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Abstract. Molecular Docking is a methodology that deals with the
problem of predicting the non-covalent binding of a receptor and a lig-
and at an atomic level to form a stable complex. Because the search
space of possible conformations is vast, molecular docking is classified in
computational complexity theory as a NP-hard problem. Because of the
high complexity, exact methods are not efficient and several metaheuris-
tics have been proposed. However, these methods are very dependent on
parameter settings and search mechanism definitions, which requires ap-
proaches able to self-adapt these configurations along the optimization
process. We proposed and developed a novel self-adaptive coordination of
local search operators in a Multimeme Memetic Algorithm. The approach
is based on the Biased Random Key Genetic Algorithm enhanced with
four local search algorithms. The self-adaptation of methods and radius
perturbation in local improvements works under a proposed probability
function, which measures their performance to best guide the search pro-
cess. The methods have been tested on a test set based on HIV-protease
and compared to existing tools. Statistical test performed on the results
shows that this approach reaches better results than a non-adaptive al-
gorithm and is competitive with traditional methods.

Keywords: Self-adaptation · Multimeme Memetic Algorithms · Molec-
ular Docking

1 Introduction

Molecular Docking (MD) is a computer-aided approach used in Drug Discovery
to predict the conformation of a small molecule (ligand) inside a larger molecule
binding site (receptor), measuring the binding affinity between these molecules.
Due to the massive number of possible conformations that a molecule can as-
sume, the MD problem is considered as a NP-Hard one by computational com-
plexity theory. Thus, the development of search methods with the capability to
explore the conformational search space is essential. Due to the complexity re-
lated to the conformational search space, exact methods are not efficient since
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they can not retrieve a solution in a viable time. In this manner, metaheuristics,
like Memetic Algorithms (MA), employing algorithms as global and local search
procedures, became interesting approaches for finding good solutions in a pos-
sible computational time. Regardless of the possibility of using metaheuristics
to explore the search space, they are very dependent on parameter setting and
search mechanism definition. In this way, self-adaptive mechanisms are reliable
techniques to give the algorithm the option to self-decide which parameter, or
search mechanism, should be used along the optimization process [1].

Besides the search mechanism definition, another important component of
MD methods is the energy function responsible for describing the interaction
between receptor-ligand, evaluating different physicochemical aspects related
to the binding process. Also, the scoring function is important for the search
method, since it is used to distinguish and rank different solutions regarding
energy. Different scoring functions are available in the literature [2], but the
RosettaLigand scoring function had achieved interesting results in the last
years [3][4] in MD predictions. In light of these facts, we propose an MD method
based on RosettaLigand scoring function. To explore the conformational search
space, a novel self-adaptive multimeme algorithm based on Biased Random Key
Genetic Algorithm (BRKGA) enhanced with four local-search algorithms is eval-
uated and compared with state-of-art methods. Our contributions are related
to the self-adaptive mechanism used to select the local search strategy to be
applied, and the radius perturbation for each docking case. Results obtained
showed that our approach reaches better energy results in comparison with the
non-adaptive BRKGA version and traditional methods such as AutoDock Vina [5],
and jMetal [6]. The remaining of this paper is organized as follows: Section 2
describe the main concepts related to the molecular docking problem and related
works. Section 3 presents the proposed self-adaptive approach. In Section 4 are
analyzed the achieved results. Finally, Section 5 presents the conclusions and
future works from this research.

2 Preliminaries

Molecule Flexibility: An important aspect related to the MD problem is the
flexibility associated with each molecule. It is possible to classify the MD ap-
proaches in rigid-ligand and rigid-protein; flexible-ligand and rigid-protein; and
flexible-ligand and flexible-protein. These approaches dictate how the problem is
computationally encoded. Therefore, the molecule flexibility is directly related
to the problem’s dimensionality, where more flexible molecules have more de-
grees of freedom. Thus, leading to a more complex optimization search space.
For the flexible-ligand with rigid-receptor scheme (used in this work), a possible
solution for the problem can be described by 7 + n variables, where three of
them are the ligand translation values (Tx, Ty, and Tz), followed by four val-
ues corresponding the ligand’s orientation (Qx, Qy, Qz, and Tw), and n varies
according to the dihedral angles present in the ligand.
Scoring Function: In order to compute the binding affinity between a ligand
and a receptor, scoring functions are used to score and rank the steric and elec-
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trostatic interactions of both molecules. As the energy measurement is a com-
putationally expensive operation [7], approximation methods have been used.
It is possible to categorize these functions in force-field based, empirical and
semi-empirical, and knowledge-based functions [8]. In this paper, we have used
a knowledge-based energy function known as RosettaLigand, which considers
statistical analysis of the Protein Data Bank (PDB) in its composition [3] in addi-
tion to physicochemical terms [4]. The RosettaLigand score function was tested
in different comparative studies, showing good results when compared with well-
known scoring functions such as AutoDock [3].
Related Works: The multidimensionality and complexity of the conformational
search space avoid that any known computational technique optimally solves
the MD problem. Many methods based on metaheuristics have been applied to
attempt to get optimal solutions to these problems. The major of algorithms
utilized in MD are Genetic Algorithms (GA), Differential Evolution (DE), and Par-
ticle Swarm Optimization (PSO). Hybrid strategies also have been applied, like in
Rosin et al. [9] where was implemented a GA hybridized with Simulated Anneal-
ing (SA) and Solis-Wets as LS strategies to explore the binding conformational
search space. In Tagle et al. [10] three variations of SA were employed as local
search procedure in a Memetic Algorithm. Recently, Leonhart et al. [11] proposed
a hybridization of BRKGA with three variations of Hill-climbing and SA algorithms
working as LS chained operators applied in test cases of HIV-protease. The ap-
proach proposed by Krasnogor et al. [12] and applied to bioinformatics problems
(prediction of structures) is also relevant to highlight. The authors developed a
simple, but efficient, inheritance mechanism (SIM) for a discrete combinatorial
search. The strategy consists of encoding the memetic material in the individ-
ual’s representation, where this material indicates the LS to be applied. During
the evolution, the crossover is responsible for choosing what method attach to
the offspring, according to the parent with better fitness. Jakob [13] proposed
another self-adaptive approach to schedule local search methods over a function
probability. In this idea, all LS have equal chance to be selected at the beginning
of the process. During the evolutionary process, the probabilities of applying
each algorithm are updated, according to the relative fitness gain and the re-
quired evaluations considered. In Domı́nguez-Isidro et al. [14] is proposed an
adaptive local search coordination, based on a cost-benefit scheme, for a multi-
meme DE for constrained numerical optimization problems. Also, in Jin et al. [1]
is proposed a MA, combining GA, DE, and Hill-climbing, working under a strategy
that use weights to measure the contribution of the algorithms according to their
improvement over the individuals of the population and in the stage of evolution.
In this study, we investigate the possibility of applying a self-adaptive memetic
algorithm, based in a proposal probability function and inspired on the BRKGA

