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and Daniel Vašata1[0000−0003−0616−4340]

Faculty of Information Technology, Czech Technical University in Prague
Prague, Czech Republic

{magda.friedjungova, marcel.jirina, daniel.vasata}@fit.cvut.cz

Abstract. In real-world applications, we can encounter situations when
a well-trained model has to be used to predict from a damaged dataset.
The damage caused by missing or corrupted values can be either on the
level of individual instances or on the level of entire features. Both sit-
uations have a negative impact on the usability of the model on such
a dataset. This paper focuses on the scenario where entire features are
missing which can be understood as a specific case of transfer learning.
Our aim is to experimentally research the influence of various imputa-
tion methods on the performance of several classification models. The
imputation impact is researched on a combination of traditional meth-
ods such as k-NN, linear regression, and MICE compared to modern
imputation methods such as multi-layer perceptron (MLP) and gradi-
ent boosted trees (XGBT). For linear regression, MLP, and XGBT we
also propose two approaches to using them for multiple features imputa-
tion. The experiments were performed on both real world and artificial
datasets with continuous features where different numbers of features,
varying from one feature to 50%, were missing. The results show that
MICE and linear regression are generally good imputers regardless of the
conditions. On the other hand, the performance of MLP and XGBT is
strongly dataset dependent. Their performance is the best in some cases,
but more often they perform worse than MICE or linear regression.

Keywords: Missing Features · Imputation Methods · Feature Recon-
struction · Transfer Learning

1 Introduction

While solving a classification task one often faces demanding preprocessing of
data. One of the preprocessing steps is the treatment of missing values. In prac-
tice, we struggle with randomly located single missing data in instances or with
missing entire features. In real-world scenarios, e.g. [25, 26, 10], we have to deal
with missing data. Missing values can also be part of a cold-start problem. Im-
putation treatments for missing values have been widely investigated [14, 24, 8]
and plenty of methods how to reconstruct missing data were designed, but these
methods are not directly designated for entire missing features reconstruction.
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This work focuses on the influence of missing entire features and possibilities
of their reconstruction for usage in predictive modeling. We consider the follow-
ing scenario: a classification model is trained on a dataset containing a complete
set of continuous features but has to be used for prediction of classes of a dataset
with some entire features missing. Entire feature reconstruction and its usage
in an already learned model in order to perform with a reconstructed dataset
distinguishes our work from others. Our point of interest is to find out how
missing features impact the accuracy of the classification model, what possibili-
ties of missing entire features reconstruction exist, and how the model performs
with imputed data. In our work, the reconstruction of missing features, i.e. data
imputation, is the very first task of transfer learning methods [17], where the
identification of identical, missing, and new features is crucial.

Experimental results of this work should shed more light onto the applica-
bility of state-of-the-art imputation methods on data and their ability to recon-
struct entire missing features. We deal with traditional imputation methods: lin-
ear regression, k-nearest neighbors (k-NN), and multiple imputation by chained
equations (MICE) [24], as well as with modern methods: multi-layer perceptron
(MLP), and gradient boosted trees (XGBT) [6]. Experiments are performed on
four real and six artificial datasets. The imputation influence is studied on six
commonly used binary classification models: random forest, logistic regression,
k-NN, naive Bayes, MLP, and XGBT. The amount of missing data varies be-
tween one feature and 50%.

This paper is structured as follows. In the next section we briefly review
related work. Section 3 introduces imputation methods that are being analyzed
in this work. Multiple features imputation is also discussed here. In Section 4
we describe the experiments that were carried out and present their results in
Section 5. Finally, we conclude the paper in Section 6.

2 Related Work

There exist many surveys which summarize missing value imputation methods
such as [8, 25, 5, 22, 16, 10, 11]. A lot of them are more than five years old and
focus on traditional imputation methods.

A very good review of methods for imputation of missing values was provided
by [8]. This study is focused on discrete values only with up to 50% missingness.
They experimentally evaluated six imputation methods (hot-deck, imputation
framework with hot-deck, naive Bayes, imputation framework with naive Bayes,
polynomial multiple regression, and mean imputation) on 15 datasets used in
6 classifiers. Their results show that all imputation methods except for mean
imputation improve classification error when missingness is more than 10%. The
decision tree and naive Bayes classifiers were found to be missing data resistant,
however other classifiers benefit from the imputed data.

In [25], performance of imputation methods was evaluated on datasets with
varying amounts of missingness (up to 50%). Two scenarios were tested: values
are missing only during the prediction phase, and values are missing during
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both induction and prediction phases. Three classifiers were used in this study:
a decision tree, k-NN, and a Bayesian network. Imputation by mean, k-NN,
regression and ensemble were used as imputation methods. The experimental
results show that the presence of missing values always leads to performance
reduction of the classifier, no matter which imputation method is used to deal
with the missing values. However, if there are no missing data in the training
phase, imputation methods are highly recommended at the time of prediction.

Finally, in [3], W. Arroyo et al. present imputation of missing values of Ozone
in real-life datasets using various imputation methods - multiple linear and non-
linear regression, MLP and radial basis function networks, where the usefulness
of artificial neural networks is presented.

3 Imputation Methods

Plenty of methods of missing data reconstruction have been designed. They per-
form differently on various datasets and in practice the most suitable imputation
method for a given dataset is usually chosen according to the evaluation of the
average performance (e.g. RMSE) of each method in the phase of training [20].

First let us briefly introduce imputation methods which we focus on within
this study. The most basic methods are linear regression and the k-NN (see e.g.
[9]).

The MICE [21, 24] does not simply impute missing values using the most
fitting single value, but it also tries to preserve some of the randomness of the
original data distribution. This is being accomplished by performing multiple
imputations, see [19]. The MICE comes up with very good results and is currently
one of the best-performing methods [24]. In our research we use MICE in a
simplified way. This means that multiple imputations are pooled using the mean
before the classification model is applied. The reason is that we want to simulate
the situation when the use of a classification model is restricted.

The MLP [22] with at least one hidden layer and no activation function in
the output layer and the XGBT, see [6] for more details, are considered to be
modern imputation methods.

3.1 Multiple Features Imputation

To impute several missing features, there are two ways of accomplishing this
task using the previously mentioned methods. The first is to impute all features
simultaneously which can be done using k-NN and MLP models. The second,
which is usable for all other methods, is to apply the model sequentially one
missing feature after another. However, to do this, it is important to choose
some order in which the features will be imputed. We focus on an ordering
where the most easy to impute features are treated first.

In the case of k-NN and MICE such a sequential imputation is not needed.
The reason is that, in the case of k-NN, the neighbors typically do not change in
subsequent steps and MICE is already prepared for multiple features imputation
using an internal chained equation approach [21, 24].
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Linear Imputability

A simple way of measuring imputation easiness of features is to use the multiple
correlation coefficient [2]. Multiple correlation coefficient ρX,X′ between a ran-
dom variable X and a random vector X ′ = (X ′1, . . . , X

′
n)T is the highest correla-

tion coefficient between X and a linear combination α1X
′
1 + . . .+αnX

′
n = αTX ′

of random variables X ′1, . . . , X
′
n,

ρX,X′ = max
α∈Rn

ρX,αTX′ .

It takes values between 0 and 1, where ρX,X′ = 1 means that the prediction
by linear regression of X based on X ′ can be done perfectly and ρX,X′ = 0
means that the linear regression will not be successful at all.

When X1, . . . , Xp are the p features, we call the multiple correlation coef-
ficient ρXi,X−(i)

between Xi and a random vector of other features X−(i) =

(X1, . . . , Xi−1, Xi+1, . . . , Xp)T the linear imputability of feature Xi.
The estimation of the linear imputability is based on the following expression

ρ2
Xi,X−(i)

=
cov(Xi,X−(i))

T
(

cov(X−(i))
)−1

cov(Xi,X−(i))

var(Xi)
,

where cov(Xi,X−(i)) is a vector of covariances between Xi and remaining fea-
tures X1, . . . , Xi−1, Xi+1, . . . , Xp, and cov(X−(i)) is a p − 1 × p − 1 variance-
covariance matrix of covariances between remaining features.

