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Abstract. Learning from imbalanced data is still considered as one of
the most challenging areas of machine learning. Among plethora of meth-
ods dedicated to alleviating the challenge of skewed distributions, two
most distinct ones are data-level sampling and cost-sensitive learning.
The former modifies the training set by either removing majority in-
stances or generating additional minority ones. The latter associates a
penalty cost with the minority class, in order to mitigate the classifiers’
bias towards the better represented class. While these two approaches
have been extensively studied on their own, no works so far have tried
to combine their properties. Such a direction seems as highly promis-
ing, as in many real-life imbalanced problems we may obtain the actual
misclassification cost and thus it should be embedded in the classifica-
tion framework, regardless of the selected algorithm. This work aims to
open a new direction for learning from imbalanced data, by investigating
an interplay between the oversampling and cost-sensitive approaches. We
show that there is a direct relationship between the misclassification cost
imposed on the minority class and the oversampling ratios that aim to
balance both classes. This becomes vivid when popular skew-insensitive
metrics are modified to incorporate the cost-sensitive element. Our ex-
perimental study clearly shows a strong relationship between sampling
and cost, indicating that this new direction should be pursued in the
future in order to develop new and effective algorithms for imbalanced
data.

Keywords: machine learning · imbalanced data · cost-sensitive learning
· data preprocessing · oversampling · SMOTE

1 Introduction

Class imbalance occurs when the distribution of instances among classes in the
training set is skewed [2]. As the training procedure of most classifiers is based
on the predictive accuracy (or 0-1 loss function), an equal importance of all
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training instances is inherently assumed. Therefore, learning algorithms tend to
get biased towards the majority class, as it leads to overall smaller error than
when trying to properly model infrequent and difficult minority class. Despite
more than two decades of constant progress, learning from imbalanced data still
poses a challenge for machine learning community [12]. It can be contributed
to the constant emergence of new real-life problems, in which instances coming
from one of the classes are much less frequent than from the others. Traditional
examples of such cases include medicine, where we deal with diagnosis of a
rare disease, or fraud detection systems, where we have a plethora of correct
transactions versus a handful of fraudulent ones. Recent advances in machine
learning and data mining brought the challenge of tackling class imbalance into
new fields, such as big data [15], data stream mining [21], or structured outputs
[6], among others. This creates new challenges force researchers to come up with
new algorithms that are able to scale-up to ever-increasing volume and velocity
of data, as well as adapt to emerging difficulties embedded in the nature of
analyzed datasets.

To address the problem of imbalanced data two main approaches are used:
data-level [7] and algorithm-level solutions [13]. The former ones concentrate
on modifying the training set by removing or generating instances, in order to
achieve rebalanced distributions. The latter ones aim at gaining an insight into
what causes a given classifier to fail and modify its underlying mechanisms. Data-
level solutions can be seen as more general ones, as they usually do not involve
a specific classifier while performing sampling. Therefore, the processed dataset
can be used by any conventional machine learning technique. The algorithm-
level solutions are more specialized, usually designed for a given specific type
of classifier and cannot be that easily transfered to another family of learners.
At the same time, they may offer a more precise solution for tackling class
imbalance.

Cost-sensitive learning is arguably the most wide-spread algorithm-level so-
lution [8]. It assumes the modification of the standard 0-1 loss function and
adding a learning penalty for misclassification of the minority class [4]. This will
lead to an increased importance of the minority class instances during train-
ing and alleviation of the bias towards the better-represented majority class.
It can be seen either as modifying the cost matrix for a classifier [1], or as an
realization of instance weighting [23]. While this approach is efficient and many
existing classifiers can be easily modified to their cost-sensitive versions [5, 9],
its main limitation lies in a lack of well-defined techniques for estimating the
optimal misclassification cost. When improperly set, the cost parameter may
significantly deteriorate the performance of a classifier, which is a main cause of
many researchers preferring the data-level solutions [14].