to coordinate the use of different local search methods, and exploring different
neighborhoods by adapting the radius perturbation.
Memetic Algorithms: A Memetic Algorithm (MA) is an evolutionary algorithm
which is composed of global and local procedures [15]. Global search algorithms
can explore the whole search space, while, the exploitation of a neighborhood
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solution is attributed to a local search method, which can obtain good preci-
sion [16]. They are inspired by Darwinian’s principles of natural evolution and
Dawkins’ notion of a meme, defined as a unit of cultural evolution that can per-
form local refinements.
Biased Random Key Genetic Algorithm: In this study, our global search
strategy is inspired on the Biased Random Key Genetic Algorithm (BRKGA) ini-
tially proposed by Gonçalves et al. [17]. The algorithm combines aspects of GA

and random keys to encode the solutions by real values. In our approach, how-
ever, we adopt real-coded values to represent each gene, instead of the keys.
In BRKGA, the set of solutions is ordered by fitness value and divided in castes,
called elite and non-elite groups. The initial population is randomly generated
and the individuals ordered in the castes. The crossover operator gets one parent
from each set to create the offspring following a probabilistic parameter, that
prefers more genes from the elite group. The mutation procedure is responsible
for generating new individuals instead of modifying them. Thus, the next popu-
lation will be composed by the caste ’A’ (elite set) from the current population;
the caste ’B’, formed by all offsprings; and the caste ’C’, which are the mutated
solutions. Then, the new set is ordered to update the individuals in the castes.
Search Space Discretization: The MD problem needs a definition of the search
space around the binding site of the receptor. In this work, we adopt the idea pro-
posed by Leonhart et al. [11] representing this area as a cube formed by smaller
cubes, where the central atom of the ligand defines the center of this box. Thus,
with this point and the area’s volume is possible to set the size of smaller cubes.
This division has the objective to explore the whole ligand-receptor binding
search space better. At the beginning of the memetic execution, the population
is generated and equally distributed between the subareas of the cube. To keep
the diversity, at least one individual must be in each area. This feature builds
a local competition, where the better solutions dispute location between them.
Procedures like crossover, mutation and local search operators could move so-
lutions between regions, following the evolutionary process, but respecting the
percentual of individuals non-migrants. The crossover can create offsprings from
different positions of their parents according to the cube of each one. In muta-
tion process, eventually, are filled empty cubes, and generated solutions in any
area of the search space. Also, the local search methods can modify solutions of
a subcube, depending on the approach to visit the neighborhood solutions.
Local Search Methods: Local search is a heuristic method which moves from
solution to solution in the candidate’s space by performing local changes until
getting a local optimum or reach another limit. However, this movement is only
possible if a neighborhood relation is defined in the search space. The neigh-
borhood generation is made taking into account three aspects: (i) order of gene
visitation, i.e., which position would be first considered to explore; (ii) radius
perturbation, what means how much each gene must be modified; and (iii) the
direction of search, that indicates if the radius value would be added or sub-
tracted from the value encoded in the individual.
The Hill Climbing algorithm (HC) [18], also known as descent improvement, is an
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old and simple local search that starts with an initial solution and replace it, at
each iteration, by the best neighbor found that improves the value of objective
function. The procedure ends when there is no solution better than the current
one, reaching a local optimum. This algorithm presents variations in the way
that the neighborhood is explored. The order of solution’s generation (determin-
istic or stochastic) is one of them, as well as the strategy selection of the next
solution, known as a pivoting rule. We highlight three variants of HC (pivoting
rules) to select the best neighbor: (i) Best Improvement (BI), which performs a
fully and deterministic search in the whole neighborhood. This strategy could
be time-consuming because it evaluates all the movements, although ensuring
the selection of the best solution in every iteration. (ii) First Improvement (FI)
this variation swap the current solution by the first best neighbor found. The
neighbors are evaluated in a deterministic way following a pre-defined order of
candidates’ generation. The approach is faster than BI because it does not visit
the whole neighborhood, just in the worst case, meaning the end of improve-
ments. (iii) Stochastic Hill Descent (SHD) is similar to FI. The swap rule of
solutions is the same, but the order of neighbors’ visitation is randomized at
each iteration of the process. This characteristic ensures an equal selection of
candidates from all regions of the search space.
Another local search method is the Simulated Annealing (SA), a stochastic al-
gorithm which accepts, in some moments, worst solutions [19]. The objective is
to avoid local optimums and delay the search convergence. The process starts
with an initial solution and at each iteration generates a random neighbor. The
candidate is accepted if better than the current solution, and if it is worst, there
is a rule with a decreasing probability to allow this solution. Thus, the proce-
dure begins running like a random walk accepting many solutions, but when the
probability decreases, the method is more similar to the HC algorithm.
A recent feature in LS is the concept of Local Search Chains proposed by Molina
et al. [20]. The idea is to share the state of search between different local search’s
applications. The LS call may not explore all neighborhood of a solution, so the
final strategy parameter values achieved by the candidate will be the initial state
of a possible subsequent local search application in this individual. This strategy
allows the LS operators to be extended in some promising search zones, avoiding
different algorithms to evaluate the same candidates by chaining the searches.
According to [20] there are some aspects to consider in the LS chains’ manage-
ment. A fixed intensity search is one of them, LS intensity stretch (Istr), which
ensures that every local search algorithm has the same computational effort ap-
plied. Another one is to save the configurations (visitation order) that guided
the search and the current state at the end of the call. In the HC methods, for
instance, the last neighbor generated is saved in all variants, in the FI and SHD

