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Abstract. Electroencephalogram (EEG) signals reveal many crucial hid-
den attributes of the human brain. Classification based on EEG-related
features can be used to detect brain-related diseases, especially epilepsy.
The quality of EEG-related features is directly related to the performance
of automated epileptic seizure detection. Therefore, finding prominent
features bears importance in the study of automated epileptic seizure
detection. In this paper, a novel method is proposed to automatically de-
tect epileptic seizure. This work proposes a novel time-frequency-domain
feature named global volatility index (GVIX) to measure holistic signal
fluctuation in wavelet coefficients and original time-series signals. Af-
terwards, the multi-attribute EEG feature pool is constructed by com-
bining time-frequency-domain features, time-domain features, nonlinear
features, and entropy-based features. Minimum redundancy maximum
relevance (mRMR) is then introduced to select the most prominent fea-
tures. Results in this study indicate that this method performs better
than others for epileptic seizure detection using an identical dataset, and
that our proposed GVIX is a prominent feature in automated epileptic
seizure detection.

Keywords: Medical signal processing · Epileptic seizure detection ·
Minimum redundancy maximum relevance · Global volatility index.

1 Introduction

Epilepsy is a common chronic brain disorder characterized by convulsions from
epileptic seizures [1]. More than 50 million people suffer from epilepsy all over the
world, with the vast majority living in developing countries. The clinical man-
ifestations of epileptic people are mainly sudden loss of consciousness, general
convulsions, and abnormality of mind [2]. As a disease with complex and diverse
causes, epilepsy severely affects patients’ physical and psychological health. At
the physical level, the violent convulsion of the body during epileptic seizures
can result in a fracture. At the psychological level, the uncertainty of epileptic
seizures can be very disturbing. Moreover, epileptic people are often stigmatized
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at school or at work and are thus mentally traumatized [3]. Therefore, finding
prominent features and correctly detecting epileptic seizure bears importance in
diagnosing and curing epilepsy.

Electroencephalography is a method of recording brain activity through elec-
trophysiological indicators without inflicting trauma to the subject. Electroen-
cephalogram (EEG) signals can be detected when many neurons in the same
brain region are activated simultaneously. EEGs are widely used to detect brain-
related disorders due to its noninvasiveness, low cost and high temporal resolu-
tion. However, artificially interpreting EEG recording is costly and subjective.
Machine learning methods can be used for classification and detection and have
shown good performance [4]. Therefore, machine learning combined with EEG
signals are used to detect brain-related disorders [5]. Selecting effective features is
crucial to epileptic seizure detection and pathological discovery. This means that
more comprehensive features need to be used and more discriminating feature
subsets need to be selected. To describe the information contained in EEG signals
more comprehensively, many time-domain, frequency-domain and entropy-based
features are used to automatically identify epilepsy [6–8]. However, a dearth of
studies currently investigate effective features to measure holistic signal fluctu-
ation in EEG signals. This work attempts to fill this gap.

This study primarily aims to improve the accuracy of automated epileptic
seizure detection by establishing a novel method for the automated detection
of epileptic seizure. First, a novel time-frequency-domain feature named global
volatility index (GVIX) is proposed to measure holistic signal fluctuation in
wavelet coefficients and original time-series signals. Second, to generalize infor-
mation in a signal more comprehensively, time-frequency-domain features, time-
domain features, nonlinear features, and entropy-based features are used to con-
struct the multi-attribute EEG feature pool. Third, minimum redundancy max-
imum relevance (mRMR) feature selection algorithm is introduced to identify
the most prominent features based on the multi-attribute EEG feature pool. Fi-
nally, 10-fold cross validation is achieved using a support vector machine (SVM)
classifier. The key contributions and novelties of this work are as follows.

– Developing a novel time-frequency-domain feature GVIX to measure holistic
signal fluctuation in the wavelet coefficients and original time-series signals.

– Constructing the multi-attribute EEG feature pool based on time-frequency-
domain features, time-domain features, nonlinear features, and entropy-based
features.

– Detecting epileptic seizure using a novel framework that applying the multi-
attribute EEG feature pool combined with mRMR feature selection method
and SVM.

