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Abstract. Contemporary development in personalized medicine based both on 

extended clinical records and implementation of different high-throughput “om-

ics” technologies has generated large amounts of data. To make use of these da-

ta, new approaches need to be developed for their search, storage, analysis, in-

tegration and processing. In this paper we suggest an approach for integration of 

data from diverse domains and various information sources enabling extraction 

of novel knowledge in cancer studies. Its application can contribute to the early 

detection and diagnosis of cancer as well as to its proper personalized treatment. 

The data used in our research consist of clinical records from two particular 

cancer studies with different factors and different origin, and also include gene 

expression datasets from different high-throughput technologies – microarray 

and next generation sequencing. An especially developed workflow, able to 

deal effectively with the heterogeneity of data and the enormous number of re-

lations between patients and proteins, is used to automate the data integration 

process. During this process, our software tool performs advanced search for 

additional expressed protein relationships in a set of available knowledge 

sources and generates semantic links to them. As a result, a set of hidden com-

mon expressed protein mutations and their subsequent relations with patients is 

generated in the form of new knowledge about the studied cancer cases. 

Keywords: Data Integration, Ontology, Linked Data, Knowledge Extraction, 

Cancer Studies. 

1 Introduction 

Data integration is one of the challenges of contemporary data science with great 

impact on different practical and research domains. Data generated in medicine from 

both clinical and omics high-throughput sources contribute to changes in data storage 

and analytics and to a number of related bioinformatics approaches aiming at better 

diagnostics, therapy and implementation of personalized medicine [1, 2].  

These integrative efforts for research and therapy generate a huge amount of raw 

data that could be used to discover new knowledge in the studied domains. The ex-

traction of new knowledge is a complex and labor-intensive task with many compo-
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nents – different data sources may have the same attributes but with different seman-

tics. The used data sources are also heterogeneous: each of them has its own structure 

and its own data format. 

In this paper we present a study of neuroblastoma and breast cancer. These cancers 

are a great threat for children and women respectively. Breast cancer concerns ap-

proximately one in eight women over their lifetime [3], whilst neuroblastoma is the 

most common cancer in less than one year old children. It accounts for about 6% of 

all cancers in children [4]. Both cancer datasets vary strongly for each particular case 

study.  

It is essential to discover relations between these two cancers, based on an effective 

mapping of common mutated proteins. Such an approach can present classes of pro-

teins related to both diseases, which can serve as a basis for more accurate and well 

annotated discovery of potential molecular markers in cancer studies. From a data 

science point of view this set of problems can be tackled by an approach based on 

semantic data integration [5, 6]. 

Data integration is understood as a mean to combining data from different sources, 

creating a unified view and improving their accessibility to a potential user [3, 4]. 

Data integration and biomedical analysis are separate disciplines and have evolved in 

relative isolation. There is a general agreement that uniting both these disciplines in 

order to develop more sustainable methods for analysis is necessary [7, 8]. Data inte-

gration fundamentally involves querying across different data sources. These data 

sources could be, but are not limited to, separate relational databases or semi-

structured data sources distributed across a network. Data integration facilitates divid-

ing the whole data space into two major dimensions, referring to where data or 

metadata or knowledge reside and to the representation of data and data models. Bio-

medical experiments [9] take advantage of a vast number of different analytical meth-

ods that facilitate mining relevant data from the dispersed information. Some of the 

most frequent experiments are related to gene expression profiling, clinical data ana-

lytics [10], rational drug design [6], which attempt to use all available biological and 

clinical knowledge to make informed development decisions. Moreover, machine 

learning-based approaches for finding and highlighting the useful knowledge in the 

vast space of abundant and heterogeneous data are applied for improving these analyt-

ics. Metadata, in particular, is gaining importance, being captured explicitly or in-

ferred with the aid of machine learning models. Some examples include the use of 

machine learning methods in the inference of data structure, data distribution, and 

common value patterns. 

