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Abstract. Tertiary protein structure prediction is one of the most chal-
lenging problems in Structural Bioinformatics, and it is a NP-Complete
problem in computational complexity theory. The complexity is related
to the significant number of possible conformations a single protein can
assume. Metaheuristics became useful algorithms to find feasible solu-
tions in viable computational time since exact algorithms are not ca-
pable. However, these stochastic methods are highly-dependent from
parameter tuning for finding the balance between exploitation (local
search refinement) and exploration (global exploratory search) capabili-
ties. Thus, self-adaptive techniques were created to handle the parame-
ter definition task, since it is time-consuming. In this paper, we enhance
the Self-Adaptive Differential Evolution with problem-domain knowledge
provided by the angle probability list approach, comparing it with ev-
ery single mutation we used to compose our set of mutation operators.
Moreover, a population diversity metric is used to analyze the behavior of
each one of them. The proposed method was tested with ten protein se-
quences with different folding patterns. Results obtained showed that the
self-adaptive mechanism has a better balance between the search capa-
bilities, providing better results in regarding root mean square deviation
and potential energy than the non-adaptive single-mutation methods.

Keywords: Protein Structure Prediction · Self-Adaptive Differential
Evolution · Structural Bioinformatics · Knowledge-based Methods.

1 Introduction

Proteins are macro-molecules composed by a sequence of amino acids, assuming
different shapes accordingly to this sequence and environment conditions [1].
The three-dimensional structural conformation of a protein is related to its
biological function, where any modification might influence the protein’s bio-
logical function [26]. Thus, the determination of these structures is significant
to understanding proteins role performed inside a cell [9]. Nowadays, the de-
termination of three-dimensional structures is through experimental methods
such as X-ray crystallography and Nuclear Magnetic Resonance. However, these
experimental strategies are time-consuming and expensive [12]. In light of the
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importance of these molecules and limitations of experimental methods, com-
putational strategies became interesting approaches to reduce costs and the
difference between sequenced and determined structures. However, the deter-
mination of three-dimensional protein structures is classified, in computational
complexity theory, as an NP-hard problem [15] due to the explosive of possible
shapes a protein can assume, making impossible the use of exact methods to
solve the problem. In light of the complexity of the Protein Structure Prediction
(PSP) problem, metaheuristics became attractive to finding feasible solutions for
one of the most challenging problems in Structural Bioinformatics [9], although
these techniques do not guarantee the finding of optimal solution [13]. There are
three steps needed to build a possible solver for the protein structure predic-
tion, (i) the computational representation of proteins; (ii) a scoring method to
measure the molecule’s free energy; and (iii) a search method to explore the con-
formational search space [12]. Different metaheuristics have been used in many
NP-hard problems but, the Differential Evolution [24] (DE) is one of the most
effective search strategy for complex problems [11] in a vast type of problems,
including PSP [18][19][20].

Besides the capacity of finding good solutions for NP-Complete problems that
different metaheuristics have, they are very dependent on the balance between
two search characteristics: the exploitation and the exploration [10]. This balance
helps the algorithm to avoid local optima, prevent the premature convergence,
and ensure the neighborhood exploitation for better final solutions. This balance
can be affected by tuning parameters and modifying different operators, but this
is not a trivial task. In this way, we propose the use of a Self-Adaptive Differential
Evolution (SaDE) [22] in the PSP problem, since its adaptive mechanisms tend
to preserve the balance between exploration and exploitation capabilities during
the search process. As the PSP be a complex problem, we use the Angle Proba-
bility List [5] (APL), a valuable source of problem-domain data, to enhance the
algorithm. Moreover, we also use a populational diversity metric [10] to monitor
the SaDE behavior during the search process, comparing it with four mutation
operators that compose the set used in the self-adaptive version. Some interest-
ing convergence behaviors were observed as well as good results for the problem.
The next sections in this paper are organized as follows. Section 2 presents the
concepts used in this works such as the problem formulation, the SaDE algo-
rithm, APL construction, and related works. The proposed method is described
in Section 3. In Section 4 the results obtained by the different approaches are
discussed. Conclusions and future works are given in Section 5.