If we want to impute multiple features, say Xi, Xi+1, . . . , Xi+k, in the first
step we choose Xj , i ≤ j ≤ i + k such that ρXj ,X−(i,...,i+k)

is the largest, where

X−(i,...,i+k) = (X1, . . . , Xi−1, Xi+k+1, . . . , Xp)T is a vector of the remaining fea-
tures. Then, in the next step, we repeat the process where Xj is taken as a known
feature. Thus we choose Xl, i ≤ l ≤ i+ k, l 6= j such that its linear imputability
with respect to random vector X−(i,...,j−1,j+1,...,i+k) is the largest. We continue
this way until all missing features are imputed.

Note that we are recalculating linear imputability in every step. This should
not be done if the imputation is performed with linear regression since after the
re-estimation (on the full training set) one obtains unachievable values.

Information Imputability

Linear imputability is a simple measure of how the linear regression imputation
will perform. However, when one uses more sophisticated imputation models like
MLP or XGBT that can handle non-linear dependencies, the linear imputability
may not be suitable.

Hence we propose another way how to measure the imputability which is
based on a particular result from Information theory. If a feature Xj is predicted

by an estimator X̂j based on other features represented by a vector X−(j), i.e.

X̂j ≡ X̂j

(
X−(j)

)
, then it can be shown (see [7]) that

E
(
Xj − X̂j

)2 ≥ 1

2πe
e2H(Xj |X−(j)),
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where H(Xj |X−(j)) is the conditional (differential) entropy of Xj given X−(j).
Hence the lower bound of the expected prediction error is determined by the

conditional entropy H(Xj |X−(j)). The greater the entropy is the worse predic-
tions one can achieve at best when estimating Xj from other features. Thus one
may measure imputability through the value of a conditional entropy multiplied
by −1 in order to have larger values which correspond to better imputability.
Hence we define the information imputability as a value of −H(Xj |X−(j)).

The process of multiple feature imputation is now exactly the same as it was
using linear imputability. One first imputes the feature with the largest informa-
tion imputability. The only difference is that in the second and all subsequent
steps the recalculation does not make sense since one is not able to get any
new information no matter what model will be used for the imputation. This
partially simplifies the process of imputation order selection.

On the other hand, the problem that strongly limits its practical usage is
the estimation of the conditional entropy. Even the most recently proposed es-
timators in [15, 23] suffer from the curse of dimensionality. This is due to the
fact that all these estimators are based on the k-NN approach introduced by
Kozachenko and Leonenko in [12]. As our numerical experiments indicate, the
method is limited to approximately five features depending on the underlying
joint distribution.

4 Experiments

Our experiments consist of the following steps. First the original dataset is di-
vided into a training part (70%) and a test part (30%). Several classification
models as well as all imputation methods are trained on the training part. The
imputation models are trained to impute in scenarios where each individual fea-
ture is missing and where randomly selected combinations of multiple features
are missing. The degree of missingness varies from 10% to 50%. Finally, an eval-
uation of the accuracy of all classification models combined with all imputation
methods is performed on the test dataset.

4.1 Settings and Parameters of Imputation Methods

Experiments were done using various settings. In order to keep the report short
we present only those with satisfying results. All experiments were implemented
in Python 3.

The k-NN imputation (knn) was implemented using the fancyimpute li-
brary1. A missing value is imputed by sample mean of the values of its neighbors
weighted proportionally to their distances. In the case where multiple features
are missing we impute all missing values at once (per row). In the presented
results the hyper-parameter k is always taken as k = 5. This value was chosen
based on preliminary experiments and with respect to computational time.

1 Fancyimpute repository: https://github.com/iskandr/fancyimpute
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For the MICE method (mice) we also used the fancyimpute library. The
parameter setup was inspired by [4] and we chose the number of imputations to
be 150, the internal imputation model to be a Bayesian ridge regression, and the
multiple imputed values to be pooled using the mean.

Linear regression imputation was implemented using the scikit-learn li-
brary2 [18]. We tested two scenarios within the case when multiple features were
missing. The first scenario was based on the linear imputability (linreg-li) and
an iterative approach (linreg-iter) which corresponds to chained equations in
MICE. This approach repeats two steps. First, every single missing value is im-
puted from the known features only. Second, all the imputed values are iteratively
re-imputed from other features (all features except the one being imputed).

The MLP imputation is implemented using the scikit-learn library in
two scenarios. The first (mlp) imputes all missing features at once and the
second (mlp-li) imputes subsequently based on linear imputability. The hyper-
parameters of MLP (learning rate, numbers and sizes of hidden layers, activation
function, number of training epochs) were tuned using randomized search. The
XGBT was implemented using the xgboost library3 in two scenarios. The first
(xgb-li) is an analogy to mlp-li and the second (xgb-iter) to linreg-iter. The hyper-
parameters (learning rate, number of estimators, max depth of trees) were again
tuned using randomized search.

The multiple features subsequent imputation scenario using information im-
putability is not presented here since in preliminary experiments it does not
bring any benefits over linear imputability.

4.2 Evaluation

Imputation methods were evaluated using six binary classification models: k-
NN, MLP, logistic regression (LR), XGBT, random forest (RF), and naive Bayes
(NB), where LR, RF, and NB were provided by the scikit-learn library. We
again used the randomized search algorithm to get classifier hyper-parameter
configurations for each dataset.

First, we trained all classification models and measured their performance on
the full test dataset (no missing features) (see Table 1 for results). Second, we
combined them with imputation methods. We then measured the accuracies of
all classification models on the imputed test dataset. Finally, we calculated the
imputation performances as changes with respect to the accuracies on the full
test dataset.

4.3 Datasets

We use both artificial and real datasets which are presented in Table 1. All
datasets have continuous features and binary target labels. All datasets contain

2 Scikit-learn repository: https://github.com/scikit-learn/scikit-learn
3 XGBoost repository: https://github.com/dmlc/xgboost
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Table 1: Details of datasets with corresponding classification model accuracies.
The number of features (# feat.) does not include the target label. The name
ds a b c stands for an artificial dataset where a is the number of features, b is
the number of informative features, and c is the number of redundant features.
Bold values of accuracy correspond to the two best models for a given dataset.

Name Type # feat. # records LR MLP k-NN NB XGBT RF
Cancer [13] real 9 699 0.966 0.956 0.961 0.941 0.961 0.966
MAGIC [13] real 10 19020 0.789 0.829 0.825 0.726 0.869 0.857

Wine [13] real 11 4898 0.751 0.682 0.696 0.696 0.786 0.773
Spambase [1] real 57 4597 0.912 0.943 0.783 0.834 0.930 0.932
Ringnorm [1] artificial 20 7400 0.762 0.817 0.679 0.979 0.945 0.936
Twonorm [1] artificial 20 7400 0.980 0.978 0.968 0.980 0.980 0.952

ds 10 7 3 artificial 10 4000 0.836 0.990 0.971 0.869 0.980 0.973
ds 20 14 6 artificial 20 4000 0.839 0.992 0.959 0.818 0.968 0.977
ds 50 35 15 artificial 50 4000 0.886 0.995 0.943 0.861 0.975 0.919
ds 100 70 30 artificial 100 4000 0.819 0.975 0.878 0.790 0.819 0.792

complete data without missing values. We assume all features are in a suitable
form for the classification of the target label.

The real Wine Quality dataset originally contains ten target classes that
were symmetrically merged in order to have a binary classification task. The ar-
tificial datasets were generated using the make classification method in the
scikit-learn library. They contain informative and redundant features. Infor-
mative features are drawn independently from the standard normal distribution.
Redundant features are generated as random linear combinations of the informa-
tive features. A noise drawn from a centered normal distribution with variance
0.1 is added to each feature.

5 Results of Experiments

Results of the single feature imputation are shown in Table 2, where we present
measured accuracy changes using the sample mean ± the sample standard de-
viation. The top 10% of imputation methods for each dataset and classification
model are indicated by the value printed in bold. Two typical scenarios are shown
in more details in Figure 1.

Results of the multiple features imputation for two best models on each
dataset are presented in Tables 3 and 4 for real and artificial datasets, respec-
tively. Visualizations of typical results are given in Figure 2 for a selected real
dataset and in Figure 3 for a selected artificial dataset. Box plots are used to show
the results for different imputation methods and portions of missing features.

