
The Chain Alignment Problem

Leandro Lima1,2[0000−0001−8976−2762] and Said Sadique
Adi3[0000−0002−0349−7441]

1 Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie
Evolutive UMR5558 F-69622 Villeurbanne, France.

2 EPI ERABLE - Inria Grenoble, Rhône-Alpes, France.
3 Universidade Federal de Mato Grosso do Sul, Faculdade de Computação,

79070-900, Campo Grande, Brazil.
leandro.ishi-soares-de-lima@inria.fr, said@facom.ufms.br

Abstract. This paper introduces two new combinatorial optimization
problems involving strings, namely, the Chain Alignment Problem, and
a multiple version of it, the Multiple Chain Alignment Problem. For
the first problem, a polynomial-time algorithm using dynamic program-
ming is presented, and for the second one, a proof of its NP-hardness
is provided and some heuristics are proposed for it. The applicability of
both problems here introduced is attested by their good results when
modeling the Gene Identification Problem.

Keywords: Chain Alignment Problem, dynamic programming, NP-
hardness, Gene prediction

1 Introduction

Problems involving strings can be found in many theoretical and practical ar-
eas, such as molecular biology, pattern search, text editing, data compression,
etc. The present paper proposes two new combinatorial optimization problems
involving strings: the Chain Alignment Problem and a multiple version of it,
called the Multiple Chain Alignment Problem. Both can serve as models for
other problems in several research areas. In Bioinformatics, for example, they can
be used as a combinatorial optimization formulation for the gene prediction task
[9] and for the problem of protein comparison by local structure segments [18].
Other applications include automated text categorization [16] and sequence data
clustering [7]. The Chain Alignment Problem is closely related to a well-known
problem in Bioinformatics, namely the Spliced Alignment Problem [4].

This paper explores the theoretical properties and algorithmic solutions for
the Chain Alignment Problem and the Multiple Chain Alignment Problem.
More specifically, for the first problem, a polynomial-time algorithm using dy-
namic programming is presented. For the second problem, it is proved that it is
very unlikely that there exists a polynomial-time algorithm for it, i.e., we show
it is NP-hard through a reduction from the Longest Common Subsequence

Problem. Given the NP-hardness of the Multiple Chain Alignment Problem,
we propose three different heuristics for it.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

2 Lima et al.

Despite our focus being a theoretical study of the problems introduced here,
we also show that they can be applied to practical problems. More specifically, we
model a variant of the Gene Identification Problem as the Chain Alignment

Problem and as the Multiple Chain Alignment Problem, and present some
results which attest their applicability.

This paper is structured as follows. Section 2 formally defines the Chain

Alignment Problem and the Multiple Chain Alignment Problem. Section 3
describes an efficient dynamic programming algorithm for the Chain Alignment

Problem. Section 4 is devoted to the proof of the NP-hardness of the Multiple

Chain Alignment Problem and Section 5 to a brief description of three heuristics
for this problem. Section 6 discusses the application of both problems in the Gene

Identification Problem. Finally, some concluding remarks and future directions
for research are discussed in Section 7.

2 The Chain Alignment Problem

For a better understanding of the Chain Alignment Problem, consider the fol-
lowing definitions. An alphabet is a finite set of symbols1. Let s = s[1]s[2] . . . s[n]
be a finite string over an alphabet Σ, whose length is denoted by |s| = n. The
empty string, whose length equals to zero, is denoted by ε. We say that a string
s′ = s′[1]s′[2] . . . s′[m] is a subsequence of s if there exists a strictly increasing
sequence I = i1, i2, . . . , im of indices of s such that s[ij] = s′[j] for all 1 ≤ j ≤ m.
If ik+1 − ik = 1 for all 1 ≤ k < m, we call s′ a segment or a substring of s.

