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Abstract. Purkinje fibers are fundamental structures in the process of
the electrical stimulation of the heart. To allow the contraction of the
ventricle muscle, these fibers need to stimulate the myocardium in a syn-
chronized manner. However, certain changes in the properties of these
fibers may provide a desynchronization of the heart rate. This can oc-
cur through failures in the propagation of the electrical stimulus due
to conduction blocks occurring at the junctions that attach the Purkinje
fibers to the ventricle muscle. This condition is considered a risk state for
cardiac arrhythmias. The aim of this work is to investigate and analyze
which properties may affect the propagation velocity and activation time
of the Purkinje fibers, such as cell geometry, conductivity, coupling of the
fibers with ventricular tissue and number of bifurcations in the network.
In order to reach this goal, several Purkinje networks were generated
by varying these parameters to perform a sensibility analysis. For the
implementation of the computational model, the monodomain equation
was used to describe mathematically the phenomenon and the numeri-
cal solution was calculated using the Finite Volume Method. The results
of the present work were in accordance with those obtained in the lit-
erature: the model was able to reproduce certain behaviors that occur
in the propagation velocity and activation time of the Purkinje fibers.
In addition, the model was able to reproduce the characteristic delay in
propagation that occurs at the Purkinje-muscle junctions.

Keywords: Computational Electrophysiology · Purkinje Fibers · Finite
Volume Method.

1 Introduction

Ischaemic heart diseases and strokes are still the main cause of deaths worldwide,
counting up to approximately 15.2 million of deaths in 2016 [1]. Within this
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critical scenario it is expected that the cost in cardiac diseases surpass 1044
billions of dollares by 2030 [2].

Even with the recent advances in the treatment of these diseases, like arrhyth-
mias and ischemias, research in this area is still needed. The whole process that
leads to this risk state is not completely understood. There are open questions
that needs to be further investigated. In this context, computational models that
reproduce the electrophysiology of the heart began to be a valuable tool over
the years by providing more knowledge about the complex phenomena that are
responsible for causing these diseases. Most of these studies aims to analyze the
cardiac conduction system.

The cardiac conduction system is a group of specialized cardiac cells of the
heart which sends electrical signals to the muscles, enabling them to contract in
order to pump the blood from the ventricles to all parts of the body.

It is mainly composed by the sinoatrial node (SA node), the atrioventricular
node (AV node), the bundle of His and the Purkinje fibers. The SA node is the
natural pacemaker of the heart, on its normal state, it deliveries stimulus to the
system. After the stimulus pass through the AV node and the bundle of His,
the signal reaches the Purkinje fibers, which are responsible for stimulating the
ventricle tissue leading to a contraction of the muscle [3].

Recently, there are several studies that relates problems in the cardiac con-
duction system and cardiac arrhythmias [4–8]. Furthermore, other studies that
mapped the electrical activity of dog and pig hearts, suggest that the Purk-
inje fibers play an important role in generating ventricular fibrillations at the
junctions sites that link the fibers with the ventricular tissue [9–12]. At these
juntions, known as Purkinje-muscle junctions (PMJ’s), reentry currents could
occur, which are a cyclic stimulation that happens over the tissue and is nor-
mally triggered by a unidirectional block that occurs at some point of the cardiac
conduction system [13].

Also, it was demonstated that the behaviour of the Purkinje system changes
when the fibers are couple to a large ventricular mass. There are electrotonic
interactions between the fiber and the myocardium which makes the passage of
the stimulus from one domain to the another more difficult, leading to delays
and even a complete propagation block [14]. These delays normally range from
5 to 15 ms [15] and the main reason for them to happen is a combination of high
resistance that the stimulus encounter at the PMJ’s together with a low current
which unables the ventricular tissue to despolarized. This condition is consider
a source-sink mismatch [8, 16].