approaches are also kept the visitation’s order of the neighborhood.
Adaptive Memetic Algorithms (MAs): Recent studies have applied hybridiza-
tion with adaptation in MAs. The adjustment of parameters and operators has
presented a promising area of computation in this evolutionary algorithm. This
approach can self-adjust to a given problem without previous knowledge by uti-
lizing acquired information to adapt itself with the search progress. The challenge
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to design a robust and efficient MA has some questions to be considered, like: (i)
where and when the local search should be applied; (ii) which individuals should
be improved and how must be chosen; (iii) the computational effort required
in each LS call; (iv) the equilibrium of ratio between global and local search.
Several adaptive memetic algorithms have addressed these questions [1,12,13].
Multimeme Memetic Algorithm (MMA): The Multimeme Memetic Algorithm
(MMA) was originally proposed by Krasnogor and Smith [21]. In a MA only one LS

method is used, while in the MMA a set of local searchers is employed. The idea
of the algorithm is self-adaptively choose from this set which method to use for
different instances, phases of the search or individuals in the population. In their
approach, the individual was represented by its genetic and memetic material,
where the last one specifies which meme will be used to perform local search.

3 The Proposed Method

In this paper, we propose and test a MMA algorithm for the MD problem. Our al-
gorithm self-adaptively choose which local search operators to apply in different
individuals. We represent a solution only by its genetic material, i.e., encoding
values to perform conformational operations with the ligand structure,which in-
cludes the translation and rotation of the molecule, and internal angle rotations.
Thus, from the definition of our solution representation, we have a neighbor-
hood size equal to 2n, where n represents the genes’ number in an individual.
We have adapted and implemented the three variations of the HC algorithm and
the Simulated Annealing (for more details see section 2). Also, we incorporate
the LS chaining to enjoy best the benefits of each algorithm applied. The main
contribution of this study is the self-adaptive coordination of the local search
methods and the radius perturbation, which works under a probabilistic rule
composed of two main elements, inspired in the studies of Jakob [13,22] and
Domı́nguez-Isidro et al. [14]. Equation 1 show these two terms: the ratio fitness
gain (rfg), and the ratio of success application (rsapp). The first element it is
a measurement of how much each LS operator improves the fitness of solutions,
considering the history of values reached and the effort applied in each one. The
idea is to ponder LS operators (LSO), performing few iterations and considering
improvements in the individuals. The second term is simple and represents the
benefit of the LS, by counting how many times solutions were improved.

rfg =

∣∣∣∣ foriginal − fLS

foriginal − fmean

∣∣∣∣ rsapp =
nimprovements

napp
(1)

The rfg is obtained from the LS application to one individual, where foriginal
is the individual fitness before the local improvement, fLS is the fitness reached
by the algorithm, and fmean is the fitness average from all solutions of the caste
’A’ in the moment of LS call. The objective is to measure the effectiveness of
the local operator over a solution comparing the improvement with the best
individuals from the population at that moment. The rsapp is the ratio between
the number of improvements (nimprovements) and the number of applications
(napp) of a given LSO. To keep the methods competitive and cooperative, inspired
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in the study of Jin et al. [1], we adopt weights to measure the contribution of
each algorithm, the Equation 2 shows the proposal:

weightrfg =

(∑napp

i=1 rfgi
napp

)
∗ wrfg weightrsapp

= rsapp ∗ wrsapp

weightX = weightrfg ∗ weightrsapp

(2)

To measure the effectiveness of a LS we consider the history of improvements
by calculating the average rfg and multiplying by a fixed value, represented
by wrfg. In the same way, at the success ratio is attributed another weight
(weightrsapp). These weight values added is equal to zero. Finally, with the
multiplication of both, we get weightX , where X is any LS operator. After a local
search application, the respective weight is calculated, and then the probabilities
of each one are obtained by Equation 3 shows:

probX =
weightX∑nLS

j=1 weigthj
(3)

The probability of a given local search is obtained by calculating its contribu-
tion percentage in the weights of all LS methods (nLS). Thus, each operator has
a value between 0 and 1, allowing to mount a roulette wheel to sort and obtain an
algorithm to be applied. It is important to highlight that at the beginning of the
MMA execution all LSO has the same evaluations number to fairly calibrate the ini-
tial weights. Along the execution, the best method will get a higher probability,
so having more opportunity to be applied. Algorithm 1 shows the pseudo-code
of our approach. The input values P, Pe, Pm, n, Ils represent the population
size, the elite size, the mutant population size, the number of individual genes,
and the minimum number of individuals to run a LS call, respectively. During
the crossover and mutation processes, if the intensity stretch of global search is
reached, the local search function is called. The individuals to be improved are
selected from the most populated cubes (see space discretization in section 2)
. After each LS application, its contribution is calculated and the probabilities
adjusted for the next call. The execution’s output is the best solution found until
satisfies the maximum of energy evaluations.