The remainder of this paper is summarized as follows. Section 2 presents the
different features and methods used in the prior studies, which has focused on
EEG classification. The details of the data used in this work and its processing
framework are presented in section 3. Section 4 presents our experimental results
and compares them with previous work. Finally, this work is concluded in section
5.
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2 Related Work

Many previous studies have used machine learning methods to classify EEG
signals. Many features are also used to display information in EEG signals.

Song et al. [9] utilized sample entropy (SampEn) as a feature extraction
method to extract the features of EEG signals. Based on these features, back-
propagation neural networks and extreme learning machines are used to achieve
epilepsy detection. Results of their study show that SampEn is an outstanding
feature in the automated epilepsy detection.

Acharya et al. [10] utilized nonlinear higher order spectra (HOS) and wavelet
packet decomposition to construct a feature set. Finally, epileptic EEG signals
are detected using SVM. Their results show that the automated epilepsy detec-
tion using HOS-based features is a promising approach.

Some nonlinear features such as fractal dimension (FD) and Hurst exponent
are also used in the automated epilepsy detection. Acharya et al. [7] achieved the
automated identification of epileptic EEG signals using some nonlinear features
such as FD and Hurst exponent. Six classifiers have been used in their study,
and the fuzzy classifier achieves the highest classification accuracy.

Wavelet transform (WT) is considered as a powerful tool for time-frequency
analysis. EEG signals can reflect spontaneous and rhythmic neural activity of
the brain, so WT has been introduced to obtain neural activity in different
bands in some previous studies. Ibrahim et al. [11] obtained features using dis-
crete wavelet transform (DWT) and cross-correlation. Afterwards, epilepsy and
autism spectrum disorder diagnosis are achieved using four classifiers, whereas
the k-nearest neighbor algorithm obtains the highest classification accuracy. Guo
et al. [12] used multiwavelet transform and approximate entropy (ApEn) to con-
structed features, and epileptic seizure detection is achieved using these features
and artificial neural network.

Principal component analysis (PCA) is a classical method for feature dimen-
sion reduction, which can effectively deal with the curse of dimensionality. Zarei
et al. [13] combined PCA and cross-covariance to extract features. They sub-
sequently used multilayer perceptron neural networks, least-square SVM, and
logistic regression to achieve the classification of EEG signals.

The above-mentioned methods have realized the classification of EEG signals
based on different methods. In the present study, we utilize a novel method for
automated epileptic seizure detection. The method used in this paper is described
in detail in the next section.
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Fig. 1. Framework for the automated epileptic seizure detection.

3 Data and Methods

In this study, a novel framework is proposed for the automated epileptic seizure
detection. Fig. 1 illustrates the steps of this work. First, wavelet coefficients of
different EEG frequency bands are analyzed using DWT, and related statistical
features like GVIX are used to obtain features from both wavelet coefficients
and EEG signals. Afterwards, PCA is used to extract time-series features, and
many other features such as entropy-based features and nonlinear features are
calculated. The multi-attribute EEG feature pool is then constructed based on
these features and used for mRMR. Finally, 10-fold cross validation is achieved
based on SVM.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_4

https://dx.doi.org/10.1007/978-3-030-22744-9_4


5

Fig. 2. Examples of EEG signals in the five different sets.

3.1 Dataset

The EEG database (Set A-E) we used is obtained from a publicly available
EEG database developed by University of Bonn [14]. The entire EEG database
includes five sets each containing 100 segments with a duration of 23.6 s (4097
time points per segment). All these EEG signals are recorded using a 128-channel
amplifier system, digitized with a sampling rate of 173.61 Hz and 12-bit A/D
resolution and filtered using a 0.53-40 Hz (12 dB/octave) band pass filter. Manual
and eye movement disturbances are removed from all EEG signals. The specific
information of EEG data is summarized in Table 1. Fig. 2 also shows some
examples of Set A to E.

3.2 Feature Extraction

To establish a better classification model, the multi-attribute EEG feature pool
is used. These features can be subdivided into four categories: (1) time-frequency-
domain features, (2) time-domain features, (3) nonlinear features, and (4) entropy-
based features.