2 Preliminaries

2.1 Three-Dimensional Protein Structure Prediction

A protein molecule is formed by a linear sequence of amino acids (primary struc-
ture). The thermodynamic hypothesis of Anfinsen [1] states that protein’s folding
depends on its primary structure. The native functional conformation of a pro-
tein molecule coincides with its lowest free energy conformation. Over the years,
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different computational efforts were made in the PSP problem, creating energy
functions, proteins representation, and search mechanisms to simulate the folding
process [12]. However, as proteins are complex molecules, the definition of each
of these three components is not a trivial task. The computational representation
of proteins can vary, from the most simple ones such as two-dimensional lattice
models [4] to the full-atom model in a three-dimensional space. The trade-off
among these different representations is related to the computational cost ver-
sus real protein representation. One adequate way to computationally represent
these complex molecules is by their rotational angles, known as dihedral an-
gles, maintaining the closeness of real systems and reducing the computational
complexity of its representation.

The dihedral angles of proteins are present in chemical bonds among the
atoms that compose the molecule. The amino acids present in the protein’s pri-
mary structure are chained together by a chemical bond known as a peptide
bond. In general, all amino acids found in proteins have the same basic struc-
ture, with an amino-group N, the central carbon atom Cα, a carboxyl-group C,
and four hydrogens. The difference among the 20 known amino acids is in their
side-chain atoms. When bonding two amino acids, the peptide bond is formed by
the C-N interaction, forming a planar angle known as ω. The φ angle represents
the rotation around the N-Cα and ψ the rotation angle that rotates around Cα-C.
These two angles (φ, ψ) are free to rotate in the space, varying from −180◦ to
+180◦. Due to this fact, there is an explosion of possible conformation a protein
can assume since each amino acid’s backbone is composed of two free rotational
and one planar angle. Beyond that, there are the side-chain angles noted as
χ-angles, and their number varies from 0 to 4 accordingly to the amino acid
type. The values of these rotation angles modify the position of different atoms
along the whole protein structure, forming different structural patterns (sec-
ondary structure). The most stable and important secondary structures present
in protein’s structures are the α-helix and β-sheets. Another type of secondary
structure is the β-turn, composed of short segments and generally responsible
for connecting two β-strands. There are structures responsible for connecting
different secondary structures, known as coils. In this way, ones can computa-
tionally represent a protein as a sequence of dihedral angles, where each set of
angles serve as an amino acid. It is possible to imagine that as the size of a
protein (quantity of amino acids in its primary structure) increases, the problem
dimension grows as well.

The physicochemical interactions among the atoms should be considered to
determine the correct orientation of them. In this way, different energy func-
tions were proposed to simulate proteins molecular mechanics [3]. Prediction
methods use a potential energy function to describe the search space, which the
minimum global energy represents the native conformation of the protein. The
Rosetta energy function [23] is one of the popular scoring tools for all-atom en-
ergy determination, and it is used in this paper. The Equation 1 presents the
different components this energy function considers.

ERosetta =

{
Ephysics−based + Einter−electrostatic
+EH−bonds + Eknowledge−based + EAA

(1)
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where Ephysics−based calculates the 6-12 Lennard-Jones interactions and Solvata-
tion potential approximation, Einter−electrostatic stands for inter-atomic electro-
static interactions and EH−bonds hydrogen-bond potentials. In Eknowledge−based
the terms are combined with knowledge-based potentials while the free energy
of amino acids in the unfolded state is in EAA term.

Angle Probability List: Over the years different methods have been proposed
for the PSP problem. These methods can be classified in four classes [12]. The fold
recognition and comparative modeling are two classes of methods that strictly
depends on existing structures to predict the structure of another protein. Be-
sides their efficiency, they can not find new folds of proteins. In first principles
prediction without database information, known as ab initio, the folding process
uses only the amino acid as information for finding the lowest energy in the
energy space, making possible the prediction of new folding patterns. However,
methods purely ab initio have some limitations due to the size of the conforma-
tional search space [12]. In this work, we use a variation of the ab initio class, the
first principles with database information. In this way, adding problem-domain
knowledge to enhance the search mechanism, better structures are found, and it
does not preclude the finding of new folding patterns.