Further, let b = s[i] . . . s[j] be a segment of a string s. The position of
the first (last) symbol of b in s is denoted by first(b) = i (last(b) = j). Let
B = {b1, b2, . . . , bu} be a set of u segments of s. B is defined as an ordered
set of segments if: 1) first(bi) < first(bi+1) or 2) first(bi) = first(bi+1) and
last(bi) < last(bi+1), for 1 ≤ i ≤ u − 1. Moreover, a segment b′ = s[i] . . . s[j] of
s overlaps another segment b′′ = s[k] . . . s[l] of s if k ≤ i ≤ l, or k ≤ j ≤ l, or
i ≤ k ≤ j, or i ≤ l ≤ j. On the other hand, if j < k, we say that b′ precedes b′′,
and this relation is denoted by b′ ≺ b′′. Using the previous definitions, a chain
ΓB of an ordered set of segments B is defined as a subset ΓB = {bi, bj , . . . , bp} of
B such that bi ≺ bj ≺ ... ≺ bp. In addition, the string resulting from the concate-
nation of the segments of a chain ΓB is denoted by Γ •B, i.e., Γ •B = bi • bj • . . . • bp,
where • is the string concatenation operator.

Finally, given two strings s and t, simω(s, t) denotes the similarity (or the
score of an optimal alignment) between s and t under a scoring function ω:Σ̄ ×
Σ̄ → R, where Σ̄ = Σ ∪ {−} [12] 2. With all the previous definitions in mind,
the Chain Alignment Problem can be formally stated as follows:

1 In this paper, we will only consider alphabets that do not include the space (denoted
by the symbol −) as one of its elements.

2 For the sake of simplicity, we will also use the terms similarity and optimal alignment
with chains. This means that when we refer to the similarity (optimal alignment)
between two chains ΓB and ΓC , we are referring to the similarity (optimal alignment)
between Γ •B and Γ •C .

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

The Chain Alignment Problem 3

Chain Alignment Problem (CAP): given two strings s and t, an ordered
set of segments B = {b1, b2, . . . , bu} of s, an ordered set of segments C =
{c1, c2, . . . , cv} of t, and a scoring function ω, find a chain ΓB = {bp, bq, . . . , br}
of B and a chain ΓC = {cw, cx, . . . , cy} of C such that simω(Γ •B, Γ

•
C) is maxi-

mum among all chains of B and C.

Figure 1 illustrates an instance of the CAP.

Fig. 1. An instance of the CAP and its solution. In this example we are considering
the scoring function ω(a, b) = {1, if a = b;−1, if a 6= b;−2, if a = − or b = −}. In the
center of the figure there is depicted an optimal solution to this example, the chains
ΓB and ΓC , and an optimal alignment between Γ •B and Γ •C .

The Multiple Chain Alignment Problem, in turn, is a multiple version of the
CAP and can be defined as follows:

Multiple Chain Alignment Problem (MCAP): given n > 2 strings s1, s2, . . . , sn,
n ordered sets of segments B1,B2, . . . ,Bn, where Bi is an ordered set of seg-
ments of si, and a scoring function ω, find n chains Γ1, Γ2, . . . , Γn, where Γi
is a chain of Bi, such that

∑n
i=2

∑i−1
j=1 simω(Γ •i , Γ

•
j) is maximum.

3 An algorithmic solution for the CAP

It is easy to check that a brute-force algorithm is not suitable to solve the CAP.
However, a careful analysis of this problem shows that it exhibits the optimal
substructure and overlapping subproblems properties, and as such, it is possible
to develop an efficient algorithm for it using dynamic programming.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