Table 1. Description of EEG data in five sets

Set A Set B Set C Set D Set E

Subjects Healthy Healthy Epileptic Epileptic Epileptic
State Eyes opened Eyes closed Interictal Interictal Ictal
Electrode type External External Intracranial Intracranial Intracranial
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Time-frequency-domain Features The time-frequency-domain features used
in this work include wavelet coefficients and related statistical features which can
describe wavelet coefficients in sub-bands and original time-series signals.

WT is an important tool for numerical analysis and time-frequency analysis,
and it can capture the frequency and location information compared with FT.
The basic idea of WT is to represent the signal in a certain time period as a linear
combination of a series of wavelet functions. The wavelet coefficient reflects the
similarity between the signal and wavelet function in the time period. A multi-
resolution analysis of signal XJ is shown as follows:

XJ = LJ−1

⊕
HJ−1

= LJ−2

⊕
HJ−2

⊕
HJ−1

= ....
⊕

HJ−3

⊕
HJ−2

⊕
HJ−1

(1)

whereH represents high frequency, L represents low frequency, and
⊕

represents
the intersection.

Picking different numbers of decomposition levels for EEG signals should
be based on the purpose of the study. An EEG signal usually shows different
rhythms in different frequency ranges. Most useful frequency components con-
tained in EEG signals are found to be below 30 Hz [15, 16]. Therefore, the de-
composition levels used in this study are set to 5, and the signals are decomposed
into details D1-D5 and final approximation A5. Some previous studies have com-
pared the effects of several wavelets and found that the Daubechies wavelet of
order 4 is the most suitable one for automated epileptic seizure detection [17], so
the wavelet coefficients are computed using the db4 in this work. DWT is used
for each data set, approximation and details are thus obtained and are shown in
Fig. 3. Table 2 shows the frequency range of different decomposition levels for
db4 with a sampling frequency of 173.6 Hz. These wavelet coefficients, calculated
for A5 and D3-D5 are used for automated epileptic seizure detection.

To represent the information in the wavelet coefficients and original EEG
signals from multiple perspectives, statistical features are used to achieve this
goal. In this paper, a novel feature GVIX is proposed to measure the holistic
signal fluctuation in wavelet coefficients and original time-series signals, since it
considers the signal fluctuation at any time interval. GVIX is calculated based
on Manhattan Distance. Calculation of the GVIX of a sequence data X(1),

Table 2. Frequency range of different decomposition levels

Decomposed signal Frequency range (Hz)
D1 43.4-86.8
D2 21.7-43.4
D3 10.8-21.7
D4 5.4-10.8
D5 2.7-5.4
A5 0-2.7
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Fig. 3. DWT coefficients of EEG signals taken from the subject of each set.

X(2),...., X(n) can be obtained as follows:

GV IX(X) =
2

n2 − n

n∑
i=2

i−1∑
j=1

|X(i)−X(j)| (2)

where n is the number of points in the sequence data. The other statistical
features used to describe wavelet coefficients in sub-bands and original time-
series signals in this study are mean (M), mean square (MS), standard deviation
(SD), skewness (Ske), kurtosis (Kur), interquartile range (IQR) and volatility
index (VIX).

Time-domain Features The time-domain features used in this work include
principal components and Hjorth parameters (HP).

PCA transforms the original data into a set of linearly independent represen-
tations between dimensions through linear transformation, and the linearly in-
dependent variables are named principal components [18]. In this paper, PCA is
used to reduce the dimension of time-series data, and the standard of dimension
reduction is to save 99% of the original information. HP are measurements used
to study epileptic lateralization [19]. Mobility (Mobi) and Complexity (Comp)
are used in this work.

Non-linear Features The nonlinear features used in this work include FD,
Hurst exponent and HOS parameters.

