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Abstract. This paper presents a remarkable model for portfolio selec-
tion using inverse-variance weighting and machine learning techniques
such as hierarchical clustering algorithms. This method allows building
diversified portfolios that have a good balance sector exposure and style
exposure, respect to momentum, size, value, short-term reversal, and
volatility. Furthermore, we compare performance for seven hierarchical
algorithms: Single, Complete, Average, Weighted, Centroid, Median and
Ward Linkages. Results show that the Average Linkage algorithm has
the best Cophenetic Correlation Coefficient. The proposed method us-
ing the best linkage criteria is tested against real data over a two-year
dataset of one-minute American stocks returns. The portfolio selection
model achieves a good financial return and an outstanding result in the
annual volatility of 3.2%. The results suggest good behavior in perfor-
mance indicators with a Sharpe ratio of 0.89, an Omega ratio of 1.16, a
Sortino ratio of 1.29 and a beta to S&P of 0.26.

Keywords: Portfolio Construction; Portfolio Selection; Hierarchical Clus-
tering Algorithms; Inverse-variance Weighting; Algorithmic Trading.

1 Introduction

Portfolio selections is an active topic on finance, and maybe, the most common
problem for practitioners. on 1952, Markowitz introduced the modern portfo-
lio theory [4] which proposed a mathematical framework, called mean-variance
analysis, for assembling a portfolio of assets by solving one of the two optimiza-
tion problems: To minimize the portfolio variance at a given level of expected
or minimum required return. Or to maximize the portfolio expected return at a
given level of expected or maximum required variance. The expected return is
defined as:

E(Rp) =
∑
i

wi E(Ri) (1)

Where Rp is the return on the portfolio, Ri is the return on asset i and wi is
the proportion of asset i in the portfolio. Meanwhile, the variance is defined as:
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Fig. 1. Optimized Markowitz Portfolios

σ2
p =

∑
i

∑
j

wiwjσij (2)

Where σ2
p is the portfolio variance and σij is the covariance of assets i and j.

Figure 1 shows 500 combinations of portfolios of four assets, whose x-axis is the
portfolio standard deviation and the y-axis is the portfolio return. The optimal
portfolios are given by the Pareto frontier: The upper edge of the hyperbola.

However, Markowitz’ framework has issues related to instability, concentra-
tion, and under-performance given that the invertibility of the covariance ma-
trix is required and not easy to satisfy. Therefore, [6] introduced an approach
for building a diversified portfolio based on graph theory and machine-learning
techniques like hierarchical clustering techniques. He presented evidence his ap-
proach produces less risky portfolios out of sample compared to traditional risk
parity methods.

On [3], seven clustering techniques were tested for assembling portfolios using
one-minute return data of 175 financial assets of the Russell 1000 R©index. The
techniques were K-Means, Mini Batch K-Means, Spectral clustering, Birch and
three hierarchical clustering methods (Average Linkage, Complete Linkage, and
Ward’s Method). Results showed that the hierarchical clustering methods had a
better trade-off between risk and return.

In this work, we will extend our analysis over the hierarchical clustering
techniques, expand the testing dataset to approximately 2000 assets of the U.S.
Stocks Market, and finally, propose an asset allocation tool based on inverse-
variance weighting and a hierarchical clustering algorithm as an asset selection
method.
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This paper continues as follows: section 2 presents a brief summary of hier-
archical clustering methods, section 3 explains the proposed method, section 4
describes the experiment with real data and shows its results, and finally, section
5 gives final remarks, conclusions, and further work opportunities.

2 Hierarchical Clustering Methods

Hierarchical Clustering Methods model data like a hierarchy of clusters [9]. There
are two strategies for building the hierarchy: Agglomerative strategy (bottom-
up approach) is that all observations start in its own cluster, and then, pairs of
clusters are merged recursively. Whereas, divisive strategy (top-down approach)
is that all observations start in a single cluster, and then, they are split into new
clusters recursively. Divisive clustering is uncommon given that it requires an
exhaustive search O(2n) and not scales for large datasets [2].

On both strategies, merges and splits are determined in greedy manner by
minimizing the distance(similarity) d(u, v) between clusters u and v, which are
determined by the linkage criterion. It is a function of the pairwise distances of
observations in the clusters. The most common linkage criterion are:

– Single Linkage (Nearest Point Algorithm):

d(u, v) = min(dist(ui, vj)) (3)

Where ui is the i-th observation in the cluster u, vj is the j-th observation
in the cluster v, and dist(a, b) is the euclidean, Manhattan, Mahalanobis or
Maximum distance between observations a and b.