5.1 Discussion

The results are highly dataset specific. For some datasets (Cancer, all ds ...
datasets) the decreases in the classification accuracy were only minor, less than
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(a) LR model on Twonorm dataset
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(b) XGBT model on MAGIC dataset

Fig. 1: Change in classification accuracy under all imputation methods for single
missing features. Each feature is linked between different methods using a line.
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Fig. 2: Classification accuracy change of MLP model on real dataset Spambase.

1%, even for 50% of missing values. On the other hand for some datasets
(MAGIC, Ringnorm) the decrease is much greater, 1%− 2% for 10% of missing
features and 10% for 50% of missing features.

From the imputation methods point of view MICE usually performs the best
on real datasets. On artificial datasets it places among the best methods only
for the Ringnorm and ds 10 7 3 datasets. Its results often have smaller variance
than results of other methods.

Results comparative to MICE were often reached using linear regression im-
putation (specifically linreg-li). Especially on artificial datasets it usually per-
forms the best. In most cases either the MICE or linear regression are the best
methods.

XGBT and MLP performances are much more dataset dependent. However,
their performance is usually not comparable to the best method and it also
strongly depends on what classification model is used and how many features
are missing. See e.g. MAGIC dataset where MLP is performing well for 30%
of missing features and performing badly for 10% of missing features or the
Spambase where a similar discrepancy holds for XGBT. Finally, the k-NN almost
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Fig. 3: Classification accuracy change of XGBT model on artificial dataset Ring-
norm.

always performs worse than other methods. The only exception is the ds 20 14 6
dataset with random forest classification model.

Considering the amount of missing features it seems that results depend
on the portion of missing features and not on the absolute number of missing
features.

When we restrict ourselves to one missing feature reconstruction, the results
are again highly dataset specific. For Cancer, Spambase, and ds ... datasets the
accuracy after imputation actually increases. This is probably due to the fact
that original classification models were overfitted and the proper imputation
enables them to generalize better. On the other hand for the MAGIC dataset
the performance decrease was around 1%− 2%.

One can summarize that the best imputation methods were MICE, which
performs well on real datasets and linear regression, which performs well also
on artificial datasets. In some cases comparable results were reached by XGBT
and MLP imputation. Again, only the k-NN imputation is not performing well
enough.

If one analyzes all classification models (not just the two best), then classifi-
cation models with higher accuracy perform worse with imputed datasets than
less accurate models, as can be expected. The classification accuracy decreases
only slightly while using imputed data in a model with low accuracy.

6 Conclusion

We focused on missing entire features reconstruction and its impact on the clas-
sification accuracy of an already learned model. We deal with traditional impu-
tation methods: linear regression, k-NN, and MICE, as well as modern methods:
MLP, and XGBT. We also proposed two methods, linear and information im-
putability, for the ordering of missing features when more of them are imputed
sequentially. However, in practice information imputability is hard to estimate
and does not provide satisfying results.
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Comprehensive experiments are presented on four real and six artificial datasets.
The imputation influence is studied on six commonly used binary classification
models: random forest, logistic regression, k-NN, naive Bayes, MLP, and XGBT.
The amount of missing data varies between 10% and 50%.

As our results indicate MICE and linear regression are generally good im-
puters regardless of the amount of missingness or the classification model used.
This can be seen as some kind of generality when the used classification model
is unknown.

As was also shown modern imputation methods MLP and XGBT did not
perform as well as expected. They rarely perform among the top methods. Their
performance is often one of the lowest. This result is surprising since in many
current machine learning tasks these methods are one of the best.

The experimental results of this work shed more light on the applicabil-
ity of state-of-the-art imputation methods on data and their ability to recon-
struct missing entire features. The study is also important thanks to its scope
of datasets, methods and portions of missing data (up to 50%).
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3. Á. Arroyo, Á. Herrero, V. Tricio, E. Corchado, and M. Woźniak. Neural models for
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Table 2: Mean accuracy changes in percentages (± standard deviation) for single
missing feature imputation. Classification methods are shown in the last six
columns and imputations methods are given in the second column.

Dataset Method LR MLP k-NN NB XGBT RF

Cancer knn -0.16 ± 0.35 0.05 ± 0.29 0.05 ± 0.86 0.44 ± 0.38 0.33 ± 0.42 0.44 ± 0.38
Cancer linreg-iter -0.16 ± 0.35 0.05 ± 0.29 −0.0 ± 1.07 0.44 ± 0.38 0.33 ± 0.42 0.44 ± 0.29
Cancer linreg-li -0.16 ± 0.35 0.05 ± 0.29 0.00 ± 1.07 0.44 ± 0.38 0.33 ± 0.45 0.44 ± 0.29
Cancer mice −0.22 ± 0.61 0.27 ± 0.5 −0.22 ± 0.89 0.65 ± 0.42 0.11 ± 0.41 0.44 ± 0.52
Cancer mlp −0.38 ± 0.73 0.0 ± 0.6 0.11 ± 1.03 0.71 ± 0.55 0.16 ± 0.49 0.33 ± 0.42
Cancer mlp-li −0.38 ± 0.48 0.22 ± 0.61 0.11 ± 0.8 0.38 ± 0.59 −0.11 ± 0.77 0.11 ± 0.41
Cancer xgb-iter -0.11 ± 0.22 0.22 ± 0.55 0.11 ± 0.59 0.6 ± 0.33 0.54 ± 0.52 0.38 ± 0.33
Cancer xgb-li -0.16 ± 0.35 0.11 ± 0.59 0.11 ± 0.64 0.6 ± 0.22 0.38 ± 0.48 0.33 ± 0.35

Wine knn −1.38 ± 2.33 −0.07 ± 1.0 −1.19 ± 1.97 −0.37 ± 1.01 −1.86 ± 1.52 −1.1 ± 0.91
Wine linreg-iter -0.45 ± 0.97 0.2 ± 1.01 −0.87 ± 2.1 -0.1 ± 0.59 −1.39 ± 1.22 −0.74 ± 1.0
Wine linreg-li -0.45 ± 0.97 0.2 ± 1.01 −0.87 ± 2.1 -0.1 ± 0.59 −1.39 ± 1.22 −0.74 ± 1.0
Wine mice −0.77 ± 1.65 −0.19 ± 0.67 -0.35 ± 0.72 −0.48 ± 0.6 -0.79 ± 0.98 -0.54 ± 0.55
Wine mlp −3.17 ± 5.3 −0.28 ± 0.73 −1.46 ± 2.71 −2.23 ± 4.94 −3.32 ± 3.44 −1.84 ± 1.76
Wine mlp-li −2.2 ± 2.98 −0.24 ± 0.55 −1.78 ± 2.98 −2.52 ± 6.64 −2.7 ± 2.55 −1.74 ± 1.84
Wine xgb-iter −1.68 ± 3.92 0.28 ± 0.7 −0.57 ± 1.35 -1.33 ± 3.52 −2.43 ± 2.97 −1.02 ± 2.35
Wine xgb-li −1.71 ± 4.19 0.22 ± 0.65 −0.67 ± 1.47 −1.35 ± 3.51 −2.62 ± 3.13 −1.1 ± 2.3

MAGIC knn −0.74 ± 1.94 −1.18 ± 2.58 −1.44 ± 2.53 0.01 ± 0.54 −2.0 ± 2.11 −1.84 ± 2.49
MAGIC linreg-iter −0.63 ± 1.66 -1.12 ± 2.56 -1.27 ± 2.2 −0.11 ± 0.6 −2.03 ± 2.48 −1.95 ± 2.72
MAGIC linreg-li −0.63 ± 1.66 -1.12 ± 2.56 -1.27 ± 2.2 −0.11 ± 0.6 −2.03 ± 2.48 −1.95 ± 2.72
MAGIC mice −0.86 ± 2.13 −1.24 ± 2.86 −1.5 ± 2.68 −0.1 ± 0.46 -1.88 ± 2.42 -1.36 ± 2.44
MAGIC mlp −0.66 ± 1.71 −1.2 ± 2.73 −1.31 ± 2.34 −0.07 ± 0.64 −2.25 ± 2.89 −1.96 ± 3.07
MAGIC mlp-li −0.67 ± 1.72 -1.17 ± 2.65 -1.26 ± 2.26 −0.11 ± 0.59 −2.11 ± 2.77 −1.83 ± 2.83
MAGIC xgb-iter -0.36 ± 1.31 −1.49 ± 2.66 −0.95 ± 1.66 −0.33 ± 0.99 −2.1 ± 2.65 −2.37 ± 3.32
MAGIC xgb-li -0.38 ± 1.3 −1.63 ± 2.95 −0.99 ± 1.67 −0.32 ± 0.98 −2.17 ± 2.74 −2.43 ± 3.37