FD is a statistic that measures the dimensional complexity of signals [7].
The FD calculation algorithm proposed by Higuchi is used in this study. Hurst
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Fig. 4. Region of points that can avoid redundant computation.

exponent is a feature that can measure the long-term memory of a time series
[20]. HOS can provide more information than the two order statistics [10]. Bis-
pectrum is the most in-depth and widely used method in HOS and it can be
calculated as follows:

B(f1, f2) = E[X(f1)X(f2)X(f1 + f2)] (3)

where X(f) is the FT of the signal X(nT ). The used HOS parameters can
be calculated based on bispectrum: (1) normalized bispectral entropy (P1), (2)
normalized bispectral squared entropy (P2), and (3) mean bispectrum magnitude
(Mave). In addition, these parameters can be calculated as follows:

pn =
|B(f1, f2)|∑
Ω |B(f1, f2)|

P1 =
∑
n

pn log pn
(4)

qn =
|B(f1, f2)|2∑
Ω |B(f1, f2)|2

P2 =
∑
n

qn log qn
(5)

Mave =
1

L

∑
Ω

|B(f1, f2)| (6)

where Ω is the region that avoids redundant computation, and its range is
shown in Fig. 4. L is the number of points in Ω.

Entropy-based Features The entropy-based features used in this work include
Shannon entropy (ShEn) and SampEn.

Shannon entropy (ShEn) can be used to measure the uncertainty of EEG
signals [21]. As an improved version of ApEn, SampEn is a measure of time-
series complexity [22]. SampEn is proportional to time series complexity, while
it is inversely proportional to self-similarity. The SampEn of a given time series
X(1), X(2),...., X(n) is calculated as follows:
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(1) Constructing an m dimensional vector based on the embedding dimen-
sion;

(2) Defining the distance function d[Xm(i), Xm(j)] based on Chebyshev Dis-
tance;

(3) Calculating SampEn based on the similar tolerance r:

SampEn(X) = − log
A

B
(7)

where A is the number of template vector pairs having d[Xm+1(i), Xm+1(j)] < r,
and B is the number of template vector pairs having d[Xm(i), Xm(j)] < r . In
this paper, embedding dimension m is set to 2, and similar tolerance r is set to
0.2 based on a previous study [23].

Minimum Redundancy Maximum Relevance mRMR algorithm is an ef-
fective feature selection algorithm, and widely used in the study of bioinformatics
[24]. mRMR algorithm uses incremental search to select features and rates them
based on mutual information. The selected features are added to the selected fea-
ture set in an incremental manner until the number of selected features achieves
the termination condition. The average mutual information between a feature
and its category is considered relevance (R), and the average mutual informa-
tion between unselected features is considered redundancy (D). Each feature will
get a score when using mRMR algorithm, and the evaluation criterion for each
feature is calculated as follows:

maxR(F,C), Relevance =
1

|F |
∑
fr∈F

I(fr, c)

minD(F,C), Redundancy =
1

|F |2
∑

fr,fo∈F

I(fr, fo)

(8)

maxΦ(R,D), Φ = R−D (9)

where F represents the feature set, and C represents the target category.

Performance Evaluation Methods To evaluate the performance of SVM, a
10-fold cross validation method is used. The data are divided into 10 parts. In
each cross-validation process, one piece of data is used as the test set and nine
pieces of data are used as the training set. In this paper, many criteria such as
classification accuracy, sensitivity, specificity and F1 score are used to measure
the performance of our method.

4 Results and Discussion

4.1 Results

Effective feature is one of the most important factors determining classification
performance. In this paper, multi-attribute EEG feature pool is constructed for
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Fig. 5. Average performance comparison with and without adding GVIX into the
multi-attribute EEG feature pool.

automated epileptic seizure detection. In this work, a total of five cases are
considered for automated epileptic seizure detection, as shown in Table 3.

mRMR algorithm is used to select features for each case, and the classification
performance of each case is shown in Table 4. Wilcoxon rank sum test is used to
detect whether there were significant difference in GVIX of wavelet coefficients
and original time-series signals between set E and control groups (all P<0.001).
Moreover, Fig. 5 shows average performance comparison between the multi-
attribute EEG feature pool with and without GVIX in each case. It can be
found that adding GVIX into the multi-attribute EEG feature pool can achieve
better performance in in automated epileptic seizure detection.