As amino acids can assume different torsion angle values depending on their
secondary structure [17], it is worth to consider these occurrences as informa-
tion to reduce the search space while enhancing algorithms with better search
capabilities. In light of these facts, the Angle Probability List, APL, was pro-
posed in [5] based on the conformational preferences of amino acids based on
their secondary structures. The data was retrieved from the Protein Data Bank
(PDB) [2], considering only high-quality information. To compose this database,
a set of 11,130 structures with resolution ≤ 2.5Å was used. The APL was built
based in a histogram matrix of [−180, 180] × [−180, 180] for each amino acid
and secondary structure. To generate the APLs, a web tool known as NIAS 1

(Neighbors Influence of Amino acids and Secondary structures) was used [6].

Self-Adaptive Differential Evolution: The Differential Evolution (DE) al-
gorithm was proposed initially by Storn and Price [24] and since then it has
been one of the most efficient metaheuristics in different areas [11]. The DE is a
populational-based evolutionary algorithm which depends on three parameters,
the crossover rate (CR), a mutation factor (F ) and the size of the population
(NP ). In the SaDE [22] version, parameters CR and F are modified by the al-
gorithm instead of pre-fixed values for the whole optimization process. This
strategy is interesting since the parameter fine-tuning is a time-consuming task.
Another important fact is that there is not a global parameter value that might
be the optimum parameter for all problems.

As the F factor be related to the convergence speed, in SaDE algorithm the F
parameter assume random values in the range of [0, 2], with a normal distribu-
tion of mean 0.5 and standard deviation of 0.3. In this way, the global (large F
values) and local (low F values) search abilities are maintained during the whole
optimization process. The CR parameter is changed along the evolutionary pro-

1 http://sbcb.inf.ufrgs.br/nias
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cess, starting with a random mean value of 0.5 (CRm) and a standard deviation
of 0.1. The CRm is adapted during the optimization process based on its success
rate. Furthermore, the SaDE also adapts the mutation mechanism used for creat-
ing new individuals. In classical DE algorithm, only one mutation mechanism is
employed during the whole optimization process. The first SaDE approach pro-
posed the usage of two different mutation mechanisms, with different exploration
and exploitation capabilities. To chose the method to be employed, a learning
stage is applied during some generations before the real optimization process. In
this way, a probability of occurrence is associated with a mutation mechanism
accordingly its success and failure rate.
Related Works: Some of the most well-known search algorithms used in the
PSP problem are Genetic Algorithms (GA), Differential Evolution (DE), Artificial
Bee Colony (ABC), Particle Swarm Optimization (PSO) and many others. The
DE behavior was previously analyzed in [18] and [19], where different mutation
strategies were employed to increase the diversity capabilities of the algorithm.
As the author used the diversity metric, it is possible to notice that the diversity
maintenance is a key factor to avoid local optima solutions and, consequently,
the premature convergence. A self-adaptive multi-objective DE was proposed in
[25], showing the importance of how self-adaptive strategies could be interest-
ing to the PSP problem. The Self-Adaptive Differential Evolution was employed
by [20] with two sources of knowledge: the APL and the Structure Pattern List
(SPL). In this version, authors demonstrated how important it is to combine
problem-domain knowledge with the SaDE algorithm. Besides the contribution
of using APL and SPL as a source of structural information, the authors have
not analyzed each mutation operator separately, either the algorithm behavior
regarding convergence and diversity maintenance, creating a gap in the appli-
cation. Besides some works have already used APL as a source of information
[5][7][9], none of them have used some self-adaptive mechanism or are concerned
about the behavior of the algorithms regarding diversity maintenance. Thus, in
our approach, we close this gap using a diversity index to monitor and analyze
the behavior of each mutation operator and a self-adaptive version of the DE

algorithm combined with information provided by the APL. Also, our applica-
tion uses different mutation operators from [20] based on the exploration and
exploitation capabilities of each mutation strategy.

