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Abstract. Based on low-level features at micro-architecture level, the
existing detection methods usually need a long sample length to detec-
t malicious behaviours and can hardly identify non-signature malware,
which will inevitably affect the detection efficiency and effectiveness. To
solve the above problems, we propose to use the General-Purpose Reg-
isters (GPRs) as our features and design a novel deep learning model
for malware detection. Specifically, each register has specific function-
s and changes of its content contain the action information which can
be used to detect illegal behaviours. Also, we design a deep detection
model, which can jointly fuse spatial and temporal correlations of GPRs
for malware detection only requiring a short sample length. The pro-
posed deep detection model can well learn discriminative characteristics
from GPRs between normal and abnormal processes, and thus can al-
so identify non-signature malware. Comprehensive experimental results
show that our proposed method performs better than the state-of-art
methods for malicious behaviours detection relying on low-level features.

Keywords: Malware Detection - Malicious Attack - Registers Data -
Neural Networks - GPRs Data

1 Introduction

The malicious executable file is a computer program with a destructive pur-
pose. In recent years, malware increasingly becomes advanced and sophisticated.
Meanwhile, a large number of malicious codes are opens-source and some obfus-
cation tools are also made freely available, which causes new variants of malware
burst with an exponential growth. According to AV-Test [1], the total number of
malware has reached more than 740 million. Moreover, a recent security indus-
try analyzes three years’ security data from 26 countries and reports that more
than half of the attacks resulted in financial damages of more than US$500,000
(including but not limited to: lost revenue, customers, opportunities, and out-of-
pocket costs). However, nowadays, most of ordinary users defend against attacks
using signature-based scanning tools which fail to detect Zero-day attack and are
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not able to detect complex emerging malware. Thus, defending the evolutional
malware from enormous legitimate processes in real time is imperative for an
security computer application environment.

Malware detection is usually conducted based on the high-level events (i.e.,
system call sequence, frequency of system call and string information). Recently,
some researchers began to use low-level events at micro-architecture level for
malware detection, and these low-level features have been proved more effec-
tive than high-level features to identify malicious actions [27,9]. One reason is
that the detector employing low-level features can perceive tiny changes between
normal and malicious processes, which is useful for improving the malware detec-
tion performance. The other is that using low-level features takes less processing
time than using high-level features. For example, if we use high-level events as
detection features, the detector cannot make a decision until the relevant low-
level information is converted into the high-level one. [13, 12, 26] adopted perfor-
mance counters as input features for malware detection, but these methods didn’t
achieve a high accuracy since they directly extracted low-level features from an
isolate environment interfered with the normal processes. Actually, these micro-
architecture features of normal processes are noise for malware detection [27].
Although [23,20,24] can identify malicious behaviours with a high accuracy,
they all use temporal statistics as features without considering the interference
with normal processes. In reality, interference of normal processes always exists.
Also, the above methods all need a long sample length (25K or 10K instructions)
and cannot detect the non-signature malicious software.

To address the above problems, we make full use of the spatial and tempo-
ral properties in low-level features for malicious behaviours detection. First, we
collect the data in GPRs [3] as our low-level features. Each register has specific
functions, and the changes of its content can contain action information. E.g.,
EAX is a scratch register, and most of the Win32 Application Programming
Interface (API) functions return values in this register [17]. Thus, changes in
GPRs can be used to distinguish legal behaviours from malicious ones. Also, in
this paper, we design a deep learning model to extract the spatial and temporal
correlations in GPRs for malware detection, which can effectively suppress the
noise (normal processes) in input features. Finally, selecting GPRs as features
are effective for identifying non-signature malware. Most of the non-signature
malware employ obfuscation techniques to change their original malicious codes
for evading defense tools. However, the obfuscated malware will retain the harm-
ful functionality of its original code, which means that it cannot alter the final
data in GPRs when acting as a malicious behaviour. Even though the malware
employs register reassignment technique, it does not change the relationship be-
tween the eight GPRs. Experimental results show that our method can achieve
better malware detection performance compared with other detection models
using low-level features at micro-architecture level.