One should notice that in many real-life imbalanced problems the parameter
cost may be obtained from a domain expert [12]. In case of medical diagnosis, it
will be a cost of making a wrong prediction about a patient and thus following
issues with incorrect medications. In fraud detection, it will be the cost of allow-
ing for a adversarial transaction to take place. Despite this fact, many solutions
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to these problems ignore the underlying cost and focus on data-level solutions.
We will discuss here that this is not a correct approach to such applications.

In this paper, we propose to investigate a relationship between data-level
algorithms and cost-sensitive learning. We argue that one cannot simply apply
a sampling technique without any regard for the associated costs. Additionally,
existing cost-sensitive algorithms use the cost parameter during training, but
never take it into account during the evaluation phase. This leads to incorrect
error estimations that may be too optimistic. Through a thorough experimental
study, we investigate the interplay between varying misclassification costs and
oversampling ratios used by popular data-level techniques. We show that using
cost-sensitive modifications of skew-insensitive performance metrics reveals a
clear correlation between these two factors that cannot be neglected. This is a
starting work on proposing a new paradigm for learning from imbalanced data
that combined sampling and cost-sensitive algorithms.

The contributions of this work are as follow:

– A proposal of new direction in learning from imbalanced data that uses the
information from cost-sensitive learning in data-level solutions.

– A new experimental setup for imbalanced cost-sensitive learning, where mis-
classification cost is taken into account both during training and testing.

– A thorough experimental study investigation relationships between cost-
sensitive framework and oversampling performance.

The remaining of this manuscript presents an insight into the problem of
imbalanced data classification, with special emphasis on cost-sensitive solutions,
discusses the relationships between cost and oversampling, depicts and discusses
results of the experimental study, as well as presents lines for future research in
this topic.

2 Learning from imbalanced data

Imbalanced data is widely known problem in machine learning domain, where
unequal distribution of possible classes occurs in datasets [2, 12]. In this paper,
we will focus on the imbalanced data problem with two-class problem being
taken into account in which two classes can be specified and one of them is
underrepresented. Imbalanced dataset provides insufficient or inadequate repre-
sentation of one class known as minority class, while majority class refers to the
one that is more representative or even overrepresented.

Due to its nature, imbalanced data is mostly characterized by its Imbal-
ance Ratio (IR) as well as intrinsic characteristic like disjuncts of overlapping
of classes. Imbalance Ratio is defined as a ratio between number of objects that
corresponds to the majority class and number of instances of the majority class.
In other words, the higher the value, the more imbalanced dataset is due to the
minority class being highly underrepresented.

However, the IR is not the sole source of learning difficulties. Small sample
size of the minority class may inhibit any generalization capabilities of a classifier,
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while local data characteristics make some instances harder to classify than the
others [18]. Such cases as borderline or noisy instances pose additional challenge
to a classifier and thus should be paid special attention during the learning phase.

As a solution to class imbalance, three main groups of techniques were de-
veloped. Preprocessing methods refers to group of algorithms that alters inner
structure of dataset by either introducing new minority class samples (over-
sampling) or removing majority class samples (undersampling). Oversampling
technique can be done simply by randomly duplicating minority class samples
or by artificially introducing new instances of minority class as it is done in quite
popular SMOTE algorithm [7]. Other group of methods that are used for dealing
with such problem are algorithm level methods which refers to the modification
of base classifier in order to make it more sensitive to the imbalanced datasets [3].
Finally, ensemble methods involve forming a pool of classifiers and may combine
its learners either both preprocessing or algorithm level methods [22].

3 On the role of misclassification cost in data
oversampling

In this paper we aim to investigate if there is a connection between the perfor-
mance of oversampling methods and the underlying cost associated with a given
problem. As we mentioned in the previous section, sampling and cost-sensitive
methods have been considered as separate approaches [20]. We propose to change
this way of thinking and initiate a discussion on cost-sensitive sampling for im-
balanced data. This section will focus on two core challenges in this new area:
(i) how to tune oversamling methods when cost is involved; (ii) how to properly
evaluate classifiers when cost is involved.