In this work, it is presented a study which analyzes what factors could affect
the electrical stimulus over the Purkinje fibers by evaluating which parameters
change the propagation velocity and the activation time of the cells. The main
reason for this work is that in previous works the studies only focused in specific
features, like the evaluation only of the activation of the PMJ’s [17] or by consid-
ering how the network geometry affects the activation map [7] or even studying
only how the properties of the cells that form the fiber changes the propagation
[19].
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The parameters that were analyzed in the present work were the geometric
properties of the cells constituting the fibers, like the diameter and length. Also,
the ionic properties were evaluated by using two different cellular models in order
to model the dynamics of the Purkinje cells. The first model was proposed by
Noble [20], and not only captures the essential features that happens in these
cells, but it also provides an opportunity for direct comparison of our results
with previous studies. The second model was proposed by Li and Rudy [21] and
is a more recent model that is able to capture more complex behaviours, like the
calcium cycle.

The implemented model also study the delays that could occur at the PMJ’s
sites by varying both the electrical resistance and the volume to be stimulated
in these regions. Thus, the model was able to reproduce scenarios of conduction
block when certain factors were attended.

In addition, the geometry of the Purkinje network could be very irregular, as
it was verified in the recent studies from [22]. Because of this, we also consider
how the number of bifurcations presented in the network could affect both the
propagation velocity and activation time in our simulations.

2 Modeling of the Heart Electrophysiology

The contraction of the cardiac cells is initiated by an electrical activation from
an action potential (AP), which is a despolarization current that rises the trans-
membrane potential of an excitable cell from its resting value, normally between
-90 and -80 mV to slightely positive values.

The propagation of the AP from one cell to another can only happen because
of gap junctions, which are specialized proteins that enables the flux of ions
between neighboring cells as represented by Figure 1.

...

Stimulus Gap Junctions

20

-80

mV

Ions

Action Potential

Fig. 1. Representation of the electrical propagation through a Purkinje fiber. The
difference in ionic concentration of the cell membrane generates a difference in the
potential, which is responsible for triggering an AP, despolarizing the cell when it
reaches a certain threashold. In addition, ions can pass from one cell to another by gap
junctions, activating the adjacent cells in a wave-like form.
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2.1 Monodomain model

In order to mathematically reproduce the electrical propagation over the Purk-
inje fibers we use the unidimensional monodomain model, which is a reaction-
diffusion equation.

σx
∂2Vm
∂x2

= β

(
Cm

∂Vm
∂t

+ Iion + Istim

)
, (1)

where Vm is the transmembrane potential of the cell given in mV , σx is the
conductivity from the cells given in mS/cm, β is the surface per volume ratio of
the cell given in cm−1, Cm is the capacitance of the membrane given in µF/cm2,
Iion is an ionic current that depends of the cellular model being used, Istim is a
stimulus current.

2.2 Propagation Velocity

One important feature of the electrical propagation through the heart is the
velocity in which the stimulus travels. There are differences in the propagation
velocity between the Purkinje cells and the ventricular ones. The human cardiac
Purkinje cells are characterized by a fast propagation velocity, ranging from 2
to 4 m/s [23]. On the other hand, ventricular cells have relative slower velocity
with values between 0.3 to 1.0 m/s [24].

The propagation velocity along a Purkinje fiber could be calculated using
the cable equation [27] and by considering that the cable is composed by a set
of cells with length h and a diameter d.

v =
c

2Cm

√
d

RmRc
, (2)

where v is the propagation velocity of the fiber given in cm/ms, Rc is the cito-
plasmatic resistivity given in Ω.cm, Rm is the membrane resistivity given in
Ω.cm2 and c is a parameter which depends on the cellular model.

Following the work of [17] the propagation velocity is considered to be con-
stant along the fibers. Because of that, given the distance between two points of
the network and the velocity that was measured in this region it is possible to
calculate the activation time of a particular cell in the network.

2.3 Numerical solution

The numerical solution of the monodomain equation was done by applying the
Finite Volume Method (FVM). The main reason for using the FVM was that
is a method based on conservative principals, so that dealing with bifurcations
would not be a problem. Also, the method can be applied in complex geometries,
such as the Purkinje fibers [18].

For the time discretization of the FVM we divided the diffusion part from
the reaction one in equation (1) using the Godunov splitting operator [28]. From
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this, at each timestep we need to solve two distinct problems, a non-linear system
of ODE’s given by:


∂Vm
∂t

=
1

Cm
[−Iion(Vm, η) + Istim],

∂η

∂t
= f(Vm, η),

(3)

and a parabolic PDE

Iv = β

(
Cm

∂Vm
∂t

)
= ∇ · (σx∇Vm) . (4)

where η represents the set of variables which controls the ionic channels related
to the ionic current Iion of the cellular model.