4 Experimental Results

To test our MA approach, we use a test set with 16 complexes containing receptor
and ligand molecules. We perform the tests into the following stages: (i) com-
parison of the proposed MMA with other two self-adaptive algorithms considering
a fixed radius perturbation; (ii) the MMA approach with three variations of ra-
dius search; (iii) finally, the self-adaptive algorithm was compared with other
methods in the state-of-art.
Benchmark: The 16 selected structures are based on the HIV-protease recep-
tor and was previously classified in [23]. The set was obtained from the PDB

database and divided into four groups, following the ligand structure size. The
PDB code and the range of crystallographic resolution in Ångströms (Å) are:
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Algorithm 1 Pseudocode of the developed MMA algorithm.

Input: P, Pe, Pm,n, Ils
Output: Best Solution X
1: P ← initialize with n vectors of real-coded values
2: while not reach the maximum of energy evaluations do
3: Evaluate solutions of P and divide in Pe and Pe

4: P+ ← Pe

⋃
crossover()

⋃
mutation() . Making the next population

5: if currentEvaluations is multiple of LS intensity then
6: prepareLocalSearch() . Individuals improved are introduced in P+

7: end if
8: end while
9: return best solution X

Local search preparation

10: Make a list of potential candidates to apply LS . According to Ils value
11: while not enough evaluations in the Istr do
12: individual = getNextIndividual() . Iterating over the previous list
13: method, radius = chooseOperators() . Sort values to determine which one
14: runLocalSearch( individual, method, radius )
15: rfg and rsapp are calculated . According to method and radius perturbation
16: updateProbabilities() . Probabilities of LSO are updated under the weights
17: end while

small (1AAQ, 1B6L, 1HEG, 1KZK, 1.09 − 2.50); medium (1B6J, 1HEF, 1K6P, 1MUI,
1.85 − 2.80); large (1HIV, 1HPX, 1VIK, 9HVP, 2.00 − 2.80) size inhibitors, as well
as cyclic urea (1AJX, 1BV9, 1G2K, 1HVH, 1.80 − 2.00) inhibitors. PYMOL was used
to remove molecules such as solvent, non interacting ions, and water from the
target structures.

The AutoDockTools was used to add partial charges and hydrogens to struc-
ture, as well, to define the maximum number of torsional angles in the ligand.
This maximum number of torsions was set to 10, but can be less according to the
ligand structure/size, and their selection considers the angles that fewer move
atoms, keeping freeze the ligand center [23]. After, the Open Babel tool [24] was
used to convert and generate necessary files to be manipulated by our algorithm
and then used by the PyRosetta to load the complexes and evaluate the energy
score. As already mentioned, the search space was represented by a cube includ-
ing the binding site of the receptor, the size of this box was set in 11 Å for each
axis, and the grid spacing defined as 0.375 Å. From this definition, the initial
ligand conformation and position in the cube are randomized for each algorithm
run, to take no advantage of the known crystal structure.

Parametrization: Considering the random values for the ligand in each run
is fair that every algorithm starts from the same point. Thus, for each instance
in each run, the initial population and the ligand structure was the same. In
BRKGA we adopted the recommended values to the parameters according to [17].
The population size is 150 individuals, where 20% is the elite group, 30% is the
mutation set, and the remaining is crossover offsprings. The elite allele inheri-
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tance probability on the random choice is 0.5 − 0.7 to crossover operation and
the percentual of individuals non-migrants is set to 30% also. The LS parameters
were defined as 0.5 to radius perturbation, in the first experiments, after this
value varied in 0.1 and 0.25 also. The intensity stretch was equal to 500, and the
global/local search ratio equal to 0.5, following the values adopted in [20]. Fi-
nally, the MMA weights were defined as 0.6 to the historical ratio fitness gain and
0.4 to the ratio of LS success application. Since the use of a stochastic method,
we execute 11 (first and second stages) and 31 (third stage) independent runs
per instance with a stop criterion of 1,000,000 energy evaluations. So, we are
acquiring statistical confidence in the present results.
Achieved Results: We divide our tests into three stages described as follow-
ing. Firstly, we ran the MMA approach, working under our proposal probability
function, and compared with another two simple self-adaptation methods. The
SIM technique [21] is one of them, and the other one is a random selection of
the LS operators at the moment to be used. In the SIM approach we start the
population equally distributing the LS methods to each solution, and during the
iterations, the crossover and mutation procedures changes this memetic mate-
rial. The random approach just sorts a method when the local search must be
applied. All algorithms were applied over half of the instances with 11 runs each
one. In this first test, we are interested in verifying the behavior of the approach
based on probabilities against the inheritance and random methods. It is impor-
tant to note that the radius perturbation is fixed in 0.5 to every gene. This value
was chosen empirically in preliminaries tests with the generation and evaluation
of random individuals. We evaluated the results by its energy in kcal/mol and
with the Root Mean Square Deviation (RMSD), which is a structural measure of
the ligand get by the algorithm with the crystallographic experimental structure
of the molecule. Table 1 presents the best energy found and the corresponding
RMSD, as well as the average and standard deviation of each one, based on the
best solutions generated in each configuration.

Table 1. Achieved results from the MMA, based on the probability function, with an
inheritance (SIM) and random (RAND) approaches. Cells highlighted in gray shows the
best solution obtained, and cells in blue, the best solutions average, for each instance.