3.1 Cost-sensitive oversampling

Oversampling is one of the most efficient approaches for handling skewed data
distributions, as new artificial instances are being introduced into the minority
class. Regardless of the fact if a simple random oversampling or guided sampling
algorithms are used, the number of introduced instances remains as an ad-hoc
parameter. There are no clear rules on how to select (sub)optimal oversampling
ratio, despite a crucial role of this factor [17]. Oversampling should be seen as a
trade-off approach. Too small number of artificial instances will fail to adjust the
class distributions properly, while too high number may lead to minority class
shift and negatively impact the performance on the majority class.

It seems interesting to investigate if having an access to the cost associated
with misclassification of minority instances would lead to a better control over
the artificial instance generation procedure. While all data-level algorithms ig-
nore the cost, even if it is provided by a domain expert, one may see that this
leads to simply discarding useful information about the problem.

Cost may be associated to a degree in which the minority class is important
for the considered problem. Higher costs of misclassification should force the
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classification system to concentrate more on the minority class, even if it comes at
the cost of impairing performance on the majority class. On the other hand, low
misclassification cost should direct the classification system towards achieving a
balanced performance on both of classes.

We propose to analyze if there is a relationship between the provided misclas-
sification cost and performance of oversampling methods, with special emphasis
put on the number of generated instances. Our hypothesis is that problems char-
acterized by a higher cost would benefit from increasing the oversampling ratio.
At the same time, for problems with a low misclassification cost the role of over-
sampling ratio should not be that significant. If our hypothesis is verified, then it
would lead to a development of new branch of hybrid algorithms for imbalanced
data that are cost-sensitive, while working on data-level.

3.2 Cost-sensitive evaluation of algorithms

Another issue related with existing cost-sensitive approaches lies in their evalu-
ation [11]. The cost parameter is usually taken into an account during classifier
training phase. During the testing phase, most of works in the literature use one
of many skew-insensitive metrics, such as G-mean or F-measure [19]. While this
is a proper approach from the class imbalance point of view, it neglects com-
pletely the presence of the cost parameter, as all of skew-insensitive measures
assume 0-1 loss function.

Such an experimental framework is therefore flawed, as misclassification cost,
if known for a given problem, should be considered during all steps of learn-
ing and evaluation. Furthermore, by neglecting the role of cost, one puts cost-
sensitive methods in a disadvantaged position. There were only few efforts in
the literature to propose evaluation metrics tackled specifically for cost-sensitive
problems [16, 10], however they do not explicitly take into an account imbal-
anced data distributions. Additionally, as for imbalanced data there is already
a plethora of established metrics proposed [2], it would be more interesting in
adapting these metrics to cost-sensitive data, rather than adding more metrics
to the stack.

In this paper, we formulate a hypothesis that misclassification cost, if known,
should be taken into account during evaluation for all types of algorithms. Such
an analysis would allow to gain a deeper insight into the performance of pop-
ular data- and algorithm-level solutions, as well as formulate a more realistic
evaluation framework.

For the mentioned investigation of relationship between the misclassification
cost and oversampling ratio, we will adopt cost-sensitive modifications of existing
metrics. This will allow for a fair evaluation of the role of cost-sensitive learning
in imbalanced data oversampling.

4 Experimental study

This experimental study was designed in order to answer the following research
questions:
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– Is there any relationship between the provided misclassification cost and
performance of oversampling algorithms, with a special emphasis put on the
oversampling ratio that returns the best performance.

– Is it worthwhile to use cost-sensitive modifications of popular skew-insensitive
evaluation metrics and does such an evaluation leads to gaining an additional
insight into evaluated algorithms.

For experimental purposes, a number of diverse benchmark datasets were
selected from the public KEEL Imbalanced Data repository. Datasets related
to the two-class problem were already prepared for the 5-Fold Cross Validation
and selected with specific Imbalance Ratio (IR) in mind as shown in Section 4.1.
Algorithms used for the evaluation purpose, as well as their implementations are
covered in Section 4.2, where detailed information about evaluation methodology
and metrics can be seen in Section 4.3.

4.1 Datasets

Selected datasets that were used for the experiment are shown in Table 1, sorted
by the value of Imbalance Ratio. Each dataset is described by the Imbalance
Ratio, number of features, instances as well by the amount of majority and
minority samples.