This paper involves the following contributions:
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— We propose to use GPRs as features for malware detection. By jointly using
the spatial and temporal properties in GPRs, our method can effectively
detect malicious behaviours.

— We design a novel deep detection model (denoted as ”FusionST”), which
only needs a short length of GPRs (0.8K instructions, 12.5 times shorter
compared than other methods) for accurate malware detection.

— By jointly fusing spatial and temporal correlations in GPRs, our model can
suppress interference with normal processes, and can also learn discrimi-
native characteristics between normal and abnormal behaviours for non-
signature malware detection.

2 Related Works

There are many methods that used low-level features for malware detection.
E.g., [11] pioneeringly showed that using opcode can detect malware. Using
the relevance among opcodes, [25] then proposed a weighed opcode sequence
frequency method to detect malicious behaviours, but it is hard to learn the true
actions of a process relying on opcodes sequence. Hence, [14] further presented a
control flow-based method to extract opcode behaviors. The above works based
on low-level features are all static detection techniques in Operational System
(OS) level, but some malicious files, such as obfuscation malware and Zero-
day malware, can easily evade these techniques since they usually cannot be
disassembled properly [19].

Afterwards, some researchers adopted information at micro-architecture lev-
el to dynamically identify malware. For example, [13] used performance coun-
ters to collect multi-dimensional performance counter statistics for classifying
malware, but they should collect information every 25K instructions at least,
which is time-consuming. Then, [26] applied a feature reduction technique to
decrease the computational load. Both [13] and [26] achieve relatively low de-
tection Accuracy, since their collected features contain a lot of noise resulting
in bad detection performance with Machine Learning (ML) techniques. [17] can
obtain above 95% detection accuracy, but it needs the whole action information
of one sample (registers’ values when important API is invoked before and af-
ter). Then, [24] and [23] proposed a hardware-supported malware detector using
low-level features for malware detection. In their works, they find that neural
networks can obtain good malware classification results based on the frequency
of opcodes with the largest difference. However, they need to collect 10K suc-
cessive instructions for only one test. Besides, they do not indicate which type
of the neural networks performs the best for detecting malicious behaviours.

The methods [17,13, 26, 23, 24] do not make fully use of the spatial and tem-
poral properties in low-level features. Also, they do not analyze the detection
performance of their methods on unknown malware. Different from the previous
works, our deep learning model, with only a short sample length, extracts the
spatial and temporal properties of GPRs for malware detection. Our low-level
features are directly collected from the isolated environment based on Qemu
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Fig. 1. Sub-sample generation using automatic data collection system. (a) shows how
to collect the low-level features, and (b) illustrates the generation of sub-samples.

developed in-house (shown in Section 3.1), which will inevitably introduce inter-
ference of normal processes to the collected data (close to the real environment).
In other words, our method fetches malware features with a large amount of
noise, which makes our detection task more difficult. Our designed deep learn-
ing model can effectively suppressing the noise by jointly fusing the spatial and
temporal correlations in GPRs, and it can also identify non-signature malware.

3 Proposed Method

In this section, we introduce our deep malware detection model based on the
spatial and temporal properties of low-level features (GPRs). Here, the spatial
correlation means the relations of the eight GPRs. A malware will inevitably
revises the data in GPRs, and the changes of the data may follow a particular
way (i.e., correlations) which is different from that of the normal process. This
difference is very helpful for malware detection.

We proceed in three parts: low-level data collection, sub-sample generation
and malware detection model. The first part is used for collecting low-level fea-
tures from CPU in an isolated environment. The sub-sample generation part
introduces how to pre-process the GPRs features collected using the low-level
data collection module, and the last part explains the architecture of the deep
malware detection model.