To approximate the time derivative from equation (4) a implicit Euler scheme
was used in order to avoid instabilities problems.

∂Vm
∂t

=
V n+1
m − V nm
∆t

, (5)

where V n is the transmembrane potential at timestep n and ∆t is the size of
the time discretization, which is necessary to advance the PDE in time.

For the time discretization of the non-linear system of ODE’s, given by equa-
tion (3) an explicit Euler scheme was used with the same timestep of the PDE.
For the spacial discretization, the diffusive term from equation (4) was approxi-
mated using the following flux:

J = −σ∇V, (6)

where J(µA/cm2) is the intracelular flux of current density

∇ · J = −Iv, (7)

where Iv(µA/cm
3) is a volumetric current which corresponds to the left side of

equation (4).

In addition, we will consider an unidimensional cable, which is composed by
cylinders and will represent the Purkinje cells, as it is illustrated by Figure 2.
These will be the control volumes of FVM, in which at the center of each one
will be a node containing the amount of interest Vm.
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Fig. 2. Space discretization used for modeling the Purkinje fibers. Each Purkinje cell
has diameter d and a length h. The length of the cells have the same value of the space
discretization size dx. Between the cells, there are current fluxes through the faces of
the control volumes.

After that, we define the FVM equations by integrating (7) over an individual
control volume Vi with a value equal to πd2h/4.∫

Ω

∇ · Jdv = −
∫
Ω

Ivdv. (8)

Then, applying the divergence theorem on (8).∫
Ω

∇ · Jdv =

∫
∂Ω

J · ξξξds, (9)

where ξξξ is an unitary vector which points to the boundary ∂Ω.∫
∂Ω

Ji · ξξξds = −
∫
Ω

Ivdv. (10)

Finally, assuming that Iv represents a mean value for each particular volume
and substituting (4) into (10).

βCm
∂Vm
∂t

∣∣∣∣∣
i

=
−
∫
∂Ω

Ji · ξξξds
π.d2.h/4

. (11)

Calculating Ji for each control volume by dividing the flux into a sum of
fluxes over each face and remembering that we have only an input and a output
flux at each control volume.∫

∂Ω

Ji · ξξξds = (Iout − Iin), (12)

where the current between two control volumes i and j are calculated as follows

Ii,j = −σx
∂Vm
∂x

∣∣∣∣∣
i,j

π.d2

4
, (13)

where a central finite difference approximation was used for the space derivative
on equation (13):
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∂Vm
∂x

∣∣∣∣∣
i,j

=
Vj − Vi
h

. (14)

In order to model the PMJ’s we consider that the last Purkinje cell of the
fiber will be linked to a large myocardium cell, which has a volume equivalent
to the region to be stimulated over the ventricular tissue. This connection was
implemented by adding a discrete resistor RPMJ between the last Purkinje cell
and the myocardium cell as shown in Figure 3.

RPMJ
Myocell

ii-1

d2

IPMJIi-1/2

 σx σx... Pkcell

Fig. 3. Space discretization used for modeling the Purkinje-muscle junctions. The my-
ocardium cell has a larger diameter d2 than the Purkinje cells.

Furthermore, the value of the current IPMJ that passes through the resistor
RPMJ is given by

IPMJ =
(Vpk − Vmyo)

RPMJ
, (15)

where Vpk is the tramsmembrane potential from the Purkinje cell and Vmyo is
the transmembrane potential of the myocardium cell.

To be able to analyze the behaviour of the characteristic delay that occur
at the PMJ’s sites we define a γ parameter, which is the product between the
resistance of the PMJ and the volume of the myocardium cell.

γ =
π.d22.h

4
.RPMJ (16)

3 Results and Discussions

3.1 Stimulus protocol and cellular models

For all the experiments of this work we use the following stimulus protocol.
Initially, we perform a simulation so that the system could reach its steady-

state, where ∆t = 0.01 ms and a stimulus current Istim is applied in periods of
500 ms in the first 5 cells of the fiber. At the end of this first simulation we save
the state of every cell in the network and load this state as the initial condition
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for a second simulation, in which the propagation velocity and activation times
will be calculated. This was done in order to get a more reliable result since the
system will be at equilibrium.