Spambase knn −0.15 ± 0.64 −0.16 ± 0.71 −0.36 ± 1.69 -0.27 ± 1.22 0.08 ± 4.99 −0.7 ± 2.75
Spambase linreg-iter −0.11 ± 0.66 −0.26 ± 1.18 −0.34 ± 1.76 -0.3 ± 1.02 −0.45 ± 1.84 −0.24 ± 0.79
Spambase linreg-li −0.11 ± 0.66 −0.26 ± 1.18 −0.34 ± 1.76 -0.3 ± 1.02 −0.45 ± 1.84 −0.24 ± 0.79
Spambase mice −0.18 ± 0.46 −0.18 ± 0.4 -0.03 ± 0.35 -0.1 ± 0.43 1.03 ± 1.12 -0.2 ± 0.78
Spambase mlp −0.38 ± 0.99 −0.49 ± 1.65 −0.17 ± 0.93 −3.6 ± 6.18 −0.55 ± 2.23 −0.36 ± 1.28
Spambase mlp-li −0.16 ± 0.41 −0.11 ± 0.49 −0.18 ± 0.87 −1.87 ± 3.25 −0.5 ± 2.1 −0.33 ± 1.16
Spambase xgb-iter 0.01 ± 0.17 0.01 ± 0.24 −0.13 ± 0.64 -0.09 ± 0.96 −0.77 ± 4.27 -0.19 ± 0.9
Spambase xgb-li 0.01 ± 0.21 0.01 ± 0.23 −0.08 ± 0.46 -0.13 ± 0.93 −0.78 ± 4.28 −0.24 ± 0.97

Ringnorm knn −0.65 ± 0.32 −0.47 ± 0.47 −1.32 ± 0.37 −0.5 ± 0.17 −0.4 ± 0.21 −0.16 ± 0.19
Ringnorm linreg-iter −0.58 ± 0.36 −0.49 ± 0.45 −1.34 ± 0.35 −0.5 ± 0.16 −0.42 ± 0.22 −0.15 ± 0.21
Ringnorm linreg-li −0.58 ± 0.36 −0.49 ± 0.45 −1.34 ± 0.35 −0.5 ± 0.16 −0.42 ± 0.22 −0.15 ± 0.21
Ringnorm mice −0.53 ± 0.43 -0.14 ± 0.55 0.08 ± 0.31 −0.46 ± 0.15 −0.43 ± 0.18 −0.16 ± 0.17
Ringnorm mlp −0.77 ± 0.37 −0.68 ± 0.45 −0.8 ± 0.32 -0.41 ± 0.17 -0.39 ± 0.21 -0.14 ± 0.2
Ringnorm mlp-li −0.75 ± 0.45 −0.72 ± 0.54 −0.74 ± 0.33 −0.43 ± 0.14 -0.39 ± 0.21 -0.14 ± 0.22
Ringnorm xgb-iter -0.3 ± 0.36 -0.2 ± 0.5 −1.28 ± 0.35 −0.5 ± 0.15 −0.4 ± 0.22 −0.16 ± 0.2
Ringnorm xgb-li -0.3 ± 0.43 −0.21 ± 0.51 −1.3 ± 0.35 −0.49 ± 0.15 -0.38 ± 0.23 −0.16 ± 0.21

Twonorm knn -0.42 ± 0.18 −0.43 ± 0.21 -0.1 ± 0.19 -0.38 ± 0.19 -0.43 ± 0.18 −0.12 ± 0.28
Twonorm linreg-iter -0.42 ± 0.21 -0.42 ± 0.18 -0.11 ± 0.18 -0.37 ± 0.2 -0.41 ± 0.19 -0.08 ± 0.33
Twonorm linreg-li -0.42 ± 0.21 -0.42 ± 0.18 -0.11 ± 0.18 -0.37 ± 0.2 -0.41 ± 0.19 -0.08 ± 0.33
Twonorm mice −0.58 ± 0.21 −0.54 ± 0.21 −0.21 ± 0.18 −0.56 ± 0.2 −0.55 ± 0.21 −0.15 ± 0.23
Twonorm mlp −0.45 ± 0.23 −0.43 ± 0.22 -0.1 ± 0.22 −0.4 ± 0.23 -0.42 ± 0.23 -0.09 ± 0.27
Twonorm mlp-li −0.47 ± 0.19 −0.46 ± 0.25 -0.11 ± 0.22 −0.45 ± 0.19 −0.45 ± 0.19 −0.14 ± 0.24
Twonorm xgb-iter -0.42 ± 0.19 -0.41 ± 0.19 −0.17 ± 0.2 -0.39 ± 0.22 -0.41 ± 0.21 −0.33 ± 0.25
Twonorm xgb-li -0.41 ± 0.2 -0.42 ± 0.2 −0.16 ± 0.19 -0.39 ± 0.2 -0.43 ± 0.22 −0.28 ± 0.29

ds 10 7 3 knn 0.03 ± 0.13 -0.09 ± 0.12 0.07 ± 0.18 −0.04 ± 0.14 −0.17 ± 0.17 −0.29 ± 0.19
ds 10 7 3 linreg-iter 0.05 ± 0.09 -0.07 ± 0.1 0.13 ± 0.14 −0.03 ± 0.11 -0.14 ± 0.12 −0.29 ± 0.18
ds 10 7 3 linreg-li 0.05 ± 0.09 -0.07 ± 0.1 0.13 ± 0.14 −0.03 ± 0.11 -0.14 ± 0.12 −0.29 ± 0.18
ds 10 7 3 mice −0.02 ± 0.17 −0.19 ± 0.23 −0.02 ± 0.18 0.07 ± 0.13 -0.1 ± 0.14 0.05 ± 0.14
ds 10 7 3 mlp 0.03 ± 0.12 -0.11 ± 0.11 0.11 ± 0.16 −0.06 ± 0.2 -0.15 ± 0.13 −0.21 ± 0.12
ds 10 7 3 mlp-li 0.04 ± 0.15 -0.08 ± 0.1 0.1 ± 0.16 −0.03 ± 0.15 −0.18 ± 0.17 −0.26 ± 0.17
ds 10 7 3 xgb-iter −0.19 ± 0.39 −0.56 ± 0.6 −0.08 ± 0.38 −0.19 ± 0.67 −0.71 ± 0.91 −0.55 ± 0.53
ds 10 7 3 xgb-li −0.15 ± 0.21 −0.55 ± 0.5 −0.11 ± 0.38 −0.07 ± 0.49 −0.62 ± 0.58 −0.43 ± 0.47

ds 20 14 6 knn -0.24 ± 0.21 -0.03 ± 0.07 −0.03 ± 0.14 −0.02 ± 0.14 −0.12 ± 0.17 -0.06 ± 0.09
ds 20 14 6 linreg-iter -0.25 ± 0.22 -0.01 ± 0.05 -0.01 ± 0.13 0.03 ± 0.12 −0.09 ± 0.15 -0.06 ± 0.09
ds 20 14 6 linreg-li -0.25 ± 0.22 -0.01 ± 0.05 -0.01 ± 0.13 0.03 ± 0.12 −0.09 ± 0.15 -0.06 ± 0.09
ds 20 14 6 mice −0.58 ± 0.42 −0.16 ± 0.18 −0.05 ± 0.17 −0.15 ± 0.24 -0.01 ± 0.15 -0.06 ± 0.14
ds 20 14 6 mlp -0.29 ± 0.25 -0.02 ± 0.06 0.01 ± 0.12 0.0 ± 0.14 −0.07 ± 0.13 -0.07 ± 0.09
ds 20 14 6 mlp-li -0.24 ± 0.27 -0.01 ± 0.05 −0.03 ± 0.14 −0.03 ± 0.1 −0.08 ± 0.11 -0.07 ± 0.12
ds 20 14 6 xgb-iter −0.7 ± 0.64 −0.21 ± 0.25 −0.22 ± 0.22 −0.23 ± 0.37 −0.22 ± 0.21 −0.21 ± 0.27
ds 20 14 6 xgb-li −0.76 ± 0.7 −0.23 ± 0.29 −0.18 ± 0.24 −0.26 ± 0.39 −0.27 ± 0.3 −0.22 ± 0.27