3.1 Low-level data collection

To train the deep malware detection model (FusionST) we create an automatic
data collection system to collect features of low-level events (see Fig. 1(a)).
Though some systems have been proposed for collecting behaviour information
in recent years, they have some restrictions. For example, the techniques in [22]
and [21] need to be manually set up and operated. Besides, most of them major
in extracting opcode information. Here, we designed an automatic data collection
system that can extract GPRs’ content effectively.

We first establish a 32-bit Windows 7 operation system using virtual machine.
Then, we use a system-wide emulator Qemu [10] to emulate a standard computer
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environment on the operation system. Here, Qemu is an open-source emulator
based on dynamic binary translation and we can get the information we need by
modifying the corresponding source code of Qemu. To support malicious software
operations, we disable the firework and Windows Security Services on this Qemu
and connected it to the network. In this isolated environment, we collect low-
level information once an instruction is executed. For each executable file, we
keep executing it two minutes to collect abundant behaviour information for each
sample [16]. Note that collecting data of two minutes is only a necessary process
for training a classification model. When performing online malware detection,
we just need to run the pre-trained detection model using sub-samples with a
very short length, which means the time of data collection can be ignored.

3.2 Sub-sample Generation

Based on the automatic data collection system, we can simultaneously extract
multiple low-level features, such as opcode features, branch features and register
features. [23, 24] proved the opcode features (existence of opcodes and frequency
of opcodes with largest difference) are effective for malicious behaviour detection,
but they only use the temporal statistics as input features. In this paper, we
use the spatial and temporal properties of GPRs for malware detection. In the
experimental part, we give comparisons of the malware detection performance
using different types of low-level features.

In the preliminary experiment, we found that only using one single register
can not obtain a good detection result. Hence, we utilize eight GPRs as features
to train our deep malware detection model. In this section, we introduce how
to transform the eight GPRs into numeric samples which can be directly input
into the deep malware model for classification (see Fig. 2).

First, we combine the eight GPRs of one sample in a fixed order: EAX, EBX,
ECX, EDX, EBP, ESP, ESI, EDI. As shown in Fig. 1(b), the combined data can
be written as:

S :[1‘1,1‘2,...,1'8], (1)

where S is a two-dimensional matrix with height of 8, and it presents a com-
bination of the above 8 GPRs information for one sample file. The notation r;
(i € {1,...,8}) is a one-dimensional vector, representing one of the 8 GPRs.
Since S contains two minutes’ information of a malicious or normal behaviour, it
is not viable to use the whole S for real time detection. Then, we thus generate
sub-samples from S to train the deep malware detection model. Specifically, a
sub-sample is generated by randomly cutting the combined S with a fixed length,
and we call this fived length as sample length in this paper:

S =[f1,t2,...,0s], (2)

where S is a sub-sample from S, and T; represents a randomly intercepted piece
of one register with a certain sub-sample length. Therefore,

L=25, --.Sv.NeR (3)
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Fig. 2. Architecture of the detection model FusionST. The input of the model are the
sub-samples collected from GPRs. The following CNNs and LSTMs fuse the spatial
information and temporal information respectively for the final classification (output).
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represent all the training samples to train the deep learning model, where N
indicates the number of sub-samples (see Fig. 2). Through our experiments, we
find that the cut point does not affect the malware detection performance, which
implicity proves the robustness of our method.

3.3 Malware Detection Model

The generated sub-sample has both spatial and temporal correlations. Based
on this property, we then propose a novel deep neural network by jointly using
convolutional neural networks (CNNs) and Long Short-Term Memorys (LSTMSs),
to spot illegal behaviours with only a short sample length.