ID Method
Best solution 11 runs average

ID
Best solution 11 runs average

Energy RMSD Energy RMSD Energy RMSD Energy RMSD

1AJX

RAND -250.16 1.02 -242.06 ± 3.61 10.49 ± 4.04

1HPX

-356.80 2.88 -349.66 ± 3.61 4.86 ± 1.73

SIM -250.64 1.40 -243.21 ± 4.17 9.11 ± 4.47 -355.18 2.25 -349.30 ± 2.77 5.10 ± 1.36

MMA -250.20 3.21 -241.34 ± 2.86 11.48 ± 2.68 -357.00 2.73 -350.15 ± 3.90 4.89 ± 1.19

1B6J

RAND -327.38 2.05 -322.45 ± 5.03 4.69 ± 2.83

1K6P

-383.38 5.26 -380.48 ± 2.56 6.42 ± 1.60

SIM -326.64 2.13 -321.75 ± 2.82 5.58 ± 2.41 -383.63 4.32 -381.08 ± 1.58 5.48 ± 1.33

MMA -329.11 1.11 -322.75 ± 3.12 3.87 ± 2.71 -383.37 3.95 -380.91 ± 2.57 4.95 ± 1.52

1G2K

RAND -456.64 1.06 -449.38 ± 6.43 4.40 ± 2.90

1KZK

-440.35 1.58 -435.47 ± 4.49 4.17 ± 2.10

SIM -456.13 1.30 -451.27 ± 6.67 3.32 ± 2.53 -441.05 1.54 -435.40 ± 9.85 3.25 ± 2.12

MMA -456.70 0.83 -452.69 ± 5.78 2.68 ± 2.06 -441.03 1.53 -435.30 ± 9.21 3.29 ± 1.72

1HEG

RAND 358.31 8.12 359.47 ± 1.25 8.21 ± 1.32

1VIK

175.39 3.59 182.95 ± 11.34 3.74 ± 1.70

SIM 358.04 5.74 359.52 ± 1.36 7.96 ± 2.30 173.33 2.29 191.48 ± 21.64 5.29 ± 3.65

MMA 358.05 8.75 359.20 ± 0.70 8.05 ± 1.24 173.94 2.15 191.45 ± 21.94 4.32 ± 2.75

The SIM method has a slight advantage over our proposal, considering just
the best energies found, but looking for the average, we get the best values in half
instances. Also, regarding RMSD, the probability approach gets the best solutions
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in five test cases, and about the average, the best results were divided between
the algorithms. We applied a nonparametric test for multiple comparisons pro-
cedure, the Dunn test [25], to analyze the statistical significance in the achieved
results. The test indicated that there is no difference between the approaches
compared. In the second stage, we have applied our MMA algorithm shifting the
radius perturbation of the LS with the values: 0.10, 0.25, and 0.50. The idea of
this stage is to verify if different modifications in the genes might improve the
potential of the applied local search method. Table 2 summarizes the achieved
results over the same benchmark utilized in the first test. In the same way, we
evaluate the energy and RMSD from the best solutions, as well as the averages
and standard deviations. Results show that we have an almost equal distribu-
tion of the best values found between the three variations, comparing just the
best energy reached or the average. Thus, we conclude that all variations in the
radius search could improve the LS process, for example, a bigger value can be
more adequated at the beginning of the search, while a smaller one would be
better in the algorithm refinement stage.

Table 2. Achieved results from the MMA approach with three variations of the LS radius
perturbation. Third and fourth columns contains the lowest energy (kcal/mol) and its
RMSD values for each version. Cells shaded in gray highlight the best solution obtained,
and cells shaded in blue, the best solutions average, for each instance.

ID
Radius Best solution 11 runs average

ID
Best solution 11 runs average

Search Energy RMSD Energy RMSD Energy RMSD Energy RMSD

1AJX

0.10 -251.18 1.39 -243.06 ± 3.89 10.00 ± 4.05

1HPX

-355.42 1.24 -348.88 ± 2.10 5.50 ± 1.69

0.25 -250.54 3.09 -242.69 ± 4.71 9.68 ± 4.07 -356.61 3.43 -350.85 ± 3.30 4.80 ± 1.34

0.50 -250.20 3.21 -241.34 ± 2.86 11.48 ± 2.68 -357.00 2.73 -350.15 ± 3.90 4.89 ± 1.19

1B6J

0.10 -328.58 2.10 -325.19 ± 2.47 3.50 ± 2.45

1K6P

-383.59 4.96 -380.35 ± 2.57 5.70 ± 1.66

0.25 -328.13 2.21 -321.98 ± 3.60 5.84 ± 2.57 -383.52 0.92 -380.80 ± 2.43 6.04 ± 2.45

0.50 -329.11 1.11 -322.75 ± 3.12 3.87 ± 2.71 -383.37 3.95 -380.91 ± 2.57 4.95 ± 1.52

1G2K

0.10 -456.69 0.78 -443.59 ± 9.81 5.04 ± 2.51

1KZK

-440.93 1.56 -434.06 ± 9.59 4.51 ± 1.92

0.25 -456.58 1.28 -452.81 ± 5.60 2.88 ± 2.04 -441.12 0.84 -438.83 ± 2.28 3.15 ± 2.07

0.50 -456.70 0.83 -452.69 ± 5.78 2.68 ± 2.06 -441.03 1.53 -435.30 ± 9.21 3.29 ± 1.72

1HEG

0.10 357.60 9.53 359.46 ± 1.62 8.96 ± 2.41

1VIK

173.89 2.28 185.06 ± 13.93 4.68 ± 3.62

0.25 358.10 5.57 359.41 ± 1.03 8.02 ± 1.92 172.99 2.16 191.22 ± 18.04 4.95 ± 2.39

0.50 358.05 8.75 359.20 ± 0.70 8.05 ± 1.24 173.94 2.15 191.45 ± 21.94 4.32 ± 2.75