3 Material and Methods

There are three essential components needed to create a PSP predictor: (i) a
way to computationally represents the protein structure; (ii) a scoring func-
tion to evaluate the protein’s potential energy; and (iii) a search strategy to
explore the protein’s conformational search space and find feasible structures.
The main contribution of this work is related to the (iii) search strategy, provid-
ing a populational convergence analysis of each mutation mechanism used in a
knowledge-based SaDE algorithm for the PSP problem.
Protein’s Representation and Scoring Function: In this work, we rep-
resented a protein molecule as a set of torsion angles. Each possible solution
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assumes 2N dimensions, where N is the length of the protein’s primary struc-
ture. Therefore, this set of angles modifies the cartesian coordinates of protein’s
atoms to do the energy evaluation of the molecule. As we use the PyRosetta [8],
a well-known interface to Python-based Rosetta energy function interface [23],
we opted to reduce the search space optimizing only the protein backbone tor-
sion angles (φ and ψ) without losing the molecule’s characteristics. In light of
preserving well-formed secondary structures, we used the PyRosetta to identify
secondary structures using DSSP implementation [16] and considering it as an
additional term in the score3 energy function as shown by Equation 2.

Etotal = Escore3 + ESS (2)

Another important metric to evaluate a possible solution is the Root Mean
Square Deviation (RMSD), which compares the distance, in angstroms, among
the atoms in two structures. In this work, the RMSD is used to compare the final
solution with the already known experimental structure. Equation 3 displays the
RMSDα metric, which compares the backbone between two structures.

RMSD(a, b) =

√√√√√ n∑
i=1

| rai − rbi |2

n

(3)

where rai and rbi are the ith atoms in a group of n atoms from structures a and
b. The closer RMSD is from 0Å more similar are the structures.

Search Strategy: In any metaheuristic, the adjustment of parameters is impor-
tant but not a trivial task since they affect the quality of possible solutions [14].
In order to sidestep the time-consuming task of parameter tuning, different self-
adaptive strategies were proposed [21]. In this work we combine the SaDE [22]
approach with the APL knowledge-database considering the high-quality infor-
mation it provides [5][7][9]. As far as we know, the only SaDE application that
used some kind of structural information was proposed in [20]. Differently from
[22], we have used four DE mutation mechanisms (Table 1), which are also differ-
ent from the used in [20]. We took in consideration the exploratory (DErand/1/bin
and DEcurr−to−rand) and exploitative (DEbest/1/bin and DEcurr−to−bes) capabilities
they provide to compose the set of mutation mechanisms that SaDE can choose.
The Algorithm 1 shows the how we have structured our approach. The “learning
stage” uses the same structure but with few numbers of generations to set the
initial probability rates of each mutation strategy and CRm.

Moreover, we use a diversity measure (Equation 4) to monitor the algorithm
behavior during the optimization process. This metric takes into consideration
the individual dimensions instead of the fitness, making possible to verify if the
population has lost its diversity. This index was proposed in [10] for continuous-
domain problems. The index ranges from [0, 1], where 1 is the maximum diversity
in the population and 0 the full convergence of the population to a single solution.
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Approach Equation

DEbest/1/bin vg+1
i = xg

best + F · (xg
r2 − xg

r3)

DErand/1/bin vg+1
i = xg

r1 + F · (xg
r2 − xg

r3)

DEcurr−to−rand vg+1
i = xg

i + F1 · (xg
r1 − xg

i ) + F2 · (xg
r2 − xg

r3)

DEcurr−to−best vg+1
i = xg

i + F1 · (xg
best − xg

i ) + F2 · (xg
r2 − xg

r3)

Table 1: Classical mutation strategies in DE.