– Complete Linkage (Farthest Point Algorithm or Voor Hees Algorithm):

d(u, v) = max(dist(ui, vj)) (4)

– Average Linkage (UPGMA algorithm):

d(u, v) =
∑
ij

dist(ui, vj)

|u||v|
(5)

Where |u| and |v| are the cardinals of clusters u and v, respectively.
– Weighted Linkage (WPGMA algorithm):

d(u, v) =
dist(s, v) + dist(t, v)

2
(6)

Where u is formed by the merge between s and t.
– Centroid Linkage (UPGMC algorithm):

d(u, v) = ||cu − cv||2 (7)

Where cu and cv are the centroids of clusters u and v, respectively.
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– Median Linkage (WPGMC algorithm):

d(u, v) = ||cu − cv||2 (8)

cu =
cs + ct

2
(9)

Where u is formed by the merge between s and t, and cs, ct and cu are the
centroids of clusters s, t and u, respectively.

– Ward Linkage (Ward variance minimization algorithm):

d(u, v) =

√
|v|+ |s|
T

d(v, s)2 +
|v|+ |t|
T

d(v, t)2 − |v|
T
d(s, t)2 (10)

Where u is formed by the merge between s and t, and T = |v|+ |s|+ |t|.

3 Proposed method for portfolio selection

The US Stock Market lists approximately 8000 stocks which worth above 30
trillion USD [8]. However, many stocks are unsuitable for algorithmic trading
or portfolio managing given its liquidity restrictions or high-risk behavior. One
of the most important requirements of a portfolio is to have low-risk exposure,
therefore, the universe of stocks is filtered using the following rules:

– The stock must be a common (for example, not preferred) stock, nor a depos-
itory receipt, nor a limited partnership, nor traded over the counter (OTC).

– If a company has more than one share class, the most liquid share class is
chosen and the others are discarded.

– The stock must be liquid; it must have a 200-day median daily dollar volume
that exceeds $2.5 Million USD.

– The stock must not be an active M&A target (Mergers and Acquisitions).
– The stock must have a market capitalization above $350 Million USD over

a 20-day simple moving average.
– ETFs are excluded.

The reduced universe size ranges from 1900 to 2100 stocks. Once the universe
is filtered, the distance matrix is built using the correlation matrix of the one-
minute returns over the last 10 trading days. The distance matrix is defined as
follows [6]:

Dij =

√
1

2
(1− ρij) (11)

Where ρij is the Pearson correlation coefficient between the stocks i and
j which ranges from -1 to 1. If this coefficient is close to 0, 1 or -1, it means
uncorrelated, correlated, anti-correlated behavior, respectively. Given the fact

that ρij is bounded, Dij ranges from 0 to 1. It is 0,
√

1
2 or 1 when the pair

stocks are perfectly correlated, uncorrelated, and anti-correlated, respectively.
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Fig. 2. Comparison of several hierarchical clustering methods

After, the distance matrix’s clusters are formed using a hierarchical clustering
method. The approach is to group stocks that are most similar within clusters.
Figure 2 shows the comparison of seven hierarchical clustering methods: Single,
Complete, Average, Weighted, Centroid, Median and Ward Linkages.

The Cophenetic Correlation Coefficient (CCC) evaluates how well the den-
drogram preserved the pairwise distances between the original modelled data
points [10]. It is given by [1]:

CCC =

∑
i<j(x(i, j)− x̄)(t(i, j)− t̄)√

[
∑

i<j(x(i, j)− x̄)2][
∑

i<j(t(i, j)− t̄)2]
. (12)

Where x(i, j) is the Euclidean distance between the i-th and j-th observa-
tions. t(i, j) is the dendrogrammatic distance, which is the height of the node at
which these two points are first joined together, between the model points Ti and
Tj . x̄ and t̄ is the average of all x(i, j) and t(i, j), respectively. Furthermore, the
magnitude of CCC should be very close to 1 for a high-quality solution. Figure
2 also shows the CCC for each algorithm: The method Average has the highest
CCC, meanwhile the method Single has the lowest CCC.

For each cluster, the optimal portfolio with the highest Sharpe-ratio is calcu-
lated using Markowitz theory and the critical line algorithm. Although, another
more powerful method to generate the optimal portfolio within each cluster can
be chosen like a multi-objective optimization, searching to optimize with liquid-
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Fig. 3. Cumulative returns

ity and volume constraints or including aversion risk preferences or transaction
costs.

Then, the Inverse-variance weighting technique is applied; the portfolio’s
weights are rescaled by multiplying them by the inverse proportion to its portfo-
lio variance. This technique is applied in order to have a portfolio with a leverage
of 1 and minimize the variance of the weighted average.

ŵk =
1/σ2

k∑
k 1/σ2

k

wk (13)

Where σ2
k is the variance of the k-th portfolio and wk is the weight vector of

the k-th portfolio’s stocks.