ds 50 35 15 knn −0.12 ± 0.14 -0.02 ± 0.04 −0.07 ± 0.08 0.04 ± 0.11 -0.02 ± 0.05 −0.05 ± 0.11
ds 50 35 15 linreg-iter -0.06 ± 0.09 -0.01 ± 0.02 -0.02 ± 0.04 0.03 ± 0.07 0.0 ± 0.04 -0.02 ± 0.05
ds 50 35 15 linreg-li -0.06 ± 0.09 -0.01 ± 0.02 -0.02 ± 0.04 0.03 ± 0.07 0.0 ± 0.04 -0.02 ± 0.05
ds 50 35 15 mice −0.09 ± 0.15 −0.15 ± 0.14 −0.26 ± 0.22 −0.06 ± 0.15 −0.03 ± 0.15 −0.05 ± 0.14
ds 50 35 15 mlp −0.08 ± 0.12 -0.02 ± 0.04 -0.04 ± 0.06 0.05 ± 0.07 -0.01 ± 0.07 -0.03 ± 0.09
ds 50 15 35 mlp-li −0.09 ± 0.13 -0.01 ± 0.04 −0.05 ± 0.06 0.05 ± 0.08 0.0 ± 0.06 -0.01 ± 0.08
ds 50 35 15 xgb-iter −0.15 ± 0.2 −0.12 ± 0.13 −0.21 ± 0.23 −0.04 ± 0.21 −0.12 ± 0.17 −0.13 ± 0.22
ds 50 35 15 xgb-li −0.18 ± 0.26 −0.13 ± 0.14 −0.24 ± 0.22 −0.05 ± 0.26 −0.15 ± 0.23 −0.19 ± 0.28

ds 100 70 30 knn -0.3 ± 0.99 −0.05 ± 0.07 −0.07 ± 0.12 −0.04 ± 0.14 0.03 ± 0.16 -0.02 ± 0.08
ds 100 70 30 linreg-iter 0.0 ± 0.14 0.0 ± 0.01 -0.02 ± 0.06 0.0 ± 0.04 0.01 ± 0.05 -0.01 ± 0.06
ds 100 70 30 linreg-li 0.0 ± 0.14 0.0 ± 0.01 -0.02 ± 0.06 0.0 ± 0.04 0.01 ± 0.05 -0.01 ± 0.06
ds 100 70 30 mice −1.76 ± 1.85 −0.25 ± 0.18 −0.09 ± 0.17 0.02 ± 0.18 −0.14 ± 0.22 -0.02 ± 0.12
ds 100 70 30 mlp -0.03 ± 0.35 −0.05 ± 0.07 −0.05 ± 0.09 0.0 ± 0.09 0.01 ± 0.08 -0.01 ± 0.1
ds 100 70 30 mlp-li 0.03 ± 0.32 −0.05 ± 0.07 −0.05 ± 0.1 0.01 ± 0.08 −0.01 ± 0.1 -0.01 ± 0.06
ds 100 70 30 xgb-iter −3.67 ± 3.86 −0.22 ± 0.18 −0.13 ± 0.29 −0.05 ± 0.23 −0.16 ± 0.31 −0.08 ± 0.18
ds 100 70 30 xgb-li −3.58 ± 4.25 −0.22 ± 0.18 −0.15 ± 0.27 −0.06 ± 0.22 −0.15 ± 0.32 −0.08 ± 0.19
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Table 3: Mean accuracy changes shown in percentages (± standard deviation)
on real datasets with missingness from 10% up to 50% where only the two best
classification models for each dataset are shown.

Dataset Model Method 10% 20% 30% 40% 50%

Cancer LR knn −0.16 ± 0.35 −0.37 ± 0.31 −0.49 ± 0.45 −0.66 ± 0.7 −0.98 ± 0.95
Cancer LR linreg-iter −0.16 ± 0.35 −0.29 ± 0.4 −0.43 ± 0.56 −0.68 ± 0.7 −1.06 ± 1.01
Cancer LR linreg-li −0.16 ± 0.35 -0.27 ± 0.34 -0.37 ± 0.47 −0.47 ± 0.72 −1.1 ± 0.98
Cancer LR mice −0.22 ± 0.61 -0.27 ± 0.63 −0.61 ± 0.76 −0.98 ± 0.99 −1.32 ± 1.1
Cancer LR mlp −0.38 ± 0.73 −0.44 ± 0.61 −0.63 ± 0.69 −0.81 ± 1.03 −1.14 ± 1.06
Cancer LR mlp-li −0.38 ± 0.48 −0.59 ± 0.49 −0.74 ± 0.74 −1.05 ± 0.82 −1.54 ± 1.74
Cancer LR xgb-iter -0.11 ± 0.22 −0.32 ± 0.37 −0.54 ± 0.5 −0.47 ± 0.61 −1.0 ± 1.15
Cancer LR xgb-li −0.16 ± 0.35 -0.25 ± 0.46 −0.56 ± 0.83 -0.29 ± 0.64 -0.78 ± 0.99

Cancer RF knn 0.44 ± 0.38 0.49 ± 0.45 0.22 ± 0.77 0.12 ± 0.91 −0.69 ± 1.52
Cancer RF linreg-iter 0.44 ± 0.29 0.5 ± 0.41 0.33 ± 0.66 −0.03 ± 0.85 -0.63 ± 1.24
Cancer RF linreg-li 0.44 ± 0.29 0.39 ± 0.41 0.42 ± 0.75 0.17 ± 0.8 -0.66 ± 1.14
Cancer RF mice 0.44 ± 0.52 0.37 ± 0.67 −0.2 ± 0.86 −0.83 ± 1.35 −1.23 ± 0.95
Cancer RF mlp 0.33 ± 0.42 0.1 ± 0.8 0.02 ± 0.8 −0.46 ± 1.0 −1.08 ± 1.35
Cancer RF mlp-li 0.11 ± 0.41 −0.12 ± 0.71 −0.47 ± 1.14 −1.3 ± 1.57 −2.72 ± 4.01
Cancer RF xgb-iter 0.38 ± 0.33 0.29 ± 0.56 0.12 ± 0.61 −0.12 ± 0.79 -0.44 ± 1.1
Cancer RF xgb-li 0.33 ± 0.35 0.42 ± 0.43 0.22 ± 0.83 0.1 ± 0.82 -0.66 ± 0.7

Wine XGBT knn −1.86 ± 1.52 −3.21 ± 1.25 −5.57 ± 2.36 −7.42 ± 2.4 −9.23 ± 2.81
Wine XGBT linreg-iter −1.39 ± 1.22 −2.9 ± 1.53 −3.36 ± 1.66 −6.78 ± 2.44 −7.61 ± 2.59
Wine XGBT linreg-li −1.39 ± 1.22 −2.94 ± 1.29 −4.54 ± 2.5 −5.95 ± 2.4 −7.5 ± 3.08
Wine XGBT mice -0.79 ± 0.98 -1.15 ± 0.97 -2.45 ± 1.95 -3.75 ± 2.25 -4.13 ± 2.67
Wine XGBT mlp −3.42 ± 2.67 −5.49 ± 3.86 −7.69 ± 4.55 −10.75 ± 5.12 −13.25 ± 5.57
Wine XGBT mlp-li −3.51 ± 3.78 −5.91 ± 3.88 −8.4 ± 4.1 −10.33 ± 4.37 −12.29 ± 4.97
Wine XGBT xgb-iter −2.43 ± 2.97 −5.55 ± 4.53 −6.72 ± 5.75 −9.57 ± 5.51 −14.86 ± 6.54
Wine XGBT xgb-li −2.62 ± 3.13 −5.07 ± 4.38 −8.17 ± 4.82 −9.75 ± 4.31 −11.57 ± 5.83