Regarding the cellular models for the ionic current Iion that appears on
equation (3) we use two models that are specifically for cardiac Purkinje cells,
the Noble model [20] and the Li & Rudy model [21].

3.2 Model for the propagation velocity

The first experiment of this work has the objective of calibrating the parameters
related to the monodomain model until it reaches the same behaviour of the
analitical expression given by (2), which describes the propagation velocity over
the fiber.

In order to achieve this the parameter c from equation (2) needs to be cal-
culated based on the cell properties we were using. On [27] there is a table with
typical values for the parameters from equation (2) for different types of cells,
for this work we use the values related to the cardiac mammal muscle in this
table.

Considering some works found in the literature [29–31] an average value for
the propagation velocity in a dog Purkinje fiber with a diameter in the range of
d = 35µm is aproximately 2 to 3.5 m/s. By using the values Rm = 7kΩ.cm2,
Rc = 150Ω.cm, Cm = 1.2µF/cm2, d = 35µm and v = 2.6m/s on equation (2)
we calculate c = 10.808. This result will be consider the analitical solution for
the model in this experiment.

For the numerical approximation we changed the value of the conductivity
σx in order to get a propagation velocity close to the one given by the analitical
solution. Then, we measured the velocity on a 2cm cable composed of Purkinje
cells with a diameter and length equal to d = 35µm and dx = 164µm, respec-
tively. After some tests we found the values σx = 0.004mS/cm for the Noble
model and σx = 0.0019mS/cm for the Li & Rudy model, which resulted in a
propagation velocity along the cable equals to v = 2.645m/s, which was close to
the value from the analitical model.

By varying the value of the diameter d of the Purkinje cells we could them
verify how the propagation velocity behaves along the cable. In Figure 4 we
measured the propagation velocity in a 2cm cable by using an initial diameter
of d = 10µm and we incremented this value by 5µm until it reaches d = 50µm.
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Fig. 4. Comparison between the analitical solution given by (2) and the numerical one.
The propagation velocity was calculated for a Purkinje cell set at the middle of the
2cm cable.

As can be verify, the results from our numerical model were really close to
the analitical one. Furthermore, the behaviour of the propagation velocity was
in accordance with the observations found in the literature [30], which says that
the velocity along a cable decays with a factor proportional to the

√
d.

3.3 Model with Purkinje-muscle junctions

In the next experiment we explore how the introduction of a PMJ would affect
the activation time along the fiber. The simulations were done using again a
2cm cable, which will be representing the Purkinje fiber. At the end of the
cable a PMJ with resistance RPMJ = 11000kΩ was added and then linked to a
myocardium cell. The characteristic delay was calculated by taking the difference
between the activation time of the last Purkinje cell and the myocardium cell.

To analyze the characteristic delay that happens at the PMJ’s sites we vary
the value of the parameter γ and the diameter d of the Purkinje cells, so that we
could study in which condition there will be propagation blocks as can be seen
in Figure 5.
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Fig. 5. Comparison between the characteristic delay given in ms and the diameter of
the Purkinje cells when the γ parameter changes for both the Noble and Li & Rudy
model.
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As can be visualized in Figure 5, both cellular models obtain similar results. It
is important to note that there is a value for the diameter where the characteristic
delay begins to assume high values until it leads to a complete block of the
stimulus, unabling the myocardium cell to be despolarized, characterized by the
sudden peaks in the results. Also, with this simulation we could check that there
is a relation between the characteristic delay and the γ parameter. As we increase
the value γ the delay time increases proportionally, since a high value of γ means
either a large ventricular mass to be stimulated or a high resistance of the PMJ.
In both cases we need more current from the fiber in order to trigger an AP at
the myocardium cell.

Regarding the diameter of the Purkinje cells the relation between this param-
eter and the characteristic delay is inversely proportional. The reason is that with
a larger diameter more current could travel through the fiber since its transversal
area will be wider, which makes the despolarization of the myocardium cell to
happen more easily.

3.4 Model with bifurcations

The last experiment of this work studies the effects of bifurcations over the
Purkinje fibers. Different types of networks were generated with different levels
of bifurcations as shown in Figure 6.