The architecture of the proposed FusionST model is shown in Fig. 2. The
input of the model is a series of sub-samples with a particular sample length.
The first four CNNs abstract the spatial correlations among GPRs by fusing
information from different layers, and then the following LSTM blocks encode the
sequential information (temporal correlations) for the final malware detection.
Here, to well learn the correlations among the eight GPRs, Convl adopts 8 x 8
filter size with 64 filters. The filters setup for Conv2 and Conv3 are 3 x 3 x 64 x 128
and 1 x 1 x 128 x 128, respectively. As shown in Fig. 2, Conv4 is a spatial
fusion layer with one-dimensional convolution (3 x 3 x 320 x 1) to incorporate
information from different receptive fields, which can improve the effectiveness of
the detection model. To keep the feature map from each layer in the same scale,
each convolutional layer is accompanied by bach normalization (momentum of
0.99, epsilon of 0.001) followed by a rectified linear unit (ReLU) activation.

The three LSTM blocks all have 32 hidden units to extract the time feature
for detecting malicious action. LSTM module employs gate mechanism to cap-
ture long-term timing dependencies, which can learn feature from time series
data effectively. However, LSTM will expend a large amount of computation
and hardly get effective weight update if the length of the time dimension se-
quence excess 0.2K [28]. In this paper, we select 0.1K as time sequence length
for FusionST model.
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The categorical cross entropy, together with the weight decay, is used as our
loss function

B K
1 A 2
= = 2 2w paelomye + A0 (4)

J

where B is the number of batch size, K is the number of classes (2 classes for
the detection task), p.x is the true probability of class k and p.j is the predicted
probability of class k. The weight wy, is used to balance class k in the training data
set, and we set it to 1 for all the classes since our training data set is balanced.
The weight decay term ||§]3 smoonths the parameters 6 in network FusionST to
prevent overfitting, and A is the corresponding regularization weight [18].

4 Experiments

4.1 Experimental Setup

We implement the FusionST model using the Tensorflow [7] framework. The
standard stochastic gradient descent with momentum is employed for training,
where the initial learning rate, momentum and weight decay are set to 10~%, 0.99
and 1073, The network converges after approximately 40K iterations for training.
All experiments are conducted in the environment: 64 Bit Ubuntu 14.04 on an
Intel(R) Core (TM) i7-7800X Processor (3.50GHz) with 16GB of RAM. We run
the networks on an Nvidia GeForce GTX 1080 Ti graphics card (GPU) and the
Nvidia CUDA 8 software platform is used to accelerate the training process.

4.2 Dataset

VxHeaven [6] and VirusShare [4] are two popular datasets used for malware
detection. In this paper, we randomly downloaded 1508 executables both from
VxHeaven (60%) and VirusShare (40%) to make our malicious samples diverse.
In contrast to [23,24], we have a larger malware dataset for evaluation (1508
malwares vs 1087 malwares). Besides, note that the executables downloaded
from the VirusShare are newly released in 2017, which makes malware detection
more challenging. For benign samples, they include a various of legal processes,
e.g. native utilities and application executables in an operation system. These
benign applications are download from the SourceForge [2] that is a popular
free software source. All these malicious and benign samples are invoked by our
automatic data collection system to extract the low-level features.

The collected samples are randomly divided into training set and test set
as shown in Table 1. Since each program is executed for two minutes in the
automatic data collection environment, it will generate a large amount of data
information. Hence, we generated sub-samples to train our malware detection
model, which has been introduced in section: Sub-sample Generation.
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Table 1. Malicious and benign dataset Table 2. Evaluation of sample lengths

Positive # Training # Test ‘Length‘AceuraCy‘Precision‘Recall‘ F1 ‘ FPr ‘
Sample‘Sub—Sample Sample‘Sub—Sample 0.1K 0.838 0.832 10.84110.83610.168