The heterogeneity of data makes any integrative analysis highly challenging. Data 

generated with different technologies include different sets of attributes. Where data 

is highly heterogeneous and weakly related, two interconnected integrative approach-

es are applied: horizontal and vertical integration (Fig. 1). The horizontal data integra-

tion unites information of the same type, but from different sources and in different 

formats. It helps to unite heterogeneous data from many different sources in one data 

model. The vertical integration has a potential to relate different kinds of information, 

helping for example to manage links between the patient, gene expression, clinical 

information, chemical knowledge and existing ontologies, e.g., via web technologies 
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[11, 12, 13]. Most existing approaches for data integration are focused on one type of 

data or one disease and cannot facilitate cross-type or disease integration [1, 2].  

 

Fig. 1. Horizontal and vertical data integration. Grey arrows show the relations between the 

used types of data (clinical, expression, CNV and disease development). The horizontal arrow 

shows a flow of integration of all provided data sources, like medical institutes. The vertical 

arrow shows a potential to link all existing different types of data. 

The main objective of this paper is to present a novel efficient data integration 

model for the studied cancer cases by data mining and knowledge extraction ap-

proaches which can find relationships between certain data patterns, related to mutat-

ed proteins, expression and copy number variation (CNV). Our approach utilizes 

NoSQL databases, where we combine clinical and expression profile data, using both 

raw data records and external knowledge sources. 

2 Problem Description 

Intelligent exploitation of large amounts of data from different sources, with different 

formats, and different semantics is among the most important challenges especially in 

the biomedical area [14]. Life sciences and in particular medicine and medical re-

search generate a lot of such data due to recent developments of high-throughput mo-

lecular technologies and large clinical studies [2]. The major challenge here is to inte-

grate, analyze and interpret this data in the scope of contemporary personalized medi-

cine. Personalized medicine (PM) has the potential to tailor therapy and to ensure 

adequate patient care. By enabling each patient to receive early diagnoses, risk as-

sessments, and optimal treatments, PM holds promise for improving health care while 

also lowering costs. The information background of the PM is a key element for its 

successful implementation. This information background is based on semantically 

reach, accurate and precisely analyzed bio-medical data [15]. 

The circle of problems in our study can be described in the scope of a successful 

analysis and integration of the massive datasets, now prevalent in the medical scienc-

es – more precisely, integration of these datasets with linked data sources to find addi-

tional relations between proteins and clinical attributes for the two studied diseases. 

The challenge is to provide a method based on Linked Data and open source technol-
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ogies [16, 17] to combine knowledge from many existing open sources for efficient 

integration of raw libratory data. Raw libratory data that can eventually be integrated 

for the comprehensive elucidation of complex phenotypes include functional gene 

annotations, gene expression profiles, proteomic profiles, DNA polymorphisms, DNA 

copy number variations, epigenetic modifications, etc. [18].  

The general challenges in our study are based on the use of different data: clinical 

data, RNA-Seq and microarray gene expression data, and CNV from comparative 

genome hybridization (aCGH) [19]. The solution of these challenges is to demon-

strate and examine the power of semantic data integration and knowledge extraction 

for the purposes of real world clinical settings in breast cancer (BC) and neuroblasto-

ma (NB).  

A specific challenge in the study is to integrate and analyze sets of unbalanced and 

non-structured data. The molecular data is in raw format with all fields and attributes 

generated from the sequencing or microarray technology. Before starting the integra-

tion process, it is necessary to perform some preprocessing operations on the raw 

formats and to generate an appropriate new data structure. We are working with da-

tasets, rich in relations, and it is essential to be able to find many annotations for the 

existing relations which will help one to enhance the set of relations by proper re-

sources from the available knowledge bases. 