Wine RF knn −1.1 ± 0.91 −1.94 ± 0.78 −3.61 ± 1.44 −4.72 ± 1.63 −5.8 ± 1.73
Wine RF linreg-iter −0.74 ± 1.0 −1.5 ± 1.19 -1.73 ± 1.12 −3.88 ± 1.8 −5.29 ± 1.83
Wine RF linreg-li −0.74 ± 1.0 −1.52 ± 1.2 −2.7 ± 2.0 −3.84 ± 1.73 −5.49 ± 2.6
Wine RF mice -0.54 ± 0.55 -0.95 ± 0.61 -1.79 ± 0.99 -2.64 ± 1.59 -2.87 ± 1.71
Wine RF mlp −1.69 ± 1.65 −2.95 ± 2.23 −5.26 ± 2.47 −7.24 ± 2.05 −8.7 ± 1.82
Wine RF mlp-li −1.74 ± 1.5 −3.32 ± 1.86 −5.12 ± 2.03 −6.12 ± 2.21 −8.44 ± 1.76
Wine RF xgb-iter −1.02 ± 2.35 −3.3 ± 3.05 −4.5 ± 3.26 −6.14 ± 2.53 −8.0 ± 2.94
Wine RF xgb-li −1.1 ± 2.3 −2.65 ± 3.01 −5.33 ± 3.39 −6.22 ± 2.61 −7.58 ± 3.26

MAGIC XGBT knn -2.0 ± 2.11 −3.05 ± 2.26 -5.3 ± 3.07 −8.06 ± 4.47 −10.71 ± 4.19
MAGIC XGBT linreg-iter -2.03 ± 2.48 −4.19 ± 3.52 −6.28 ± 4.82 −9.99 ± 6.0 −12.82 ± 5.76
MAGIC XGBT linreg-li -2.03 ± 2.48 −4.68 ± 3.86 −6.77 ± 4.91 −9.2 ± 6.2 −11.25 ± 4.96
MAGIC XGBT mice -2.03 ± 2.52 -2.51 ± 2.25 -4.78 ± 3.39 -7.02 ± 4.09 -8.52 ± 3.55
MAGIC XGBT mlp −5.46 ± 7.85 −3.94 ± 2.96 -4.99 ± 3.39 −9.59 ± 5.69 −11.77 ± 7.9
MAGIC XGBT mlp-li −2.26 ± 2.9 −4.25 ± 3.59 −6.95 ± 4.43 -7.77 ± 4.76 -8.59 ± 4.55
MAGIC XGBT xgb-iter −3.99 ± 6.05 −4.94 ± 6.29 −10.53 ± 7.01 −14.97 ± 7.45 −15.49 ± 9.18
MAGIC XGBT xgb-li -2.34 ± 2.85 −3.98 ± 3.18 −9.45 ± 6.46 −9.13 ± 9.71 −16.31 ± 13.06

MAGIC RF knn −2.7 ± 2.49 −3.76 ± 2.54 −5.79 ± 3.19 −8.37 ± 4.33 −10.7 ± 3.81
MAGIC RF linreg-iter -1.95 ± 2.72 −4.77 ± 3.4 −6.65 ± 4.32 −10.73 ± 5.42 −12.84 ± 4.58
MAGIC RF linreg-li -1.95 ± 2.72 −5.38 ± 4.0 −7.64 ± 4.75 −9.47 ± 5.73 −11.53 ± 4.25
MAGIC RF mice −2.36 ± 2.54 -2.73 ± 2.19 -4.82 ± 3.27 -6.84 ± 4.05 -8.42 ± 3.55
MAGIC RF mlp −5.85 ± 7.19 −4.41 ± 3.1 -5.23 ± 3.19 −9.62 ± 5.14 −11.25 ± 6.48
MAGIC RF mlp-li −2.89 ± 2.92 −4.71 ± 3.7 −7.55 ± 4.59 −8.23 ± 4.8 -9.08 ± 4.46
MAGIC RF xgb-iter −5.06 ± 5.88 −5.8 ± 6.55 −11.75 ± 6.02 −16.19 ± 6.39 −16.99 ± 8.59
MAGIC RF xgb-li −3.57 ± 3.44 −5.61 ± 3.94 −10.93 ± 6.34 −9.92 ± 8.83 −17.16 ± 11.48

Spambase MLP knn −1.55 ± 1.75 −3.72 ± 3.34 −7.87 ± 4.55 −10.01 ± 4.39 −13.55 ± 6.36
Spambase MLP linreg-iter −2.24 ± 2.56 −3.36 ± 2.43 −4.91 ± 2.72 −6.25 ± 2.61 −8.34 ± 3.12
Spambase MLP linreg-li −2.24 ± 2.56 −2.89 ± 2.39 −5.36 ± 2.7 −8.22 ± 4.09 −8.76 ± 3.28
Spambase MLP mice −1.34 ± 1.24 −2.33 ± 1.39 −4.67 ± 1.78 -4.96 ± 2.36 -6.56 ± 2.31
Spambase MLP mlp −3.44 ± 5.06 −7.17 ± 5.49 −9.64 ± 6.78 −11.38 ± 7.33 −13.9 ± 8.77
Spambase MLP mlp-li −3.54 ± 3.47 −6.04 ± 6.09 −7.71 ± 4.71 −10.96 ± 5.02 −13.75 ± 7.69
Spambase MLP xgb-iter -0.65 ± 0.62 −1.95 ± 1.31 −6.61 ± 6.25 −7.33 ± 5.25 −11.99 ± 7.68
Spambase MLP xgb-li −0.89 ± 0.87 -1.54 ± 1.57 -4.06 ± 3.57 −6.41 ± 4.59 −7.5 ± 3.02

Spambase RF knn −5.43 ± 6.99 −10.52 ± 9.7 −15.72 ± 8.41 −19.97 ± 8.63 −22.17 ± 9.06
Spambase RF linreg-iter −2.05 ± 2.29 -3.07 ± 2.57 -4.97 ± 3.51 −7.46 ± 4.47 −11.45 ± 3.65
Spambase RF linreg-li −2.05 ± 2.29 −3.57 ± 3.32 -5.01 ± 2.55 −8.91 ± 5.39 −9.09 ± 3.73
Spambase RF mice -1.64 ± 2.15 -2.52 ± 2.98 -5.05 ± 2.54 -4.95 ± 3.19 -5.96 ± 3.0
Spambase RF mlp −4.95 ± 5.32 −7.27 ± 5.49 −12.03 ± 8.2 −13.83 ± 6.76 −18.68 ± 8.24
Spambase RF mlp-li −3.58 ± 3.87 −6.24 ± 6.33 −10.54 ± 7.14 −13.37 ± 8.97 −18.26 ± 8.02
Spambase RF xgb-iter -1.37 ± 2.08 −4.54 ± 7.02 −10.54 ± 11.71 −17.62 ± 10.25 −21.63 ± 9.67
Spambase RF xgb-li −3.71 ± 5.42 −3.89 ± 5.3 −8.38 ± 8.34 −14.68 ± 11.33 −14.78 ± 6.69
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Table 4: Mean accuracy changes shown in percentages (± standard deviation)
on artificial datasets with missingness from 10% up to 50% where only the two
best classification models for each dataset are shown.

Dataset Model Method 10% 20% 30% 40% 50%

Ringnorm NB knn −1.16 ± 0.25 −3.56 ± 0.3 −7.31 ± 0.53 −13.01 ± 0.58 −20.59 ± 0.65
Ringnorm NB linreg-iter −1.81 ± 2.66 −3.51 ± 0.36 −7.41 ± 0.36 −13.25 ± 0.42 −20.92 ± 0.49
Ringnorm NB linreg-li −1.23 ± 0.27 −3.46 ± 0.39 −7.75 ± 1.45 −13.0 ± 1.55 −20.96 ± 0.45
Ringnorm NB mice -1.03 ± 0.24 −3.04 ± 0.25 -5.8 ± 0.45 -9.3 ± 0.4 -16.98 ± 3.92
Ringnorm NB mlp −1.16 ± 0.16 −3.34 ± 0.94 −6.83 ± 0.46 −12.51 ± 1.67 −19.58 ± 0.61
Ringnorm NB mlp-li −1.87 ± 3.69 -2.95 ± 0.33 −6.2 ± 1.34 −11.0 ± 0.4 −18.01 ± 0.68
Ringnorm NB xgb-iter −1.24 ± 0.27 −3.58 ± 0.41 −7.51 ± 0.37 −12.68 ± 2.7 −19.43 ± 4.62
Ringnorm NB xgb-li −1.21 ± 0.26 −3.42 ± 0.19 −7.18 ± 0.52 −13.05 ± 0.45 −20.54 ± 0.53