Backdoor | 376 50K 95 5K 0.2K | 0.888 | 0.883 |0.8900.886]0.117
Worm | 187 50K 47 5K 0.4K | 0919 | 0935 [0.9360.9350.064
Virus | 209 50K 53 5K 0.6K | 0.949 | 0.956 |0.957|0.956|0.043
Rootkit | 278 50K 70 5K 0.8K | 00958 | 0.962 [0.964|0.963|0.038
Trojan | 154 50K 39 oK 10K | 0.963 | 0.955 |0.958]0.9560.045

| Total | 1204 [ 250K [ 304 [ 25K | [2K | 0920 | 0.907 |0.953]0.9290.094
[Negative] 770 | 250K | 131 [ 25K | [14K | 0922 | 0.961 |0.964]0.962]0.064

4.3 Evaluation Metrics

In this paper, we set the labels of malicious sample and benign sample as positive
and negative, respectively (see Table 1). The following are the four comprehen-
sive metrics:

N _ TP+TN
U T TP T TN + FP 4 FN’
TP TP
Precision =———— Il =— 5
recision =0 Reca. TP T TN (5)
Fl :2 x Precision * Recall, FPr FP

Precision + Recall ~FpP + TN’

where TP, TN, FP and FN represent True Positive, True Negative, False Positive
and False Negative, respectively.

4.4 Experimental Results and Analysis

Evaluation of sample length Table 2 shows the effect of sample length on the
detection performance of the FusionST model using GPRs as features. Here, we
train 8 detection models using FusionST with the different sample lengths: 0.1K,
0.2K, 0.4K, 0.6K, 0.8K, 0.1K, 1.2K, 1.4K. A short sample length leads to a low
Accuracy which will increase significantly with sample length increasing. Since
illegal behaviors are more likely to be missed with larger sample length, FP, value
will grow when the sample length become too long, which is consistent with the
conclusion in [23,24]. Thus, we finally choose sample length 0.8K (namely 0.8K
instructions) for malware detection to balance efficiency (sample length) and
effectiveness (FP,).

Evaluation of low-level features Table 3 shows the comparison results using
three types of low-level features: the existence of opcodes, the largest difference
frequencies of opcodes and GPRs. Here, we just compare our proposed features
with opcode features proposed by [24, 23], since their papers have proved that
the opcode features can achieve better results than those of other various of low-
level features, such as memory address distance, direction categories and branch
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Table 3. Comparisons with other low-level malware detection methods

Methods = Frequency o[f2 Zg‘rcquency of Prolﬁ.’osed ook

Opcodes 10K|Opcodes 0.8K opcodes 10K |opcodes 0.8K Registers 0.8K
Accuracy 0.909 0.762 0.813 0.649 0.953
Precision 0.877 0.735 0.828 0.601 0.933
Recall 0.956 0.824 0.798 0.877 0.976
F1 0.914 0.777 0.813 0.713 0.955
FPr 0.139 0.299 0.197 0.399 0.068
Kappa 0.818 0.524 0.626 0.300 0.906
G-mean 0.907 0.763 0.813 0.609 0.953
BAC 0.908 0.763 0.813 0.651 0.953

categories. In order to ensure the fairness of the comparison, we extract these
three features concurrently in the isolation environment. Furthermore, each of
their samples are collected at the same moment. According to the suggestion in
[23,24] (they obtain the best classification results when sample length is 10K),
we train two models on opcode features using different sample lengths (10K
and 0.8K), while our model are only trained on the registers’ features of 0.8K
instruction length. As shown in Table 3, though [23,24] can effectively identify
malicious behaviours using opcode features in their experimental environment, it
fails to obtain the same excellent results in our experiments. E.g., the Accuracy
is only 0.813 with the largest difference frequencies of 10K opcodes, while the
Accuracy with the existence of opcodes is 0.909 with the 0.139 FPr when sample
length is 10K. The reason may be that the opcode features contain noise when
collected using our isolation environment. Our features with GPRs can achieve
the Accuracy of 0.953 with the 0.068 FPr when the sample length is 0.8K. Since
this experiment uses imbalanced data set, we also evaluate our method relying
on Kappa, G-mean and BAC (Balanced Accuracy) Metrics [15]. Overall, our
proposed GPRs perform better than opcodes features in terms of Accuracy,
Precision, Recall, F1, FP,, Kappa, G-mean and BAC.