Solutions based on semantic integration of data have already been successfully ap-

plied to cancer datasets to find driver proteins and pathways [20]. We chose an ap-

proach based on semantic integration because most features of our data have different 

semantics for each patient, which is an essential background for personalized medi-

cine. The expected results of such type of approach include identification of hidden 

protein subtypes distinguished by common patterns of network alteration and a pre-

dictive model for cancer development based on the knowledge about joined proteins. 

3 Data Description 

The raw data in each studied dataset are in a specific format and have specific seman-

tics. A field (an attribute) in each dataset has different meanings due to the technolo-

gies and the subsequent recording. The provided data by itself also contain infor-

mation for mutated proteins, expression and CNV. 

The initial point for transformation, grouping and integration are the pa-

tients/sample files. The generated record for each particular patient contains attributes 

like age, gender, nationality, etc. Two datasets − neuroblastoma (NB) and breast can-

cer (BC), are used in this study. The neuroblastoma set contains RNA-Seq gene ex-

pression profiles of 498 patients as well as Agilent microarray expression and aCGH 

data for a matched subset of 145 patients and corresponding clinical information. The 

breast cancer set contains profiles for microarray and copy number data, and clinical 

information (survival time, multiple prognostic markers, therapy data) for about 2,000 

patients.  

Each patient record contains many files with expression, mutation and CNV data 

shown on Fig. 2. For example, each record from expression files refers to another file 
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with detailed information. It includes 100-200 sample records for one expression and 

contains also information about the mutation type, expressed chromosome, expression 

start position in the DNA, expression end position. All properties were generated by 

the used sequencing technology. A mutation file contains proteins, their attributes and 

reference to the expression file with detailed information. The relationships patient – 

protein expression and patient – protein mutation are fundamentally different. A pa-

tient who has an expressed protein may not have the same protein mutated. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. General structure of raw data. 

Both datasets contain some additional files for medical patient stability, meta clini-

cal information, meta expression/mutation information, etc.  

4 Related Work 

Data integration is a real challenge for querying across multiple autonomous and het-

erogeneous data sources [5, 9]. It is crucial in the medical and health sector that use 

multiple sources for producing datasets and is of great importance for their subse-

quent analysis for study, diagnostics, and therapy purposes [11, 12, 13].  

A major objective of data integration is to enable the use of data with implicit 

knowledge and to aid the use of the integrated sources to answer queries [21, 6].  

In medical studies and in particular in cancer studies, there are several quite differ-

ent and heterogeneous kinds of data that need to be integrated: clinical data, medical 

check data, various types of molecular information [2]. All these massively emerging 

amounts of data, accompanied with the new requirements for the purposes of preven-

tive and personalized medicine, emphasize the great importance of data integration in 

cancer studies [10].  

The semantic side of data integration in cancer studies gives a large horizon for us-

ing related data with different meaning and structure and makes possible to extract 

unknown knowledge about various aspects of the studied cancer case(s) [15]. The 

semantic integration of data from different types of cancer studies challenges the 

problem how to use all provided data aside with the opportunity to make proper asso-

ciations of clinically controlled parameters and information based on “omics” data 

profiles [19, 22].  
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Technically the integration of cancer studies data can be supported by development 

of workflows and systems, capable for fast and accurate integration of disparate can-

cer data and enhanced models for cancer data analytics. Such systems allow con-

structing and executing queries at a conceptual level and in a way utilizing the availa-

ble rich in semantics cancer information. Some existing tools for semantic data inte-

gration in cancer studies are based on utilization of external domain knowledge 

sources like Gene Ontology (GO). There are several popular RDF-based data integra-

tion platforms: Reactome [23], BioModels [24], BioSamples [25], Expression Atlas 

[5], ChEMBL [9], UniProt RDF [11]. These platforms can be used to search across 

datasets. For example, a query for gene expression data will integrate results from 

Expression Atlas with relevant pathway information from Reactome and compound-

target information from ChEMBL. The structured data are available for download or 

can be queried directly. 

This long list of platforms and resources can be used as good examples of linking 

various sources of domain knowledge. Our methodology goes much further aiming at 

the extraction of new knowledge from the results of integration of raw, unstructured 

and heterogeneous data.  