(A)
L L/2

L/2

L/3

L/3

L/3

L/4
L/4

L/4

L/4

(B) (C) (D)

Fig. 6. Networks that were used in the experiments that evaluate the influence of bifur-
cations over the activation time. Each one of the four networks represents a structure
with a different level of bifurcations. The distance between the source of the stimulus
and the terminal points of the networks are always equals to L. (A) Level 0. (B) Level
1. (C) Level 2. (D) Level 3.

In addition, we decrease the diameter of the Purkinje cells from one level of
the network to another. This decision was made by observing images of Purkinje
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fibers of a calf [26]. The value of the diameter at a certain level k of the network
it now be given by (17).

{
dk = d0, if k = 0,

dk = δ.dk−1, if k 6= 0,
(17)

where dk is the diameter of a Purkinje cell at a level k in the network and δ is
the ratio in which the diameter is decreased.

The simulations were done using the same two cellular models and by adding
a PMJ with γ = 0.2 at the end of each fiber. For the space discretization we use
dx = 164µm, a initial diameter d0 = 30µm for the Noble model and d0 = 55µm
for the Li & Rudy model. The decrease ratio for the diameter was tested within
the range δ = {90%, 80%, 70%} and the distance from the source of the stimulus
to each terminal was L = 2cm.
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Fig. 7. Results showing the activation time of the myocardium cell considering the
number of bifurcations the stimulus had to pass through until it reaches the end of the
fiber as the diameter decreases by a ratio δ, for both the Noble and Li & Rudy model.

In Figure 7 it can be verified that in both celullar models the activation time
of the myocardium cell increases proportionally to the number of bifurcations.
This happens because after a bifurcation the diameter decreases by following
equation (17), which makes the activation much harder, since the networks that
had more bifurcations will have a smaller diameter at the last level of the fibers.

Based in this observation we perform another experiment that test the effects
of also decreasing the myocardium volume to be stimulated by the fibers. Mainly
because, the Purkinje fibers seems to be well distributed over the ventricular
tissue in order to proper activate the muscles and to reduce propagation blocks
[26]. This was done by calculating the value of γ based on how many levels of
bifurcation a certain network had.

γk =
γ0
2k
, (18)
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Fig. 8. Results showing the activation time of the myocardium cell considering the
decreasing of the parameter γ using (18) as the diameter of cells decreases by a ratio
δ.

Analyzing the results from Figure 8 the decreasing of the γ parameter could
avoid some of the propagation blocks that happen in the previous test. This
behaviour can be justify by the fact that with less resistance at the PMJ sites,
the fibers which had a small diameter could now despolarize the myocardium
cell.

4 Conclusions

In this work it was studied which features from the Purkinje fibers change the
propagation velocity and the activation time within these structures. From the
results of the experiments, geometric parameters, like the diameter of the Purk-
inje cells, were the ones that had the most influence among the others. Meaning
that they could play an important role in sustaining arrhythmias.

From the results of the experiments presented in this work we could retrieve
some relevant information about the factors that could affect the propagation
velocity and the activation over the Purkinje fibers.

In the first experiment, it was possible to validate certain behaviours found in
the literature. The implemented model was able to reproduce the proportionality
between the diameter of the Purkinje cells and propagation velocity along the
fiber, which according to some works is proportional to

√
d [27, 25]. Thus, both

cellular models reproduced the same behaviour as it was expected.
From the results of the second experiment it was shown that Purkinje fibers

with a small diameter were not able to stimulate a large region of the my-
ocardium, generating propagation blocks over the PMJ’s sites. These blocks
mainly occur because there are cells that could not achieve the current threshold
necessary to activate the myocardium cell, which is characterized as a source-sink
mismatch.

The last experiment fortifies the idea that the activation of the ventricular
tissue depends of how well distributed the fibers are over this domain, which is
actually observed in nature. The ramifications of the Purkinje network seems to
be a way to homogeneously cover the myocardium tissue in order to increase the
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superficial area of the network and minimize the energetic cost for the stimulation
of the ventricles.

Furthermore, the implemented model was able to reproduce the characteris-
tic delay that occurs at the PMJ’s sites. The implementation using the Finite
Volume Method and the coupling using a resistor linked to a larger control vol-
ume has proved to be very effective, since it was able to generate the same results
that were observed in the literature.
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