4 Lima et al.

In order to understand the recurrence that solves the CAP, consider the
following definitions. Let bk[1..i] = bk[1] • bk[2] • . . . • bk[i] and let ΓB(k[i]) =
{bq, br, . . . , bk[1..i]} be a chain of an ordered set of segments B ending with
bk[1..i]. For the sake of simplicity, we will sometimes denote ΓB(k[|bk|]) simply
by ΓB(k). Given an instance I = 〈s, t,B = {b1, . . . , bu}, C = {c1, . . . , cv}, ω〉 of the
CAP, let Γ ?k[i]l[j] be a pair of chains (Γ ?B(k[i]), Γ ?C (l[j])), where Γ ?B(k[i]) is a chain

of B ending with bk[1..i] and Γ ?C (l[j]) is a chain of C ending with cl[1..j] such
that v(Γ ?k[i]l[j]) = simω(Γ ?B(k[i])•, Γ ?C (l[j])•) is maximum, i.e., simω(Γ ?B(k[i])•,

Γ ?C (l[j])•) ≥ simω(ΓB(k[i])•, ΓC(l[j])
•) for all pairs of chains ΓB(k[i]) of B ending

with bk[1..i] and ΓC(l[j]) of C ending with cl[1..j]. By definition, Γ ?k[i]l[j] is defined

for all 1 ≤ k ≤ |B|, 1 ≤ l ≤ |C|, 1 ≤ i ≤ |bk|, and 1 ≤ j ≤ |cl|. Lastly, letM be a
four-dimensional matrix such that

M[i, j, k, l] = v(Γ ?k[i]l[j]) = max
all pairs of chains
(ΓB(k[i]), ΓC(l[j]))

simω(ΓB(k[i])•, ΓC(l[j])
•).

As defined, M can be efficiently calculated by means of a recurrence using dy-
namic programming.

For a better understanding of the base cases of this recurrence, consider that
the sets of segments B and C will each include a virtual segment (a segment not
given in the input) b0 and c0, respectively, such that b0 = c0 = ε (both are empty
strings), b0 ≺ b for all b ∈ B and c0 ≺ c for all c ∈ C. We thus define Γ ?B(0[0])
and Γ ?C (0[0]) as empty chains. Finally,M can be efficiently calculated by means
of Recurrence 1 if k = 0 or l = 0 (base cases) and by means of Recurrence 2
otherwise3.

As to Recurrence 1, its first line corresponds to the score of an optimal
alignment between the empty chains Γ ?B(0[0]) and Γ ?C (0[0]). Its second line, to
the score of an optimal alignment between a chain of B ending with bk[1..i] and
the empty chain Γ ?C (0[0]) of C. The best alignment we can get here is aligning
bk[1..i] with i spaces. The third line is analogous to the second one.

The general idea behind Recurrence 2 is to consider all possible extensions of
previously computed subproblem solutions and choose the best one. The options
the recurrence considers for this extension, called the set of candidate alignments,
and how this extension is carried out, change according to the position of the
matrix being calculated. When calculating M[i > 1, j > 1, k, l], i.e., finding
v(Γ ?k[i]l[j]) = simω(Γ ?B(k[i])•, Γ ?C (l[j])•), the recurrence can extend the optimal

alignment between Γ ?B(k[i − 1]) and Γ ?C (l[j − 1]) (stored in M[i − 1, j − 1, k, l])
by adding bk[i] paired with cl[j] to this alignment. It also considers the options
of extending the optimal alignment between Γ ?B(k[i− 1]) and Γ ?C (l[j]) (stored in
M[i − 1, j, k, l]) by adding bk[i] paired with a space and the optimal alignment
between Γ ?B(k[i]) and Γ ?C (l[j − 1]) (stored in M[i, j − 1, k, l]) by adding a space

3 To simplify the calculation of the base cases, we are assuming in Recurrence 1 that
ω(a, b) < 0, if a = − or b = −, where ω is the scoring function given in the input.
Nonetheless, it can be easily modified to cope with any scoring function.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

The Chain Alignment Problem 5

paired with cl[j]. Evidently, in this case, the set of candidate alignments consists
of M[i − 1, j − 1, k, l], M[i − 1, j, k, l], and M[i, j − 1, k, l]. Given these three
options, it chooses to extend the one that maximizes the score of the optimal
alignment being calculated.