5 Main Characteristics and Novelty of the Proposed Approach 

The approach to data integration we suggest in this paper was originally oriented to a 

particular application – to unite data from real studies and treatments of neuroblasto-

ma and breast cancer – but its design characteristics make it sufficiently generic and 

applicable in a wide range of subject areas. As a result of its application, different 

datasets are joined and the semantic integrity of the data is kept and enriched. In our 

particular case, through combining data from multiple sources (Fig. 3) we create a 

new network of data where entities, like proteins, clinical features and expression 

features, are linked with each other [26]. In this network, nodes represent patients and 

edges represent similarities between the patients’ profiles, consisting of clinical data, 

expression profiles and CNV data. Such a network can be used to group patients and 

to associate these groups with distinct features. The main challenges here are: (1) 

building an appropriate linked data network, discovering a data model semi-structure 

[14] and mapping assertions by the applied model for data integration [27]; and (2) 

data cleaning, combined into a formal workflow for data integration.  

We focus on two aspects of data integration: horizontal and vertical. As explained, 

horizontal data integration means combining data from different sources for the same 

entity. Entities can be identified in our particular datasets as clinical data, patients, 

expression profiles and CNV. Each kind of data is measured by a specific technology 

and available in various data formats. Groups of entities are semantically similar. 

Vertical data integration, on the other hand, is applied to creating relations between all 

horizontally integrated objects. This vertical data integration provides a connection 

between all different types of entities. This connection, in our case, covers relations 

between patients, expression profiles, clinical data and CNV data. Based on these 

relations we can easily detect all patients closely related to each other by protein mu-
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tations, diagnosis and therapy. We used different databases for horizontal and for 

vertical data integration. These different databases are required because horizontal 

and vertical data integration address different aspects of the integration problem. Data 

for the horizontal data integration are unstructured and heterogeneous. Thus, we use a 

document-oriented database, which can handle different data types and formats. For 

vertical data integration a graph database is used, as it is suitable for representing 

relations − crucial in this case. In this study, all relations are established between ex-

isting records for each entity, and represented by a semi-structure. 

An integration model over a NoSQL database can potentially unite medical studies 

data, alternatively to the most frequently used statistical/machine learning methods. 

Most NoSQL database systems share common characteristics, supporting scalability, 

availability, flexibility and ensuring fast access times for storage, data retrieval and 

analysis [9, 11]. Very often when applying cluster analysis methods for grouping or 

joining data issues, small classes occur − mainly with outliers and mostly with data 

dynamically changing their relatedness. Applying our integration model we do be-

lieve that all these problems can be overcome. Moreover, we can extend the potential 

of the model by using multiple datasets, regardless of the level of heterogeneity, par-

ticular formats, types of data, etc. − all very specific for cancer studies. 

6 Suggested Methodology 

Our methodology for integration of unstructured data from the studied samples is 

based on the proper use of schema-less databases and domain ontologies like the 

Gene Ontology (GO) [28]. The data we are manipulating contain hidden relationships 

between the proteins provided from different patients within studies of both diseases 

(BC and NB). We use all available information about already built relationships in 

our data sources and try to find additional information in some third party sources to 

attain semantic integration of the data. Thus, step-by-step, we develop a network, 

which combines protein relations between patients and diseases. The challenge here is 

to store all relationships with their cycle dependencies. The latter are possible because 

one patient has relationships with mutated protein(s), mutated protein(s) has/have 

reference(s) to expression and other patients have references to the same protein(s).  

In each disease (BC and NB) every patient has a different set of mutated or ex-

pressed proteins. Only small sets of mutated proteins are equal and exist in each pa-

tient. All proteins belong to families, which contain many related proteins. By appli-

cation of semantic annotation and search techniques we aim to find and combine all 

proteins which are semantically related to the studied diseases. So, we can aggregate 

and discover all needed information for an enhanced number of related proteins.  