Ringnorm XGBT knn −1.0 ± 0.29 −2.38 ± 0.37 −4.91 ± 0.62 −8.32 ± 0.82 −12.05 ± 1.15
Ringnorm XGBT linreg-iter −1.34 ± 1.5 −2.54 ± 0.31 −4.91 ± 0.52 −8.12 ± 0.91 −12.42 ± 1.46
Ringnorm XGBT linreg-li −0.95 ± 0.28 −2.62 ± 0.36 −5.37 ± 0.88 −8.22 ± 1.44 −12.37 ± 1.05
Ringnorm XGBT mice −0.96 ± 0.29 -2.3 ± 0.33 -4.32 ± 0.53 -6.81 ± 0.59 -10.76 ± 1.9
Ringnorm XGBT mlp -0.92 ± 0.27 −2.48 ± 0.58 −4.57 ± 0.53 −7.71 ± 1.28 −11.4 ± 1.14
Ringnorm XGBT mlp-li −1.34 ± 1.97 −2.35 ± 0.41 −4.75 ± 0.9 −7.37 ± 0.83 −10.96 ± 1.1
Ringnorm XGBT xgb-iter -0.89 ± 0.23 -2.29 ± 0.38 −4.76 ± 0.51 −7.67 ± 1.77 −11.12 ± 2.74
Ringnorm XGBT xgb-li -0.89 ± 0.28 −2.38 ± 0.36 −4.85 ± 0.62 −7.88 ± 0.76 −12.28 ± 1.38

Twonorm LR knn −0.85 ± 0.28 −1.69 ± 0.35 −2.88 ± 0.39 −4.13 ± 0.35 -5.94 ± 0.58
Twonorm LR linreg-iter -0.71 ± 0.27 -1.43 ± 0.28 -2.57 ± 0.27 -4.08 ± 0.41 -5.84 ± 0.57
Twonorm LR linreg-li −0.78 ± 0.3 −1.69 ± 0.31 -2.61 ± 0.47 -3.97 ± 0.28 −6.03 ± 0.48
Twonorm LR mice −1.09 ± 0.27 −2.19 ± 0.4 −3.75 ± 0.46 −5.27 ± 0.43 −7.53 ± 0.65
Twonorm LR mlp −0.91 ± 0.15 −1.79 ± 0.26 −2.7 ± 0.27 -4.05 ± 0.56 -5.93 ± 0.52
Twonorm LR mlp-li −0.86 ± 0.25 −1.73 ± 0.26 −2.8 ± 0.34 −4.27 ± 0.42 −6.22 ± 0.53
Twonorm LR xgb-iter −0.78 ± 0.19 −1.66 ± 0.32 −3.0 ± 0.33 −4.4 ± 0.4 −6.92 ± 0.52
Twonorm LR xgb-li −0.93 ± 0.24 −1.74 ± 0.31 −2.75 ± 0.36 −4.25 ± 0.36 −6.49 ± 0.56

Twonorm XGBT knn −0.82 ± 0.29 −1.68 ± 0.37 −2.85 ± 0.36 −4.15 ± 0.36 -5.91 ± 0.6
Twonorm XGBT linreg-iter -0.73 ± 0.25 -1.45 ± 0.28 -2.58 ± 0.26 -4.05 ± 0.42 -5.82 ± 0.56
Twonorm XGBT linreg-li -0.75 ± 0.32 −1.65 ± 0.31 -2.6 ± 0.44 -3.96 ± 0.29 −6.02 ± 0.49
Twonorm XGBT mice −1.1 ± 0.27 −2.2 ± 0.37 −3.73 ± 0.46 −5.22 ± 0.45 −7.56 ± 0.65
Twonorm XGBT mlp −0.87 ± 0.17 −1.72 ± 0.26 −2.71 ± 0.23 -4.04 ± 0.54 -5.95 ± 0.52
Twonorm XGBT mlp-li −0.82 ± 0.21 −1.73 ± 0.26 −2.78 ± 0.34 −4.27 ± 0.42 −6.21 ± 0.53
Twonorm XGBT xgb-iter −0.8 ± 0.19 −1.66 ± 0.31 −2.98 ± 0.34 −4.36 ± 0.4 −6.95 ± 0.51
Twonorm XGBT xgb-li −0.92 ± 0.2 −1.71 ± 0.3 −2.73 ± 0.37 −4.25 ± 0.34 −6.53 ± 0.57

ds 10 7 3 MLP knn 0.25 ± 0.12 0.06 ± 0.26 −1.63 ± 1.78 −9.15 ± 3.16 −13.8 ± 2.29
ds 10 7 3 MLP linreg-iter −0.07 ± 0.1 -0.03 ± 0.53 -0.47 ± 1.02 −5.83 ± 2.68 −11.12 ± 3.84
ds 10 7 3 MLP linreg-li −0.07 ± 0.1 0.01 ± 0.5 −1.3 ± 2.39 −6.02 ± 2.48 −11.16 ± 4.06
ds 10 7 3 MLP mice 0.15 ± 0.23 -0.05 ± 0.29 -0.4 ± 0.45 -1.55 ± 0.69 -2.51 ± 0.71
ds 10 7 3 MLP mlp 0.22 ± 0.11 0.1 ± 0.23 −0.83 ± 1.03 −3.4 ± 1.54 −7.69 ± 2.71
ds 10 7 3 MLP mlp-li 0.25 ± 0.1 0.01 ± 0.23 −0.9 ± 1.47 −4.71 ± 2.12 −8.48 ± 3.68
ds 10 7 3 MLP xgb-iter −0.23 ± 0.6 −1.41 ± 1.46 −2.28 ± 1.69 −4.73 ± 2.24 −9.07 ± 2.55
ds 10 7 3 MLP xgb-li −0.22 ± 0.5 −0.91 ± 0.67 −2.29 ± 1.8 −3.88 ± 1.86 −7.14 ± 2.71

ds 10 7 3 XGBT knn −0.37 ± 0.17 −0.67 ± 0.31 −2.78 ± 2.11 −8.77 ± 4.0 −13.14 ± 3.26
ds 10 7 3 XGBT linreg-iter -0.14 ± 0.12 −0.78 ± 0.5 −1.24 ± 0.78 −6.01 ± 2.71 −10.82 ± 3.51
ds 10 7 3 XGBT linreg-li -0.14 ± 0.12 −0.72 ± 0.52 −1.87 ± 2.12 −6.53 ± 2.5 −11.45 ± 4.13
ds 10 7 3 XGBT mice −0.3 ± 0.14 -0.49 ± 0.28 -0.83 ± 0.54 -1.53 ± 0.86 -2.61 ± 0.65
ds 10 7 3 XGBT mlp −0.35 ± 0.13 -0.61 ± 0.28 −1.61 ± 0.94 −4.0 ± 1.74 −8.31 ± 2.92
ds 10 7 3 XGBT mlp-li −0.38 ± 0.17 −0.71 ± 0.31 −1.81 ± 1.51 −5.03 ± 2.21 −9.2 ± 4.22
ds 10 7 3 XGBT xgb-iter −0.91 ± 0.91 −2.2 ± 1.26 −3.22 ± 2.01 −5.16 ± 2.48 −10.34 ± 2.8
ds 10 7 3 XGBT xgb-li −0.82 ± 0.58 −1.67 ± 1.16 −3.19 ± 1.74 −5.19 ± 1.95 −8.28 ± 2.5

ds 20 14 6 MLP knn 0.02 ± 0.26 −0.42 ± 0.33 −0.71 ± 0.39 -1.53 ± 0.51 -2.16 ± 0.69
ds 20 14 6 MLP linreg-iter 0.24 ± 0.07 0.18 ± 0.1 -0.19 ± 0.52 −4.21 ± 1.46 −10.0 ± 1.75
ds 20 14 6 MLP linreg-li 0.24 ± 0.05 0.16 ± 0.07 -0.18 ± 0.87 −3.83 ± 1.23 −9.83 ± 3.27
ds 20 14 6 MLP mice 0.05 ± 0.17 −0.6 ± 0.63 −2.72 ± 1.24 −5.71 ± 1.09 −9.98 ± 2.2
ds 20 14 6 MLP mlp 0.24 ± 0.08 0.11 ± 0.28 -0.15 ± 0.36 −2.56 ± 1.19 −5.99 ± 0.97
ds 20 14 6 MLP mlp-li 0.23 ± 0.08 0.16 ± 0.1 -0.18 ± 0.3 −2.58 ± 0.95 −6.05 ± 1.38
ds 20 14 6 MLP xgb-iter −0.3 ± 0.43 −1.17 ± 0.73 −3.0 ± 0.9 −5.11 ± 1.21 −8.01 ± 1.82
ds 20 14 6 MLP xgb-li −0.31 ± 0.39 −1.05 ± 0.79 −1.96 ± 0.96 −3.79 ± 1.06 −6.26 ± 1.06