GDM =

N−1∑
i=1

ln

1 + min
j[i+1,N]

1

D

√√√√ D∑
k=1

(xi,k − xj,k)
2


NMDF

(4)

where D represents the dimensionality of the solution vector, N is the population
size and x the individual (the solution vector). The NMDF is a normalization factor
which corresponds to the maximum diversity value so far.

Algorithm 1 Self-Adaptive Differential Evolution with APL

Data: NP
Result: The best individual in population
Generate initial population with NP individuals based on APL

while g ≤ number of generations do
F ← norm(0.5, 0.3)
if past 25 generations then

CRm ← update based on the success rate of previous CR values.
end
for each i individual in population do

mStrategy ← random(0,1) //Probability to choose the mutation strategy
modifies the individual ui,g with the mutation strategy accordingly to mStrat-
egy
if ui,fitness ≤ xi,fitness then

add ui in the offspring
else

add xi in the offspring
end

end
update the mutation probabilities based on their success rate
population ← offspring
g ← g +1

end

4 Experiments and Analysis

The algorithms was ran 30 times in five different DE configurations: DErand/1/bin,
DEbest/1/bin,DEcurr−to−rand,DEcurr−to−best andDESelf−Adaptive. For the four

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_7

https://dx.doi.org/10.1007/978-3-030-22744-9_7


8 P. H. Narloch, M. Dorn

non-adaptive versions of DE, we used the parameter CR as 1 and F as 0.5, while
DESelf−Adaptive the parameters are initialized with 0.5 for CRm and 0.5 for
F . One million of fitness evaluations were done in each run, corresponding to
10 thousand generations in total. To keep a fair comparison among all different
versions, the initial population for each DE configuration is the same, avoiding
that one mechanism starts with a better population than others. Achieved re-
sults are present in Table 2, by protein and DE version. Tests were performed in
an Intel Xeon E5-2650V4 30 MB, 4 CPUs, 2.2Ghz, 96 cores/threads, 128G of
RAM, and 4TB in disk space. To test our approach we used 9 proteins based on
literature works that can be foun at the PDB. The PDB ID are: 1AB1 (46 amino
acids), 1ACW (29 amino acids), 1CRN (46 amino acids), 1ENH (54 amino acids),
1ROP (63 amino acids), 1UTG (70 amino acids), 1ZDD (35 amino acids), 2MR9 (44
amino acids), and 2MTW (20 amino acids).

In order to compare the SaDE approach with the other 4 DE variations, we
have applied the Wilcoxon Signed Rank Test (Table 2 - 3rd column), where p-
values lower than 0.05 indicates that there is statistical relevance. It is possible
to notice that DESelf−Adaptive got relevant results in 5 of 9 cases, and better
average energy in 8 of them. In the other 3 cases, SaDE showed equivalence with
DEcurr−to−rand (1ENH and 1UTG) and DErand/1/bin (1ROP), getting worst results
only for 2MTW, meaning that the Self-Adaptive approach is better, or at least
equivalent, to the non-adaptive version of DE using only one mutation mecha-
nism in 8 of 9 cases. The convergence analysis are presented by two proteins
(1ROP and 1UTG) in Figure 1 and Figure 2. For other proteins, the patterns
are quite similar, changing accordingly with the dimensionality each protein
presents. For 1ROP protein (Figure 1) it is possible to notice that DESelf−Adaptive
better explore the search space during the optimization process, leading to better
energy values, and avoiding premature convergence as observed by DEbest/1/bin.
A similar analysis can be done in the 1UTG protein’s optimization process (Fig-
ure 2), where the diversity index from DESelf−Adaptive is significant even in the
end of the optimization process. This behavior shows that it is possible to keep
optimizing the search space for even better solutions.