Evaluation of different models To evaluate the effectiveness of our proposed
model, we compare FusionST with other popular classification models using the
Receiver-Operating Characteristics (ROC) curves. As shown in Fig. 3, the detec-
tion algorithms can be generally categorized into Machine Learning (ML) ones
and Neural Network (NN) ones. Here, the ML algorithms contain the basic lin-
ear classification algorithm: Support Vector Machine (SVM) (linear kernel) and
the non-linear classification algorithms: K-NearestNeighbor (KNN), Naive Bayes
(NB) and Decision Tree (DT). From Fig. 3, the ML approaches can not differen-
tiate malware from normal processes in the low-level space effectively. E.g., for
ML algorithms, the highest detection Accuracy is 0.796 achieved by DB method
while the linear SVM method hardly has the classification ability using GPRs
as input features. The main reason may be that GPRs are micro-architecture
level features, and they cannot directly reflect the action information before be-
ing converted into high dimensional spaces. Hence, the simple ML algorithms
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Fig. 3. Detection performance of different models.

are difficult to detect malicious behaviors in this paper. For NN algorithms, we
compare FusionST with its three variants: CNNs, LSTMs, CNNs+LSTMs. The
CNNs model only has the first three convolutional layers of FusionST, while L-
STMs only keeps the last three LSTM blocks of FusionST. The CNNs+LSTMs
is also a combination of CNNs and LSTMs but removes the fusion layer Conv4
in FusionST (Fig. 2). As seen from the results, FusionST achieves the best detec-
tion performance, and CNNs+LSTMs is a little inferior. The reason may be that
the CNNs+LSTMs model is a simple combination of CNNs and LSTMs without
the fusion layer (Conv4 in Fig. 2) which is crucial to fuse multi-scale features
from different layers. Meanwhile, we also find that the CNNs model performs
better than LSTMs, which implies that CNNs working as filters can suppress
noise in the raw GPRs. These above results also show that the combination of
CNNs (spatial fusion) and LSTMs (temporal fusion) is necessary, since GPRs
have both spatial and temporal correlations.

Table 4. Non-signature test sets

# Positive set
Download set‘Generate set

Non-signature set # Negative set

Sample 150 150 150
Sub-sample 5K 5K 5K

Evaluation of detecting non-signature malware In this paper, a non-
signature malware means that it does not belong to any malware families re-
ported in Table 1. To test how the FusionST model performs when confronting
with a completely new malware, we collected another two non-signature test sets
for evaluation (see Table 4). The downloaded non-signature malware (positive
samples) were newly released in 2018 by VirusShare. Also, we generated 150
unknown malware using Virus Maker Pack Ultimate Collection 2017 as another
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Table 5. Evaluation of detecting non-signature malware

Method [[FusionST[[AVware[ESET-NOD32[Kaspersky

B Accuracy|| 0.921 || 0.975 0.925 0.975
| Precision|| 0.881 || 1.00 1.00 1.00
§ Recall || 0.977 || 0.952 0.869 0.952
el F1 0.926 || 0.975 0.930 0.975
A Fpr 0.132 0 0 0
*§ Accuracy|| 0.940 0.475 0.425 0.475
2 Precision|| 0.917 0 0 0
E| Recall || 0.969 0 0 0
g F1 0.942 0 0 0
S FPr 0.087 || 0.513 0.541 0.513