The role of GO in our methodology is to provide a controlled vocabulary for anno-

tating homologous gene and protein sequences in the studied cancers. GO classifies 

genes and gene products on the base of three hierarchical structures that describe a 

given entry’s biological processes, cellular components and molecular functions, and 

organizes them into a parent-child relationship [22]. For the purposes of our study, an 

essential key are protein families and relationships between them. We associate all 
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this information with the inferred relationships between patients and proteins to pro-

vide a complete schema of mutated and related proteins for each studied patient. In 

this way we demonstrate the possibilities of using appropriate subject knowledge 

bases (like GO) for the purpose of semantic integration of data from different sources. 

As a result we build a base of semantically linked data from biomedical research and 

create a framework supporting the practical extraction of new knowledge in life sci-

ences and other significant areas (Fig. 3). 

We developed a workflow for data integration in order to overcome the heteroge-

neity of the data and the enormous number of relations between the studied patients 

and proteins. First of all we are aiming to integrate datasets from the two cancer stud-

ies. In this line we are trying to find some relations within the given data as well as to 

generalize some information about commonly related proteins. This process invokes 

the semantic integration of the data, which is a key part of our study.  

During the analysis of raw data we create a sort of “semi-structure” of the data – a 

structure containing only attributes, existing in each record. In semi-structured data, 

the entities belonging to the same class (protein mutated, expressed and CNV) may 

have different attributes even though they are grouped together, and the attributes' 

order is not important. Semi-structured data is becoming more and more prevalent, 

e.g. in structured documents and when performing simple integration of data from 

multiple sources. Traditional data models and query languages are inappropriate, 

since semi-structured data often is irregular: some data is missing, similar concepts 

are represented using different types, heterogeneous sets are present, or object struc-

ture is not entirely known [13]. 

 

Fig. 3. Workflow of semantic data integration. 

Our workflow covers eight stages (Fig. 3). The first two stages correspond to data 

generated from different high-throughput technologies – microarray and RNA-Seq 

data (1), preprocessed (2) for databases generation. In this step we aim to complete 

the missing data (3), to define data for a patient, to generate the “semi-structured da-

ta” and to store it. Raw and “semi-structured” data are stored in a document-oriented 
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NoSQL database (MongoDB) with all attributes (4). At the next stage (5) we try to 

find relationships between proteins, patients and diseases. For the enrichment of our 

dataset we try to find additional protein relationships (6) in a set of external domain 

knowledge sources and to generate semantic links to them. These enriched protein 

relations are traced with other proteins and the discovered relations are explored. We 

use in this case the Neo4J database. In this graph database we store only relationships 

between entities (7). Each relation contains a “semi-structure” with ID from Mon-

goDB. Мodule 8 is intended for user access to data. 

Starting point (1) in our workflow on Fig. 3 is the raw data entry, read in different 

formats (CSV, TXT, XML, etc.). We analyze each record and create a general data 

structure (“semi-structure”). The meaning of this semi- structure plays a key role in 

the semantic integration of data. The process of generating the semi-structure is dy-

namically changed after reading of each record. This parallelized process finishes by 

reading of all records. Data from different sequencing technologies has different at-

tributes for proteins. In order to unify these attributes, we use several external domain 

knowledge sources (EDKS): Ensembl [21], UniProt [29], and GO, which provide 

additional knowledge about the existing annotated proteins. We search for proteins 

and their annotations in these EDKS by generating a request by URL. This URL is 

stored in the protein records in the document-oriented NoSQL database, which is 

schema-less and can store both structured and unstructured data of the same record. 

Each record contains different number of attributes. 

The next step is to find relationships and to connect our data to other linked data 

from the explored EDKS in order to generate more relationships between the proteins. 

According to [16], “linked data is a set of design principles for sharing machine-

readable data on the WWW for use by public administrations, business and citizens”. 