PDB Strategy Energy p− value

1AB1

DErand/1/bin −98.00(−75.48± 9.54) 0.00
DEbest/1/bin −152.24(−95.32± 18.48) 0.00
DEcurr−to−rand −169.14(−109.07± 17.29) 0.00
DEcurr−to−best −158.14(−122.57± 15.64) 0.00
DESelf−Adaptive −184.62(−157.08± 20.37) −

1ACW

DErand/1/bin −148.22(−25.17± 41.97) 0.00
DEbest/1/bin −133.85(−88.22± 39.33) 0.00
DEcurr−to−rand −135.75(−63.13± 24.92) 0.00
DEcurr−to−best −160.84(−111.85± 26.69) 0.00
DESelf−Adaptive −203.31(−161.35± 20.04) −

Continued on next page
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Table 2 – Continued from previous page
PDB Strategy Energy p− value

1CRN

DErand/1/bin −95.03(−72.76± 6.13) 0.00
DEbest/1/bin −136.18(−93.92± 16.06) 0.00
DEcurr−to−rand −188.41(−113.55± 23.59) 0.00
DEcurr−to−best −173.95(−129.20± 23.17) 0.00
DESelf−Adaptive −185.67(−154.13± 18.55) −

1ENH

DErand/1/bin −343.13(−334.83± 3.08) 0.00
DEbest/1/bin −364.38(−348.84± 7.92) 0.00
DEcurr−to−rand −376.11(−363.21± 10.90) 0.20
DEcurr−to−best −368.94(−359.37± 5.06) 0.00
DESelf−Adaptive −375.94(−367.26± 4.35) −

1ROP

DErand/1/bin −498.18(−485.32± 6.59) 0.28
DEbest/1/bin −471.52(−458.66± 6.13) 0.00
DEcurr−to−rand −484.88(−475.80± 3.14) 0.00
DEcurr−to−best −477.11(−468.65± 4.64) 0.00
DESelf−Adaptive −507.13(−488.14± 8.78) −

1UTG

DErand/1/bin −514.55(−487.69± 10.24) 0.00
DEbest/1/bin −516.13(−497.01± 9.29) 0.00
DEcurr−to−rand −545.70(−533.13± 8.03) 0.42
DEcurr−to−best −536.09(−515.88± 9.49) 0.00
DESelf−Adaptive −544.34(−534.29± 5.72) −

1ZDD

DErand/1/bin −233.00(−225.00± 3.78) 0.00
DEbest/1/bin −232.28(−225.54± 3.66) 0.00
DEcurr−to−rand −245.71(−236.38± 4.22) 0.00
DEcurr−to−best −240.61(−231.89± 4.05) 0.00
DESelf−Adaptive −245.49(−240.38± 3.26) −

2MR9

DErand/1/bin −287.20(−264.20± 11.33) 0.00
DEbest/1/bin −282.84(−270.72± 6.96) 0.00
DEcurr−to−rand −296.22(−289.38± 3.28) 0.02
DEcurr−to−best −290.33(−283.44± 4.76) 0.00
DESelf−Adaptive −299.87(−290.89± 3.86) −

2MTW

DErand/1/bin −109.56(−102.87± 3.45) 0.01
DEbest/1/bin −95.02(−90.62± 2.12) 0.00
DEcurr−to−rand −104.58(−98.74± 2.88) 0.01
DEcurr−to−best −101.91(−94.70± 2.53) 0.00
DESelf−Adaptive −105.3(−100.66± 2.13) −

Table 2: Results obtained by the 5 DE approaches. Bolded lines presents the
approaches with best energy results accordingly to Wilcoxon Signed Rank Test.
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10 P. H. Narloch, M. Dorn

Fig. 1: PDB ID 1ROP convergence of energy and diversity for all five Differential
Evolution versions. Both plots consider the average among all runs.