non-signature positive test set. This tool set contains multiple malware makers,
such as DarkHorse, Posion and Necro. Then, we download another 150 benign
samples from the SourceForge malware as the negative test set. Using the two
new test sets, we compare the FusionST model with other three popular anti-
virus softwares (AVware, ESET-NOD32 and Kaspersky) (see Table 5). From
Table 5, we can find that three anti-virus softwares achieve good malware detec-
tion performance for the downloaded test set which has been signatured for these
three anti-virus softwares. However, three anti-virus softwares hardly identify the
generated test samples, since the generated samples are Zero-day malware for
these three anti-virus softwares. We also test these generated executable files on
the VirusTotal [5] website. Each unknown malware is detected using 65 latest
anti-virus engines. The report results indicate that none of anti-virus engines
believe these new generated files are malicious. However, these softwares are all
malicious. The FusionST model obtains satisfactory detection performance on
the two non-signature test sets. E.g., the FusionST can achieve Accuracy of 0.940
with 0.087 FPr on the generated test set. In conclusion, the FusionST model has
a good adaptive ability for identifying non-signature malware.

4.5 Overhead Evaluation

In this paper, we use PCMark 7 [8] to measure overhead performance of our
malware detection model. PCMark 7 is a performance testing tool developed by
Futuremark, a well-know global graphics and system test software development
company.

To evaluate the overhead performance effectively, we first need to select the
compared items from PCMark 7. We then iteratively test the performance of
our computer five times with and without enabling our malware detection mod-
el. Finally, we compare the performance results of the two settings to compute
the overhead performance of our detection model. Fig. 4(a) shows the overhead
performance using our model to spot malware in real time. Overall, our model
has a low overhead. Though Gaming overhead is 14.3% and Starting Applica-
tion overhead is 11.9%, which takes up a little more resources than with other
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Fig. 4. Overhead performance and running times. (a) shows the overhead performance
of FusionST model on PCMark 7, and (b) shows the times taken by our designed four
detection models (CNNs, LSTMs, CNNs+LSTMs and FusionST) to detect one sample.

online malware detection methods, the rest of the test items has lower overhead
performance, i.e. Video Downloading overhead is only 0.5%. Besides, as long as
the detection model can be implemented in hardware, nearly zero consumption
can be achieved.

Evaluation of detection times Fig. 4(b) shows the test times taken by our
designed four detection models (CNNs, LSTMs, CNNs+LSTMs and FusionST)
when sample length is 0.8K and 10K. As observed, we can find that sample length
can significantly affect the detection efficiency. E.g., for FusionST model, using
sample length 10K consumes about 23 times longer time than using sample
length 0.8K. In terms of effectiveness and efficiency, we choose the detection
window as 0.8K in this paper. Overall, all the four models take less than 1ms to
complete one test when the sample length is 0.8K, which is important for our
detection model to monitor malicious behaviours in real time. As we mentioned
before, we choose the FusionST model as our basic classification model in this
work. Though FusionST model needs slightly longer test time compared with
other models, it performs better in terms of FP, (see Fig. 3).

5 Conclusions and future work

With micro-architecture level features, the existing methods usually use per-
formance counters, existence of opcodes or frequency of opcodes with largest
difference for malware detection. Although these methods can achieve satisfac-
tory malware detection performance, they need collecting a long length of low-
level features (about 10K instructions). Meanwhile, these detection methods are
prone to be affected by noise from the low-level features and can hardly detect
non-signature malware. In this paper, we use GPRs as features for malware de-
tection. Experimental results show that only using a short length of GPRs (0.8K)
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can achieve high Accuracy for malware detection. Using CNNs and LSTMs, we
also propose a deep detection model by jointly fusing spatial and temporal cor-
relations of GPRs to improve the effectiveness and robustness of our detection
method. Our deep detection model can well learn the correlations among GPRs
for normal system processes, and thus can also identify non-signature malware
due to their different characteristics from benign.

Currently, our method mainly focuses on binary classification, i.e., malware
detection, and it can not identify the specific types of malwares. We will extend
our work to a multi-class problem by incorporating more low-level and high-level
features. Meanwhile, we also tend to apply our method to other architectures,
such as X86_64, ARM and MIPS.
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