Also, the application of test Dunn showed that only in three instances (1B6L,
1G2K and 1HEF) there is a statistical difference between the three variations of
the MMA algorithm. With these preliminary results, we have decided to extend
and apply our proposal probability function to the choice of which radius per-
turbation to use during the optimization process, combining it with the previous
variation in the LS methods. In this third stage, the weights and probabilities of
the radius pool are updated after a local search execution. Similarly, the applica-
tion and evaluation of the LS algorithms are made with any radius perturbation
applied. Thus, we compare the MMA approach against a BRKGA version without
LS, and another two MA versions with SHD and SA. Additionally, we compare
these results with AUTODOCK VINA [5], DOCKTHOR [26], and jMETAL [6], a multi-
objective docking approach. Table 3 shows the achieved results. The comparison
of energy values was made only between our implemented methods because of
the energy function utilized, which differs from other methods. The RMSD com-
parison was made between all algorithms. The values show that the MMA is better
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than BRKGA, when we compare the average of energy and RMSD. Comparing the
SHD and SA approaches with the self-adaptive, it is possible to notice that values
are very similar. Considering the average RMSD values, the MMA got better results
only in the 1AAQ complex in comparison with the state-of-art algorithms. The
best method overall was the DOCKTHOR with better RMSD values in 81% of the
instances used in this work.

In the same way, we applied the Dunn test in this stage. Table 4 shows
the significant levels of energy and RMSD, adopting a significance of α < 0.05,
guaranteeing a confidence of 95% in the analysis. Cells above the main diagonal
(highlighted) shows the p-values comparing the energy results, and the remaining
cells show the RMSD comparisons. Comparing MMA with BRKGA we find significant
difference in all instances regarding energy and 50% in RMSD. Also, looking for
the differences between the self-adaptive approach and SHD and SA, there are
significant energy values only for complexes 9HVP and 1AAQ, respectively. Thus,
the MMA shows to be better than a BRKGA method, but is equivalent with MA

versions.

5 Conclusion and Future Work

The statistical test performed shows that the multimeme approach improves the
results for the MD problem instead use only an evolutionary algorithm. Although,
the comparisons with memetic implementations showed to be equivalent tech-
niques. This is explained because in the MMA version is utilized, in a distributed
way, four LS algorithms instead only one in the full search process. In this case,
we may be losing computational effort with methods that do not contribute
much to find local optimums. Also, in the MA is adopted a fixed radius whereas
in the multimeme is utilized three values to be self-adapted. This feature is in-
teresting because the methods can explore different neighborhoods in different
stages of the evolution, and then compensate for a possible loss of processing. So,
this pool of local search methods combined with the pool of radius perturbation
confirms to be an interesting initial variation to reach reasonable solutions to
this problem, but still, need improvements.

This work brings contributions to the use of a self-adaptive memetic compu-
tational technique. Also, the proposal and application of a function to evaluate,
in execution, the local search impacts, to best adapt the parameters and guide
the search process. Further investigations might consider different global search
algorithms, e.g., Differential Evolution and Particle Swarm Optimization, as well
as methods to run as local searches, such as Solis and Wets and Nelder-Mead.
Besides that, the use of another objective function to evaluate the ligation en-
ergy, such as AutoDock Vina, it is interesting to confirm the performance of the
algorithm. The results of minimum energy would be different but the ability of
MMA will be the same.

About the self-adaptive approach is possible to change the pool of LSO, using
only the SHD and SA methods, for instance. The values for radius perturbation
can also be modified, as well as different values applied to each gene, i.e., the
translation operation may have a specific value different of the rotation and
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Table 3. Comparison results of MMA with BRKGA, two MA methods, AUTODOCK VINA,
DOCKTHOR, and jMETAL. The lowest energy (kcal/mol) and its RMSD Å values are shown
(best values highlighted in gray), as well as their respective averages and standard
deviation (cells shaded in blue for the best values) for 31 runs of each algorithm.