Fig. 2: PDB ID 1UTG convergence of energy and diversity for all five Differential
Evolution versions. Both plots consider the average among all runs.
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This analysis shows that the combination of different mutation mechanisms
during the optimization process can be beneficial to the balance between ex-
ploration and exploitation capabilities. It is possible to observe that elitist ap-
proaches (DEbest/1/bin and DEcurr−to−best) are not so good when used alone during
the whole process, but they are useful in small portions of generations. Since the
determination of when apply this type of technique, the Self-Adaptive mech-
anism can decide by itself when to use each mutation operator. Also, the self-
adaptive mechanism used adapts the mutation and crossover factors (F and CR),
which might contribute to better search space exploration. It is noteworthy that
each protein configures a different search space. Hence, the parameter setting for
one protein might not be better for every other protein. The same assumption
can be used for mutation operators. Final conformations are compared with the
experimental ones and reported in Fig. 3

(a) 1AB1 2.62Å (b) 1ACW 1.67Å (c) 2MTW 7.31Å

(d) 1CRN 4.53Å (e) 1ENH 5.56Å (f) 1ROP 6.02Å

(g) 1ZDD 2.35Å (h) 2MR9 2.49Å (i) 1UTG 6.38Å

Fig. 3: Cartoon representation of experimental structures (red) compared with
lowest energy solutions (blue) found by SaDE version.
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It is possible to notice that DESelf−Adaptive achieved the better results in
terms of Energy and RMSD when compared with the other approaches . Of course,
it is needed further investigations to improve the conformational search method,
helping the algorithm to reach more similar structures, with lower energy and
RMSD. It is important to realize that the RMSD values should decrease within the
energy values, but as the energy functions are computational approximations,
and the search space has multimodal characteristics, it is possible to have con-
formations with higher energy values but with lower RMSD values. However, it
is expected that if the minimum global energy is found, the RMSD might be 0,
finding the correct structure.

5 Conclusion

As shown in many works in literature, the PSP problem still an open issue in
Bioinformatics that can contribute for life-sciences. Besides the significant ad-
vances in the problem, it is still needed advances in better search methods for
prediction of proteins. As proteins have different characteristics among them,
and metaheuristics are very sensitive in the use of parameters and operators,
the parameter tuning and mechanism choice is not a trivial task, if not an
impossible one. Thus, we have used a self-adaptive version of the differential
evolution (DESelf−Adaptive) algorithm to solve the PSP problem, combining four
well-known mutation mechanisms not yet combined for this problem. Moreover,
we have used a diversity measure to analyze the behavior of each mechanism
and the combination of all of them in the SaDE algorithm, something not yet
explored in the literature. Accordingly to the convergence graphs and diver-
sity measure, it was possible to verify that elitist approaches (DEbest/1/bin and
DEcurr−to−best) quickly loss the populational diversity while the random ones
(DErand/1/bin and DEcurr−to−rand) have slower convergence. The combination
of them in a self-adaptive model seems to contribute to a better balance between
exploitation and exploration mechanisms, allowing the algorithm to find better
solutions.

As the problem of predicting tertiary structures of proteins being complex, it
is imminent the usage of some problem-domain knowledge. In light of this fact,
we have used the information of the conformational preferences of amino acids
provided by the APL. The data supplied by the APL have been shown beneficial
in different algorithms, such as GAs and PSO. The results obtained in our work are
not only interesting regarding problem-solving, but also in algorithm behavior
analysis. The DESelf−Adaptive got better results in 5 of 9 cases with 95% of con-
fidence accordingly to the Wilcoxon Signed Rank Test and being equivalent in
other 3 cases. Also, the diversity measure showed that self-adaptive mechanisms
enhanced the algorithm capabilities for better exploration of the search space
and, consequently, better energy results. Although the SaDE algorithm was al-
ready used in [20] with attached problem-domain knowledge, an analysis of each
mutation mechanism was not found, neither the energy values or any type of
convergence trace was done. In this way, the present work closed this gap, pro-
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viding the opportunity to do further investigations of self-adaptive algorithms
using APL as a knowledge database to enhance the algorithm capabilities.

For future works, it is intended to expand the usage of APL in different ways,
not only in the initial population. Also, it would be interesting to add more
DE mechanisms, comparing their behavior with specific metrics (such as the
diversity measurement), and how they contribute to the self-adaptive algorithm
for better search capabilities. It is important to do better investigations about the
energy functions, verifying the possibility of multiobjective problem formulation
as already seen in other PSP predictors that used different energy functions to
guide the search mechanism.
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