Results of Fig. 5 also show that case 1 has the best classification performance,
whereas case 4 has the worst classification performance among all the cases. This
finding is due to the data in case 1 being either healthy or epileptic; conversely,
the data in case 4 is either interictal or ictal. Results of our study indicate that
our method performs well in automated epileptic seizure detection. Moreover,

Table 3. Five cases for automated epileptic seizure detection

Case Class 1 Class 2

1 A E
2 B E
3 C E
4 D E
5 ABCD E

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_4

https://dx.doi.org/10.1007/978-3-030-22744-9_4


11

Fig. 6. Comparison of weight of each feature in different cases.

a comparison of weight of each feature in different cases is shown in Fig. 6.
It can be found that there were more significant differences in GVIX, ShEn,
SampEn, SD, IQR and VIX between the two groups due to the calculation
of the weight is based on mutual information. Results of our study obviously
show that our proposed GVIX is a prominent time-frequency-domain feature
in automated epileptic seizure detection. In addition, the accuracy comparison
with other previous methods is discussed in the next subsection.

4.2 Comparison with Other State-of-the-art Results

Table 5 shows a summary of studies that other current methods to epileptic
seizure detection using the same data used in this work. It can be clearly seen
from Table 5 that it is the most difficult to identify epileptic seizure in case 4
and case 5. Moreover, results show that our method is comparable.

In case 1, this method shows the best performance and completely sepa-
rates the normal EEG from the ictal EEG. The same results were also obtained

Table 4. Classification performance for each case

Case Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

1 100 100 100 100
2 99.5 99.0 100 99.47
3 99.5 99.0 100 99.47
4 99.0 99.0 99.0 99.0
5 99.6 99.0 99.75 99.0
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in the works of [5] and [25]. Mursalin et al. [5] achieved automated epileptic
seizure detection using improved correlation feature selection (ICFS) algorithm
and random forest. Swami et al. [25] achieved epileptic seizure detection using
dual-tree complex wavelet transform (DTCWT), entropy-based features and a
general regression neural network (GRNN).

In case 2, this method achieves a classification accuracy of 99.5%, and it is the
best compared with other studies. In case 3, classification accuracy of 99.5% is
obtained in this work. In case 4, this method achieves 99% classification accuracy,
which is the best compared with other current methods. Classification has also
been achieved in the works of [26] and [27]. Nicolaou et al. [26] achieved epileptic
seizure detection using Permutation Entropy (PeEn) and SVM. Tawfik et al. [27]
achieved epileptic seizure detection using weighted PeEn and SVM.

In case 5, the classification accuracy obtained in this study is 99.6% which
is higher than those obtained with other state-of-art methods. The best per-
formance of these previous studies has been obtained in the work of [28], in
which 98.8% classification accuracy is achieved using Hilbert marginal spectrum
(HMS) and SVM. Similar works have been done in [29]. In [29], local neighbor
descriptive pattern (LNDP) and SVM are used for epileptic seizure detection.

Table 5. Comparison between our method and other current methods

Authors Cases Accuracy (%)

Nicolaou [26] A-E 93.55
B-E 82.88
C-E 88
D-E 79.94

Tawfik [27] A-E 98.5
B-E 85
C-E 93.5
D-E 96.5

Fu [28] A-E 99.85
ABCD-E 98.8

Swami [25] A-E 100
B-E 98.89
C-E 98.72
D-E 93.33
ABCD-E 95.24

Jaiswal [29] A-E 99.3
B-E 95.65
C-E 97.79
D-E 94.77
ABCD-E 96.57

Mursalin [5] A-E 100
B-E 98
C-E 99
D-E 98.5
ABCD-E 97.4

Our Proposed method A-E 100
B-E 99.5
C-E 99.5
D-E 99
ABCD-E 99.6
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5 Conclusion

Finding prominent features and correctly detecting epileptic seizure is crucial
in diagnosing and curing epilepsy. The main contribution of this work is auto-
mated epileptic seizure detection using a novel method. In this paper, a novel
time-frequency-domain feature GVIX that can measure the holistic signal fluc-
tuation in wavelet coefficients and original time-series signals is proposed. Time-
frequency-domain features, time-domain features, nonlinear features, and entropy-
based features are used to construct the multi-attribute EEG feature pool and
feed them to mRMR algorithm. Results of this study show that GVIX is a
prominent feature in automated epileptic seizure detection. We futher compare
our findings to other studies, and comparison results show that our proposed
method is comparable. It can be concluded that using this proposed method
would help clinicians make more efficient and reasonable decisions in the auto-
matic detection of epileptic seizure.
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