ds 20 14 6 RF knn 0.83 ± 0.16 0.65 ± 0.3 0.44 ± 0.34 0.04 ± 0.41 -0.6 ± 0.78
ds 20 14 6 RF linreg-iter 0.77 ± 0.1 0.49 ± 0.3 −0.17 ± 0.59 −4.96 ± 2.12 −11.36 ± 3.15
ds 20 14 6 RF linreg-li 0.73 ± 0.1 0.45 ± 0.37 −0.61 ± 1.49 −4.22 ± 2.26 −10.34 ± 4.64
ds 20 14 6 RF mice 0.43 ± 0.35 −0.4 ± 0.66 −2.83 ± 1.93 −6.08 ± 2.31 −10.03 ± 3.22
ds 20 14 6 RF mlp 0.69 ± 0.15 0.4 ± 0.3 0.06 ± 0.38 −2.82 ± 1.72 −5.35 ± 1.13
ds 20 14 6 RF mlp-li 0.71 ± 0.19 0.54 ± 0.28 −0.03 ± 0.42 −2.85 ± 0.89 −5.48 ± 1.29
ds 20 14 6 RF xgb-iter 0.32 ± 0.32 −0.54 ± 0.97 −2.22 ± 1.2 −4.67 ± 1.63 −7.67 ± 2.06
ds 20 14 6 RF xgb-li 0.36 ± 0.4 −0.26 ± 0.65 −1.62 ± 1.05 −3.68 ± 1.58 −6.53 ± 1.49

ds 50 35 15 MLP knn -0.05 ± 0.06 −0.25 ± 0.13 −0.95 ± 0.23 −2.86 ± 0.98 −7.32 ± 1.64
ds 50 35 15 MLP linreg-iter -0.03 ± 0.03 -0.06 ± 0.08 −0.27 ± 0.25 −2.77 ± 0.96 −6.4 ± 1.22
ds 50 35 15 MLP linreg-li -0.02 ± 0.03 -0.05 ± 0.06 -0.19 ± 0.19 −2.62 ± 0.57 −6.77 ± 0.9
ds 50 35 15 MLP mice −0.66 ± 0.35 −1.38 ± 0.47 −1.57 ± 0.33 −2.27 ± 0.31 -3.51 ± 0.62
ds 50 35 15 MLP mlp -0.05 ± 0.06 -0.07 ± 0.06 −0.2 ± 0.12 −1.98 ± 0.6 −5.17 ± 0.92
ds 50 35 15 MLP mlp-li -0.06 ± 0.06 -0.1 ± 0.09 −0.26 ± 0.22 -1.34 ± 0.47 -3.82 ± 0.78
ds 50 35 15 MLP xgb-iter −0.7 ± 0.26 −1.75 ± 0.71 −3.41 ± 0.9 −5.63 ± 0.92 −8.16 ± 1.43
ds 50 35 15 MLP xgb-li −0.69 ± 0.39 −1.4 ± 0.54 −2.7 ± 0.87 −4.2 ± 0.83 −6.12 ± 1.3

ds 50 35 15 XGBT knn -0.09 ± 0.17 −0.89 ± 0.45 −2.27 ± 1.02 −5.02 ± 1.32 −9.9 ± 2.96
ds 50 35 15 XGBT linreg-iter -0.05 ± 0.1 −0.1 ± 0.15 -0.72 ± 0.46 −4.98 ± 1.44 −8.71 ± 2.36
ds 50 35 15 XGBT linreg-li -0.02 ± 0.08 -0.08 ± 0.19 -0.46 ± 0.39 −3.62 ± 1.32 −9.95 ± 1.76
ds 50 35 15 XGBT mice −0.26 ± 0.23 −0.69 ± 0.3 −0.95 ± 0.68 -1.43 ± 0.47 -2.65 ± 0.88
ds 50 35 15 XGBT mlp -0.02 ± 0.09 -0.14 ± 0.16 -0.57 ± 0.37 −3.19 ± 0.86 −6.78 ± 1.36
ds 50 35 15 XGBT mlp-li -0.02 ± 0.16 -0.09 ± 0.16 -0.39 ± 0.27 −2.41 ± 0.66 −5.04 ± 1.04
ds 50 35 15 XGBT xgb-iter −1.06 ± 0.77 −2.18 ± 0.96 −4.52 ± 1.66 −7.63 ± 1.81 −9.55 ± 2.45
ds 50 35 15 XGBT xgb-li −0.71 ± 0.63 −1.96 ± 0.71 −3.86 ± 1.12 −5.66 ± 1.35 −8.23 ± 2.23

ds 100 70 30 MLP knn −0.3 ± 0.16 −0.55 ± 0.19 −1.33 ± 0.2 −3.46 ± 0.9 −7.39 ± 1.21
ds 100 70 30 MLP linreg-iter -0.04 ± 0.04 -0.09 ± 0.08 -0.28 ± 0.23 −2.41 ± 0.58 −6.83 ± 1.16
ds 100 70 30 MLP linreg-li -0.02 ± 0.04 -0.05 ± 0.06 -0.1 ± 0.1 -0.41 ± 0.14 -1.08 ± 0.3
ds 100 70 30 MLP mice −0.97 ± 0.38 −1.04 ± 0.36 −2.19 ± 0.44 −3.13 ± 0.75 −3.88 ± 0.4
ds 100 70 30 MLP mlp -0.09 ± 0.07 -0.16 ± 0.13 -0.43 ± 0.21 −2.42 ± 0.52 −6.04 ± 0.86
ds 100 70 30 MLP mlp-li −0.19 ± 0.18 −0.31 ± 0.17 -0.53 ± 0.27 -1.11 ± 0.3 −2.58 ± 0.77
ds 100 70 30 MLP xgb-iter −0.88 ± 0.26 −2.28 ± 0.63 −4.79 ± 0.91 −7.86 ± 1.23 −11.64 ± 1.13
ds 100 70 30 MLP xgb-li −0.88 ± 0.17 −1.8 ± 0.51 −3.4 ± 0.73 −5.43 ± 0.89 −8.22 ± 0.73

ds 100 70 30 k-NN knn −0.27 ± 0.25 −0.47 ± 0.29 −1.43 ± 0.59 −2.94 ± 0.67 −4.05 ± 1.21
ds 100 70 30 k-NN linreg-iter -0.03 ± 0.13 0.03 ± 0.2 -0.02 ± 0.41 −1.52 ± 0.57 −4.11 ± 0.8
ds 100 70 30 k-NN linreg-li -0.05 ± 0.16 0.04 ± 0.21 0.01 ± 0.24 -0.5 ± 0.45 -2.45 ± 0.76
ds 100 70 30 k-NN mice −0.75 ± 0.47 −1.23 ± 0.54 −2.15 ± 0.47 −3.2 ± 0.89 −4.07 ± 0.74
ds 100 70 30 k-NN mlp 0.01 ± 0.21 0.01 ± 0.2 -0.24 ± 0.46 −1.24 ± 0.64 −3.12 ± 0.95
ds 100 70 30 k-NN mlp-li -0.03 ± 0.27 0.0 ± 0.32 -0.15 ± 0.3 -0.69 ± 0.5 -2.0 ± 0.58
ds 100 70 30 k-NN xgb-iter −0.93 ± 0.67 −2.13 ± 0.93 −4.16 ± 1.11 −6.28 ± 1.68 −8.71 ± 1.28
ds 100 70 30 k-NN xgb-li −1.21 ± 0.56 −2.06 ± 0.7 −3.55 ± 1.27 −5.25 ± 0.89 −7.23 ± 1.29
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