Linked data is a methodology for representing structured data so that it can be inter-

linked and become more useful through semantic queries. It allows data from differ-

ent sources to be combined and used together when executing queries for semantic 

search and information retrieval.  

For the purposes of providing tools for flexible formulation and adequate execution 

of semantic search queries we provided two types of relationships: ones, extracted 

from the studied raw datasets, and others, extracted from the domain knowledge 

sources like GO. All relationships between all entities (proteins) in the semi-

structured data are more than 1,000,000,000. The goal here is to store all relationships 

with their cycle dependencies. Cycle dependencies are possible and expected because 

one patient has relationships with mutated protein(s), the mutated proteins have refer-

ence to expression and the same patient has relation to this expression. 

Our approach provides a mechanism to create relationships between all patients on 

the basis of the mutations, expressions and CNV. We use a graph database (Neo4j) to 

manage and store all known relationships. In Neo4j we insert only the “semi-

structure” for each related entity. This “semi-structure” contains a 128-bit identifier, 

and by using it we create and manage the relations between MongoDB and Neo4j. 

This is necessary also because full data attributes are stored in MongoDB which can-

not provide such relationship management. 
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After relationships are generated, we generate the new relations via Ensembl and 

UniProt using GO, because GO by itself does not provide suitable programmable 

access. These sources contain information about proteins, protein families and rela-

tionships between them. We take this information and store the links of similar pro-

teins as relationships in our database (Neo4j). This approach provides a method for 

creation of co-relationships between proteins. The relations generated by dint of the 

used external sources are assigned as unreliable. They are considered at this stage as 

unreliable because in deep search all proteins by one or another way are related. In the 

working process, if one unreliable relationship is “accessed” by the same proteins 

multiple (more than 10) times, such relationship is transformed as a normal (or trust-

ed) one [30]. Therefore, we dynamically create reliable relationships between proteins 

in the workflow. For example, we use the “similar proteins” section of UniProt to 

extract the related proteins. This section provides links to proteins that are similar to 

the protein sequence(s) described in the search query at different levels of sequence 

identity thresholds (100%, 90% and 50%) based on their membership in UniProt Ref-

erence Clusters. 

At the final step, we create a workflow module for sending queries to the involved 

databases. So the workflow can produce pathways, predict relationships between 

proteins, patients and diseases and thus discover new knowledge about the protein 

relationships based on the semantic integration of data and external domain 

knowledge sources. Our approach enables users to formulate and execute a wide spec-

trum of dynamically constructed semantic search queries. 

7 Results and Discussion 

An essential part of our methodology is based on the use of the validation mecha-

nisms provided by MongoDB. The latter are applied to create a specific “validation 

filter” for all attributes in the semi-structure. In our case these filters are set with min-

imal level which guarantees that there will be a value for each attribute and thus our 

semi-structure cannot contain empty attribute fields. On the other hand, our approach 

is consistent with the fact that document-oriented databases are not appropriate for 

storing such related data. For storage and management of all relationships we use a 

graph database – Neo4j. Graph databases (GDB) provide a suitable environment for 

developing and managing relations between the entities (proteins, patients). GDB 

have native solutions for management of complex cycling dependencies (relations). 

As already mentioned, our data imply many cycling references between patients and 

proteins and it is necessary to have a trusted path for each relation between patient 

and protein. Methodologically this problem is solved in graph theory by trusted rela-

tional trees [31], and we use this solution with Neo4j. 