ID
Radius Best solution 11 runs average

ID
Best solution 11 runs average

Search Energy RMSD Energy RMSD Energy RMSD Energy RMSD

1AAQ

BRKGA 36.70 1.14 42.75 ± 5.89 3.12 ± 2.47

1HIV

-164.16 2.92 -150.52 ± 3.10 6.65 ± 1.11

SHD 36.88 1.13 37.94 ± 0.47 1.09 ± 0.14 -164.94 3.41 -163.67 ± 0.82 2.28 ± 0.55

SA 37.04 1.14 39.12 ± 2.68 1.59 ± 1.51 -165.15 3.39 -163.19 ± 2.67 2.65 ± 1.04

MMA 36.72 1.24 38.76 ± 3.73 1.64 ± 1.70 -165.12 3.38 -163.35 ± 3.58 2.85 ± 1.39

VINA 3.93 9.75 9.07 ± 5.05 9.06 ± 0.86 -0.29 7.49 12.01 ± 18.70 8.09 ± 0.92

DOCK 3.52 0.94 5.12 ± 1.41 9.25 ± 4.92 55.13 0.29 55.32 ± 0.14 0.29 ± 0.04

JMETAL -16.00 2.90 -12.56 ± 3.48 2.11 ± 1.15 -32.00 7.93 -18.14 ± 3.68 2.58 ± 1.45

1AJX

BRKGA -246.85 4.40 -239.68 ± 1.87 12.24 ± 1.50

1HPX

-348.40 5.28 -346.81 ± 1.59 5.87 ± 1.04

SHD -250.51 0.98 -243.68 ± 4.39 8.59 ± 4.75 -357.34 3.15 -352.56 ± 3.99 4.04 ± 1.36

SA -250.62 1.22 -242.21 ± 3.84 10.32 ± 4.22 -356.79 2.97 -351.63 ± 3.73 4.66 ± 1.49

MMA -250.89 3.08 -243.00 ± 4.56 9.42 ± 4.57 -357.49 3.52 -349.83 ± 3.40 5.08 ± 1.17

VINA -10.74 1.52 -9.82 ± 0.42 6.21 ± 2.82 -9.08 5.74 -6.52 ± 2.18 6.18 ± 1.03

DOCK 48.68 0.85 49.33 ± 2.30 0.88 ± 0.09 88.64 7.81 96.05 ± 9.69 7.07 ± 2.11

JMETAL -18.00 4.40 -12.84 ± 4.35 3.88 ± 1.64 -18.00 4.86 -11.73 ± 4.77 3.84 ± 0.94

1B6J

BRKGA -328.69 1.11 -316.83 ± 7.49 5.85 ± 2.33

1HVH

428.01 8.94 434.16 ± 2.60 10.33 ± 2.22

SHD -328.70 1.09 -322.42 ± 3.26 5.06 ± 2.76 427.29 8.38 429.98 ± 2.45 8.65 ± 1.62

SA -328.27 1.18 -320.81 ± 3.99 5.94 ± 2.22 427.00 8.42 430.81 ± 2.26 8.66 ± 1.80

MMA -329.00 1.13 -322.17 ± 3.89 5.63 ± 2.84 427.95 8.41 431.74 ± 2.50 9.06 ± 2.79

VINA -9.12 2.89 -2.39 ± 3.64 6.92 ± 3.08 -8.65 7.34 -7.04 ± 1.12 5.98 ± 1.71

DOCK 38.78 0.61 38.96 ± 0.11 0.61 ± 0.06 127.18 8.34 130.22 ± 2.76 6.10 ± 1.58

JMETAL -18.00 3.47 -11.45 ± 6.79 2.49 ± 0.71 -18.00 2.44 -12.45 ± 4.42 2.89 ± 0.52

1B6L

BRKGA -317.46 3.09 -312.62 ± 3.11 6.64 ± 1.94

1K6P

-382.38 4.42 -375.89 ± 4.85 6.88 ± 1.76

SHD -319.21 2.80 -316.64 ± 1.83 3.54 ± 1.99 -383.78 0.83 -368.36 ± 67.28 5.39 ± 1.96

SA -318.57 2.96 -315.72 ± 2.34 4.42 ± 2.41 -383.08 5.36 -380.13 ± 1.85 6.29 ± 1.56

MMA -319.56 2.48 -315.66 ± 2.25 5.10 ± 2.43 -384.23 4.07 -381.27 ± 1.60 5.73 ± 1.93

VINA -12.71 0.89 -12.02 ± 1.29 2.22 ± 3.07 -5.16 5.22 -0.53 ± 3.20 7.45 ± 2.09

DOCK 30.51 0.46 30.72 ± 0.13 0.43 ± 0.02 143.30 1.73 150.40 ± 6.76 2.10 ± 1.88

JMETAL -16.00 2.17 -13.14 ± 3.68 2.17 ± 0.63 -20.00 2.38 -14.69 ± 4.77 3.20 ± 0.85

1BV9

BRKGA -80.07 0.74 -16.33 ± 44.55 7.27 ± 2.86

1KZK

-440.32 1.91 -422.16 ± 17.60 5.68 ± 2.14

SHD -80.64 0.67 -57.17 ± 18.63 6.83 ± 4.84 -441.16 1.54 -438.45 ± 2.99 2.83 ± 1.97

SA -80.41 0.70 -53.44 ± 22.76 6.90 ± 4.59 -441.03 1.55 -435.52 ± 5.89 3.94 ± 2.35

MMA -80.81 0.71 -53.52 ± 16.20 7.48 ± 4.36 -441.19 1.54 -437.01 ± 6.58 3.47 ± 2.31

VINA 14.56 5.78 20.65 ± 2.64 8.41 ± 1.49 -9.85 2.37 -8.05 ± 0.83 5.73 ± 2.57

DOCK 55.69 0.89 56.59 ± 1.04 0.94 ± 0.05 27.61 0.79 27.79 ± 0.16 0.75 ± 0.13

JMETAL -20.00 2.20 -14.61 ± 5.64 2.45 ± 1.31 -24.00 9.02 -10.44 ± 12.79 7.95 ± 1.63

1G2K

BRKGA -455.77 1.34 -436.89 ± 9.44 6.04 ± 2.05

1MUI

-36.39 1.83 -26.57 ± 6.68 5.85 ± 3.02

SHD -456.71 0.88 -452.56 ± 5.60 2.83 ± 2.28 -36.79 1.82 -34.99 ± 1.86 1.72 ± 0.68

SA -456.62 0.78 -450.82 ± 6.38 3.43 ± 2.36 -36.57 1.93 -33.67 ± 2.64 2.53 ± 2.21

MMA -456.78 1.10 -451.14 ± 7.35 3.21 ± 2.52 -36.85 1.95 -33.83 ± 3.38 3.35 ± 2.75

VINA -10.01 4.41 -9.34 ± 0.86 6.05 ± 1.77 -8.22 6.68 -6.29 ± 1.15 7.48 ± 1.09

DOCK 15.46 0.36 16.10 ± 1.49 0.43 ± 0.17 17.06 0.34 17.42 ± 0.15 0.46 ± 0.20

