
βn
m,+

k

(

3

2
un
m+1 − 2un−1

m+1 +
1

2
un−2

m+1

)

+
[

αn
m,−u

n
m−1 + αn

m,cu
n
m + αn

m,+u
n
m+1

]

− βn
m,c

(

∂un
m

∂t
− an2,m

∂2un
m

∂x2
− an1,m

∂un
m

∂x
− an0u

n
m

)

− βn
m,+

(

∂un
m+1

∂t
− an2,m+1

∂2un
m+1

∂x2
− an1,m+1

∂un
m+1

∂x
− an0u

n
m+1

)

. (42)

Applying the Taylor’s expansion in two variables and taking modulus, we have
∣

∣

∣
L

k
h(u

n
m − U

n
m)

∣

∣

∣
=

∣

∣

∣
L

k
hu

n
m − (Lu)nm

∣

∣

∣

≤ C1k
2

∫

1

0

[∣

∣

∣

∣

∂3u

∂t3
(xm, tn − ky)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂3u

∂t3
(xm, tn − 2ky)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂3u

∂t3
(xm + hy, tn − ky)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂3u

∂t3
(xm + hy, tn − 2ky)

∣

∣

∣

∣

]

dy

+ C2h
2

∫

1

0

[∣

∣

∣

∣

∂3u

∂x2∂t
(xm + hy, tn − ky)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂3u

∂x2∂t
(xm + hy, tn − 2ky)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂3u

∂x2∂t
(xm + hy, tn)

∣

∣

∣

∣

+ x
2
m+1

∣

∣

∣

∣

∂4u

∂x4
(xm + hy, tn)

∣

∣

∣

∣

]

dy

≤ C3(k
2 + h

2), m = 1, 2, ...,M − 1, n = 2, 3, ..., N. (43)

For n = 1, backward Euler method is used for the computation of the discrete
solution, and the one-step error of the backward Euler method is O(k2) ([18]).
Hence we have

∣

∣Lk
h(u

n
m − Un

m)
∣

∣ ≤ C4(k
2 + h2), m = 1, 2, ...,M − 1, n = 0, 1, ..., N. (44)
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We construct the following barrier function

ϕn
m = C(k2 + h2)(1 + tn)± (un

m − Un
m),

and apply the Lemma 2 on ϕn
m, to show

|un
m − Un

m| ≤ C(k2 + h2) for every m = 1, 2, ...,M − 1, n = 1, 2, ...N. (45)

5 Numerical Experiments

Since the closed form solution of the considered Asian option pricing model is
not known, we use double mesh principle to find the maximum error (Emax),
the root mean square error (Erms) and the corresponding order of convergence
pmax and prms as follows

EM,N
max = max

0≤m≤M

∣

∣UM,N(xm, tN )− U2M,2N (x2m, t2N )
∣

∣ ,

EM,N
rms =

√

√

√

√

√

√

M
∑

m=0

[

(

UM,N(xm, tN )− U2M,2N (x2m, t2N )
)2
]

M + 1
,

pM,N
max = log2

(

EM,N
max

E2M,2N
max

)

and pM,N
rms = log2

(

EM,N
rms

E2M,2N
rms

)

.

Example 1. Consider the initial boundary value problem (22) with σ̂ = 0.5,
r̂ = 0.09, D̂ = 0. Take T = 3 and K = 40. The computed solution is shown in
Fig. 1 and the convergence results are given in Table 1.

Example 2. Consider the initial boundary value problem (22) with σ̂(t) = 0.4(2+
(T − t)), r̂(t) = 0.06(1 + t), D̂(t) = 0.02 exp(−t). Take T = 1 and K = 40. The
computed solution is shown in Fig. 2 and the convergence results are given in
Table 2.

Example 3. Consider the initial boundary value problem (22) with σ̂(t) = 0.4(2+
sin(T − t)), r̂(t) = 0.06 exp(t), D̂(t) = 0.02 sin(t). Take T = 1 and K = 40. The
computed solution is shown in Fig. 3 and the convergence results are given in
Table 3.
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Table 1. Maximum absolute error (Emax), root mean square error (Erms) and corre-
sponding orders of convergence pmax and prms for Example 1

M 10 10× 2 10× 22 10× 23 10× 24 10× 25

N 6 6× 2 6× 22 6× 23 6× 24 6× 25

Emax 1.4876e-02 4.3894e-03 1.1038e-03 2.6960e-04 6.6220e-05
pmax 1.7610 1.9915 2.0337 2.0255
Erms 7.8685e-03 2.1324e-03 4.7253e-04 1.1057e-04 2.6846e-05
prms 1.8835 2.1740 2.0953 2.0422

Table 2. Maximum absolute error (Emax), root mean square error (Erms) and corre-
sponding orders of convergence pmax and prms for Example 2

M 8 8× 2 8× 22 8× 23 8× 24 8× 25

N 2 2× 2 2× 22 2× 23 2× 24 2× 25

Emax 6.2322e-02 2.6239e-02 8.4130e-03 2.1647e-03 5.1478e-04
pmax 1.2480 1.6411 1.9584 2.0722
Erms 3.7783e-02 1.4681e-02 4.4301e-03 9.9501e-04 2.2237e-04
prms 1.3638 1.7285 2.1546 2.1617

Table 3. Maximum absolute error (Emax), root mean square error (Erms) and corre-
sponding orders of convergence pmax and prms for Example 3

M 8 8× 2 8× 22 8× 23 8× 24 8× 25

N 2 2× 2 2× 22 2× 23 2× 24 2× 25

Emax 6.2810e-02 2.6458e-02 8.5204e-03 2.1947e-03 5.2182e-04
pmax 1.2473 1.6347 1.9569 2.0724
Erms 3.7829e-02 1.4825e-02 4.4948e-03 1.0102e-03 2.2545e-04
prms 1.3515 1.7217 2.1535 2.1639
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Fig. 1. Computed solution of Asian option price for Example 1
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Fig. 2. Computed solution of Asian option price for Example 2

6 Conclusions

In the present work, HODIE scheme with two auxiliary points is used to achieve
second order accuracy in space and two-step backward differentiation formula is
applied for temporal approximation yielding second order accuracy in time also.
The main features of our scheme is that it easily deals with variable coefficients
occurring in the partial differential equation as we have taken volatility (σ), risk-
free interest rate (r) and dividend yield (D) not as constants but as function of
the time variable, which is more likely to happen in real financial market. Also
this scheme can be applied simultaneously in space and time directions which
leads to simpler analysis of the convergence of the solution ([7]). It deals with
the degeneracy issue of this problem easily without any extra efforts unlike in
other works done in this field ([6, 5, 33]). The numerical results are in accordance
with the theoretical results.
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Fig. 3. Computed solution of Asian option price for Example 3
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