It is possible for each relation in Neo4j to insert additional information, containing 

the relation type, IDs etc. We use this to connect our semi-structured data to the 

linked data via dynamically generated URLs, which refer to external domain 

knowledge sources for more detailed annotations (protein, protein family).  
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The mentioned EDKS are accessed via specific APIs based on HTTP/S protocol 

realized by RESTFul methodology – a software architectural style that defines a set of 

constraints to be used for creating Web services. For example, for RERE protein (a 

protein which is related to apoptosis triggering) we generate the following URL [12]:  

https://www.ebi.ac.uk/proteins/api/proteins?offset=0&size=100&gene=RERE 

Based on the answer from the EDKS we dynamically create new relationships be-

tween all references of the searched protein. This enhances the network where indi-

rectly all proteins are related. Such type of indirectly generated relationships has a 

small score in the query answer. Initially they are accounted as untrusted. Their score 

is generated dynamically and depends on the number of requests. Based on this score 

we rank the respond to the user who has posed the request. Automatically these rela-

tionships become trusted after a certain level of score value (Fig. 4).  

Obviously the used EDKS have some limitations. GO provides no interface for 

programming access to it and the only way to use directly the ontology is to download 

it. That is why we use Ensembl to access GO as an internal resource. Initially, we 

create a request to EBI. The returned information from EBI contains reference IDs to 

other knowledge sources. We use the particular reference ID for GO and create a 

request to Ensembl for getting ontology-based relationships for the requested protein. 

For tracing the relationships, we build the following request: 

https://rest.ensembl.org/ontology/ancestors/GO:0003677?content-type=application/json 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Relationships between the proteins. 

Here GO:0003677 is the reference ID from the first request to EBI. If information 

about this protein does not exist in GO, the same procedure is repeated to find it in 

another database (InterPro), etc. As a consequence of such intelligent integration of 

the two studied cancer datasets, we discover new knowledge about the mutated pro-

teins, related to those two types of cancer. We suppose that following this approach, 

based on semantic data integration, it is possible to discover a unique set of proteins 

and their functional annotations for a particular cancer.  

As an example for the provided opportunities, we can demonstrate how to find re-

lations between the proteins RERE, EMP2 and KLF12. These three proteins are relat-

ed to neuroblastoma and breast cancer. In both diseases they are mutated. To find 

other related proteins we create a request to our system using GraphQL – a query 

language for APIs, and a server-side runtime for managing and executing typified 
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queries. The result is illustrated on Fig. 5 where proteins are shown as circles (graph 

nodes). The size of each node is based on its resulting score. Proteins are connected 

by different types of relationships shown on the figure in different shades of grey and 

different style. 

Fig. 5. Semantic data integration by use of linked data URLs. 

Found proteins have two types of relations. If the relation is generated from linked 

data (as URLs), it is classified as non-reliable. Many relations are generated from 

linked data in external sources and marked by a score. This score is generated dynam-

ically and depends on the number of requests to our system. Based on this score we 

rank the response to the user who posed the request. If a found relation is built on the 

raw dataset then it has a higher score than the ones built from linked data. The score 

of such relation is increasing and after a number of requests it can be classified as a 

trusted one. In such manner our workflow enables automated enrichment of protein 

relationships and extraction of new knowledge related to both cancers. 

8 Conclusions 

In this paper we discuss an original methodology for extraction of hidden relations 

in an integrated dataset by combining data from disparate sources and consolidating 

them into a meaningful and valuable information pool by the use of semantic technol-

ogies. The use of linked and overplayed NoSQL database technologies allowed us to 

aggregate the non-structured, heterogeneous cancer data with their various relation-

ships. The applied semantic integration of different cancer datasets has an obvious 

merit concerning the enrichment of the studied data by discovery of mutual internal 

relations and relations with external domain knowledge sources. 
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A novel approach for automated semantic data integration has been proposed and 

analyzed. It provides means, supporting augmented and precise enough search for 

hidden common (protein) relations. The discovery of these hidden common proteins 

and joining their functionality is in fact an extraction of new knowledge about the 

studied cancer cases. All these methodological procedures are built as a workflow, 

based on NoSQL databases and exploring external domain knowledge sources for the 

purposes of efficient integration of data from cancer studies. 

This study shows also that using customized analysis workflows is a necessary step 

towards novel discoveries and potential generalization in complex fields like person-

alized therapy. 
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