4 Experiment and Results

A portfolio strategy was simulated with real data reaching a sample of 2,000
listed U.S. stocks. The strategy uses the previous portfolio selection method
and rebalances weekly every Wednesday. The back-test took 25 months from
January 6th, 2016 to January 31th, 2018 and initial capital of 10 million USD.
The cumulative returns were 5.89%, namely, an annual return of 2.9%.

Figure 3 shows the total percentage return of the portfolio from the start to
the end of the back-test. Also, it compares the evolution against the Standard
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Fig. 4. Exposure

Fig. 5. Rolling volatility

& Poor’s 500 Index (S&P 500) which is the most representative index of the
American stock market. It is based on the market capitalizations of 500 large
companies listed on the New York Stock Exchange (NYSE) or Nasdaq Stock
Market (NASDAQ). The maximal draw-down was -3.4%. Figure 4 shows strategy
exposure over the back-test period. The strategy traded with an average leverage
of 1 and used short and long positions.

Figure 5 shows the six-month rolling standard deviation of the portfolio’s
returns. The portfolio had annual volatility of 3.2% which is lower to the bench-
mark volatility and is a desired quality for low-risk portfolios. Meanwhile, figure
6 presents the six-month rolling Sharpe ratio which measure of risk-adjusted
performance, which divides the portfolio’s excess return over the risk-free rate
by the portfolio’s standard deviation. The portfolio had an average Sharpe ratio
of 0.89 and a Calmar ratio of 0.83, an Omega ratio of 1.16, and a Sortino ratio
of 1.29.

Another desired quality is that portfolios must be diversified over different
economic sectors. Traditionally, the portfolio selection satisfies this need man-
ually splitting the market into sectors using subjective experts’ criteria. But
the clustering techniques allows removing this human parametrization because
those techniques are able to learn and identify the economy sectors from data for
themselves without human intervention. Figure 7 shows the exposure to various
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Fig. 6. Rolling Sharpe

Fig. 7. Rolling 63-day mean of sector exposures

economic sectors. The rolling 63-day mean of sector exposures for all standard
economy sectors is below of 7%. This behavior is stable over time.

Moreover, portfolios must be diversified over different styles of exposures
in order to ensure that all positions on any kind of stock have homogeneous
behaviors with respect to the entire portfolio. The relevant Quantopian’s styles
are [7]:

– Momentum: The difference in return between assets on an upswing and a
down-swing over 11 months.

– Size: The difference in returns between large capitalization and small capi-
talization assets.

– Value: The difference in returns between expensive and inexpensive assets
(as measured by Price/Book ratio).

– Short Term Reversal: The difference in returns between assets with strong
losses to reverse, and strong gains to reverse, over a short time period.

– Volatility: The difference in return between high-volatility and low-volatility
assets.
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Fig. 8. Rolling 63-day mean of Style exposures

Fig. 9. Rolling 63-day mean turnover

Fig. 10. Position concentration

Figure 8 shows the portfolio style exposures. All style exposures are between
-%40 and %40 which is excellent for a low-risk portfolio. Figure 9 presents the
rate at which assets are being bought and sold within the portfolio. The portfo-
lio’s turnover ranges from %22 to %30 with an average of 26.8%. A low turnover
reduces transaction costs. Moreover, figure 10 shows the percentage of the port-
folio invested in its most-concentrated asset. A portfolio must not have a heavy
concentration because it makes high-correlated with that asset.

Finally, a portfolio must be as less as possible correlated with the market.
Figure 11 shows the beta statistic. The average portfolio Beta was 0.26.
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Fig. 11. Six-month rolling beta

5 Conclusions

We have tested seven hierarchical clustering techniques using actual data (sorted
from best to worst performance according to CCC): Average, Centroid, Weighted,
Ward, Complete, Median and Single Linkages.

Hierarchical clustering techniques allow to build diversified portfolios and
achieve profits with reduced risk exposure. In conjunction with inverse-variance
weighting, the technique allows a portfolio selection with the ability to consis-
tently generate profits and portfolios with systematically stable and low volatil-
ity. The combination of these techniques produces portfolios with low sector
exposure and low style exposure (Momentum, Sizes, Values, Short Term Rever-
sal and Volatility).

Moreover, the Markowitz algorithm has issues related to instability, concen-
tration, and under-performance given that the invertibility of the covariance
matrix is required and not easy to satisfy. However, hierarchical clustering tech-
niques do not have those issues. They are able to handle a lot of quantity of data
with stable behavior.

Finally, another research opportunity would be to explore other machine
learning techniques like hierarchical fuzzy clustering, to go beyond the work of
[5]. Also is important to explore other methods for choosing the weight inside
clusters that be more powerful than Markowitz algorithm, and other optimiza-
tion objectives like Omega ratio.
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