Table 1: Selected datasets for evaluation
Dataset IR Feat. Inst. Maj. Min.

glass1 1.82 10 214 138 76
wisconsin 1.86 10 683 444 239
pima 1.87 9 768 500 268
haberman 2.78 4 306 225 81
vehicle2 2.88 19 846 628 218
vehicle1 2.90 19 846 629 217
vehicle3 2.99 19 846 634 212
glass-0-1-2-3_vs_4-5-6 3.20 10 214 163 51
vehicle0 3.25 19 846 647 199
new-thyroid1 5.14 6 215 180 35
segment0 6.02 20 2308 1979 329
glass6 6.38 10 214 185 29
vowel0 9.98 14 988 898 90
cleveland-0_vs_4 12.31 14 173 160 13
abalone9-18 16.40 9 731 689 42
glass5 22.78 10 214 205 9
lymphography-normal-fibrosis 23.67 19 148 142 6
winequality-red-4 29.17 12 1599 1546 53
winequality-white-3_vs_7 44.00 12 900 880 20
kddcup-buffer_overflow_vs_back 73.43 42 2233 2203 30
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4.2 Set-up

For experimental purposes, a framework written in R language with parts of code
related to the k-Nearest Neighbors search written in C++11 was introduced. In
order to fairly assess performance of proposed solution, 5-Fold Cross Validation
(5-CV) was done on selected datasets. As a base classifier, C5.0 decision tree
was used from the C50 package. Experiment depends on two implemented over-
sampling techniques, more precisely Random Oversampling as well as SMOTE
which allows to emphasize minority class either by duplicating instances or ar-
tificially introducing new samples respectively. Implemented SMOTE technique
was used with Euclidean metric with parameter k = 5 which corresponds to
the amount of neighbors taken into account in the neighborhood of computed
instance.

4.3 Cost sensitive metrics

The basic metrics for the classifier evaluation for binary imbalanced datasets are
true positive (TP), true negative (TN ), false positive (FP) and false negative
(FN ) which can be deducted from the confusion matrix built from the predictions
and reference labeling of test subset. However, aggregated measures are needed
in order to compare different classifiers with or without preprocessing methods
applied. For our experimental study, we will use the following ones with cost
sensitivity taken into account which is applied to the false negative (FN ) as
shown in Eqn. 1. Cost sensitivity depends on the cost value provided to such
metric, which varies in range cost ∈ {1, 2, 8, 16, 32, 64} as shown in the results of
experiment done in Section 4.4.

FNcost = FN ∗ cost (1)

Information about proper classification of minority class can be obtained by
Sensitivity metric also known as Recall or True Positive Rate, shown in Eqn. 2.

Senstivitycost =
TP

TP + FNcost
(2)

As the above metric takes only one class into consideration, Geometric Mean
shown in Eqn. 3 is used as it balances between classification accuracy over the
instances from both minority and majority classes at the same time.

GMcost =

√
TP

TP + FNcost
∗ TN

FP + TN
(3)

F-Measure shown in Eqn. 4 can be considered as a harmonic mean of both
precision and sensitivity which can measure accuracy of the test.

FMeasurecost =
2 ∗ TP

2 ∗ TP + FP + FNcost
(4)
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Balanced Accuracy shown in Eqn. 5 is a metric that was used for performance
evaluation and can be described as an average accuracy received from both
minority and majority class.

BAccuracycost =
1

2

(
TP

TP + FP
+

TN

TN + FNcost

)
(5)

4.4 Results and discussion

Results for both, Random Oversampling and SMOTE preprocessing methods are
shown in Figures 1 - 4. For each metric, averaged results on all datasets from the
Section 4.1 are shown with different Cost as well as the Oversampling percentage
which refers to the amount of minority samples to be introduced either by simply
duplicating or artificially creating new one, relative to the reference amount of
minority instances.