JMETAL -20.00 2.60 -12.84 ± 5.31 3.01 ± 1.69 -20.00 4.65 -13.04 ± 4.16 2.57 ± 0.98

1HEF

BRKGA 175.78 13.48 176.69 ± 0.57 12.25 ± 0.56

1VIK

174.70 2.18 228.25 ± 50.90 6.85 ± 2.82

SHD 173.69 11.43 175.26 ± 1.00 11.79 ± 0.67 173.46 2.20 186.06 ± 16.52 3.82 ± 2.81

SA 173.69 11.36 175.46 ± 0.87 12.00 ± 0.80 173.35 2.16 187.99 ± 18.04 4.59 ± 2.93

MMA 173.58 11.40 174.81 ± 1.19 11.66 ± 0.33 173.34 2.15 182.83 ± 13.13 4.20 ± 2.66

VINA -1.79 9.36 1.42 ± 2.26 8.77 ± 0.56 96.97 11.19 140.08 ± 29.70 9.18 ± 2.02

DOCK 67.68 1.75 68.07 ± 0.36 1.83 ± 0.15 165.54 1.38 267.46 ± 123.25 2.97 ± 2.60

JMETAL -22.00 6.60 -10.74 ± 6.25 5.81 ± 1.67 -40.00 4.90 -19.12 ± 14.44 4.01 ± 0.98

1HEG

BRKGA 357.76 6.91 361.20 ± 1.45 8.67 ± 1.68

9HVP

359.99 1.09 372.04 ± 14.29 4.98 ± 3.39

SHD 357.18 6.45 359.00 ± 0.59 7.53 ± 1.36 360.26 1.46 362.91 ± 4.20 3.11 ± 3.44

SA 356.76 5.56 359.11 ± 1.32 7.77 ± 1.82 360.09 1.05 362.94 ± 4.75 2.50 ± 2.46

MMA 356.91 9.52 358.99 ± 1.11 8.19 ± 1.49 359.97 1.11 363.17 ± 4.78 3.36 ± 3.40

VINA -5.85 5.50 -5.51 ± 0.26 6.00 ± 0.98 -3.74 10.09 0.50 ± 4.03 9.39 ± 0.95

DOCK 58.37 2.75 60.50 ± 1.91 4.02 ± 1.49 25.96 1.19 26.04 ± 0.05 1.21 ± 0.05

JMETAL -14.50 3.16 -9.15 ± 3.90 5.24 ± 1.73 -22.00 4.17 -14.89 ± 4.13 2.72 ± 1.01
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Table 4. Analysis of results with a significant level equal to p < 0.05, cells above the
main diagonal show the p-values for energy, and the entries below the RMSD values.

ID Method BRKGA SHD SA MMA ID BRKGA SHD SA MMA ID BRKGA SHD SA MMA ID BRKGA SHD SA MMA

1AAQ

BRKGA --- 0.00 0.43 0.00

1BV9

--- 0.00 0.00 0.00

1HIV

--- 0.00 0.00 0.00

1KZK

--- 0.00 0.00 0.00
SHD 0.00 --- 0.10 0.72 1.00 --- 1.00 1.00 0.00 --- 1.00 0.44 0.00 --- 0.39 1.00
SA 0.00 1.00 --- 0.00 1.00 1.00 --- 1.00 0.00 1.00 --- 0.67 0.05 0.31 --- 0.67
MMA 0.02 1.00 1.00 --- 1.00 1.00 1.00 --- 0.00 0.64 1.00 --- 0.00 1.00 1.00 ---

1AJX

BRKGA --- 0.00 0.01 0.00

1G2K

--- 0.00 0.00 0.00

1HPX

--- 0.00 0.00 0.00

1MUI

--- 0.00 0.00 0.00
SHD 0.00 --- 1.00 1.00 0.00 --- 0.86 1.00 0.00 --- 1.00 1.00 0.00 --- 0.45 1.00
SA 0.34 0.88 --- 0.64 0.00 1.00 --- 0.32 0.03 0.73 --- 1.00 0.00 1.00 --- 1.00
MMA 0.00 1.00 0.70 --- 0.00 1.00 1.00 --- 0.27 0.10 1.00 --- 0.02 0.18 1.00 ---

1B6J

BRKGA --- 0.00 0.20 0.00

1HEF

--- 0.00 0.00 0.00

1HVH

--- 0.00 0.00 0.01

1VIK

--- 0.00 0.00 0.00
SHD 1.00 --- 1.00 1.00 0.01 --- 1.00 1.00 0.03 --- 1.00 0.10 0.00 --- 1.00 0.68
SA 1.00 1.00 --- 0.71 0.19 1.00 --- 0.44 0.01 1.00 --- 1.00 0.08 0.78 --- 0.18
MMA 1.00 1.00 1.00 --- 0.00 1.00 0.44 --- 0.11 1.00 1.00 --- 0.01 1.00 1.00 ---

1B6L

BRKGA --- 0.00 0.00 0.00

1HEG

--- 0.00 0.00 0.00

1K6P

--- 0.00 0.00 0.00

9HVP

--- 0.34 0.08 0.00
SHD 0.00 --- 1.00 0.83 0.12 --- 1.00 1.00 0.09 --- 1.00 1.00 0.54 --- 1.00 0.02
SA 0.00 1.00 --- 1.00 0.28 1.00 --- 1.00 1.00 1.00 --- 0.21 0.18 1.00 --- 0.12
MMA 0.05 0.13 1.00 --- 1.00 0.83 1.00 --- 0.06 1.00 1.00 --- 0.39 1.00 1.00 ---

dihedral angles. Also, in the our probability function there are issues to be ex-
plored since the weights utilized in both terms until other details. The option by
considering the average fitness of caste ’A’ can be replaced by the fitness value
of the best solution only, or the average of all solutions, or the average of the
best individuals from each subcube. Another possibility is to implement a time
window to evaluate the LS contributions, considering the last one hundred thou-
sand evaluations, for example. Finally, future works can explore many features
to turn this approach better to find solutions to molecular docking problem.
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