Presented figures should be analyzed from two levels. The individual analysis
should focus on the impact of varying oversampling ratios on the performance
of evaluated methods under a pre-set cost. The global analysis should focus on
capturing the trends in performance related to increasing cost value and how
does this affect the stability of oversampling methods.
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Fig. 1: Cost-sensitive Sensitivity.
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Fig. 2: Cost-sensitive G-Mean.
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Fig. 3: Cost-sensitive F1-Measure.
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Fig. 4: Cost-sensitive Balanced Accu-
racy.
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The obtained results allow us to draw a number of interesting conclusions.
The most important one is the fact that there is a clear correlation between the
cost and oversampling ratios. Regardless of the metric chosen, one can observe
that for higher costs an increased oversampling ratio is preferred. When high
values of cost are used (e.g., cost = 64) a high number of instances needs to
be introduced in order to maximize the performance. On the other hand, for
low cost values a good performance of oversampling methods is achieved even
with < 100% oversampling ratio. When cost is not taken into account (i.e.,
cost = 1), all oversampling methods display similar performance regardless of
the number of instances introduced. These observations prove our hypothesis
that the underlying cost has a crucial impact on the performance of data-level
solutions. It allows to better tune the balancing process and as we can see from
the trends associated with the increasing cost, it is also beneficial for avoiding
pitfalls related to introducing incorrect number of instances, such as data shift or
increased computational complexity of the learning process. Therefore, we may
conclude that cost-sensitive imbalanced data preprocessing is a direction worth
pursuing.

When comparing random oversampling and SMOTE, one can see that they
display different performance when combined with cost-sensitive information.
SMOTE, while still strongly affected by cost values, stabilities its performance
with a lower values of oversampling ratios. This was to be expected, as SMOTE
aims at introducing more meaningful instances than randomized approaches.
Random oversampling is much more sensitive to cost and benefits from much
higher oversampling ratios. However, especially for high cost parameter values,
random oversampling easily outperforms SMOTE. This is an interesting obser-
vation, as one would expect SMOTE to be superior. It seems that by combining
high misclassification costs with high oversampling ratios, random oversampling
is capable for better empowering the minority class regions, thus translating to
alleviated classification bias. This shows that each data-level method should be
analyzed individually, in order to learn how it copes with cost-sensitive paradigm.

Finally, the results prove the usefulness of cost-sensitive metrics for gain-
ing an insight into the nature of class imbalance learning algorithms. When no
cost is taken into account (i.e., cost = 1), one cannot see significant differences
between SMOTE and random oversampling. By scaling our metrics with cost
value, the differences in performance between these two methods become ob-
vious. We hope that this evaluation framework for any imbalanced algorithms
will lead to better understanding which algorithms succeed and which fall under
varying conditions.

5 Conclusions

In this paper, we proposed a new approach for looking at imbalanced data over-
sampling from a cost-sensitive perspective. We stated that when the misclassi-
fication associated with a given dataset is known, then it is beneficial to take it
into an account when introducing new artificial instances to balance class dis-

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_14

https://dx.doi.org/10.1007/978-3-030-22744-9_14


Role of cost-sensitive learning in oversampling 11

tributions. Additionally, we pointed out the fact that in most works related to
class imbalance the cost parameter is taken into account only during the learning
phase, not during the testing phase. We argued that such an approach is incor-
rect, as one cannot neglect the role of associated cost when evaluating learning
algorithms. Therefore, we have proposed to use cost-sensitive modifications of
popular skew-insensitive metrics in scenarios where value of the cost parameter
is known.

Our experimental study revealed a clear correlation between the value of
cost parameter and the oversampling ratio. Higher costs, when used with cost-
sensitive measures, favored higher number of artificial instances being intro-
duced. For lower costs, the higher oversampling ratios did not contributed to the
improvement of predictive power. This showed that cost-sensitive approaches
may be used to tune and guide the oversampling, by allowing a more precise and
automatic adaptation to a given imbalanced problem.

Obtained results encourage us to continue works in the new direction of
cost-sensitive data-level solutions to class imbalance. Our next steps will be to
propose an automatic way for embedding cost into oversampling methods in
order to tune their parameters, and to evaluate this approach for multi-class
imbalanced data scenarios.
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