M[0, 0, 0, 0] = 0;

M[i, 0, k, 0] =

i∑
t=1

ω(bk[t],−), for 1 ≤ i ≤ |bk| and 1 ≤ k ≤ |B|;

M[0, j, 0, l] =

j∑
t=1

ω(−, cl[t]), for 1 ≤ j ≤ |cl| and 1 ≤ l ≤ |C|.

(1)

M[i, j, k, l] =

if i > 1 and j > 1:

max

M[i− 1, j − 1, k, l] + ω(bk[i], cl[j]),
M[i, j − 1, k, l] + ω(−, cl[j]),
M[i− 1, j, k, l] + ω(bk[i],−)

if i = 1 and j = 1:

max

maxbk′≺bk, cl′≺cl{M[|bk′ |, |cl′ |, k′, l′]

+ ω(bk[1], cl[1])},
maxcl′≺cl{M[1, |cl′ |, k, l′] + ω(−, cl[1])},
maxbk′≺bk{M[|bk′ |, 1, k′, l] + ω(bk[1],−)}

if i = 1 and j > 1:

max

M[1, j − 1, k, l] + ω(−, cl[j]),

maxbk′≺bk

{
M[|bk′ |, j − 1, k′, l] + ω(bk[1], cl[j]),
M[|bk′ |, j, k′, l] + ω(bk[1],−)

if i > 1 and j = 1:

max

M[i− 1, 1, k, l] + ω(bk[i],−),

maxcl′≺cl

{
M[i− 1, |cl′ |, k, l′] + ω(bk[i], cl[1]),
M[i, |cl′ |, k, l′] + ω(−, cl[1])

(2)

The same idea explained in the previous paragraph is used to calculate all the
remaining cells of M, changing only the set of candidate alignments. When
calculating M[i = 1, j = 1, k, l], for instance, the recurrence takes into account
more candidates. Firstly, it considers all previously computed optimal alignments
ending with any segment bk′ ≺ bk (Γ ?B(k′)) and any segment cl′ ≺ cl (Γ ?C (l′)),
which are all included in the set {M[|bk′ |, |cl′ |, k′, l′]}, and extends them by
adding bk[1] paired with cl[1]. It also considers extending all optimal alignments
between Γ ?B(k[1]) and Γ ?C (l′), cl′ ≺ cl ({M[1, |cl′ |, k, l′]}), by adding a space
paired with cl[1] to them. Analogously, it further considers extending all optimal
alignments between Γ ?B(k′), bk′ ≺ bk, and Γ ?C (l[1]) ({M[|bk′ |, 1, k′, l]}) by adding
bk[1] paired with a space to them. Finally, it chooses the best extension of all of
these.

In the third case, Recurrence 2 calculates M[i = 1, j > 1, k, l]. First off, it
considers extending the optimal alignment between Γ ?B(k[1]) and Γ ?C (l[j − 1])

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

6 Lima et al.

(stored inM[1, j−1, k, l]) by adding a space paired with cl[j] to this alignment.
But it also has to look at several other candidate alignments. It further considers
extending all optimal alignments between Γ ?B(k′), bk′ ≺ bk, and Γ ?C (l[j − 1])
({M[|bk′ |, j − 1, k′, l]}) by adding bk[1] paired with cl[j] to them. The last set
of candidates consists of all optimal alignments between Γ ?B(k′), bk′ ≺ bk, and
Γ ?C (l[j]) ({M[|bk′ |, j, k′, l]}). The recurrence extends them by adding bk[1] paired
with a space. After computing all these extensions, it chooses the best one. The
fourth case is analogous to the third one.

Figure 2 shows a way of viewingM as a (u+ 1)× (v+ 1) matrix, where each
cell ofM is an alignment submatrix representing the best alignment ending with
two specific segments.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
...

...

Fig. 2. A way of viewing M and the sets of candidate alignments considered when
Recurrence 2 calculates the positions M[i > 1, j > 1, u, v], M[i = 1, j = 1, u, v],
M[i = 1, j > 1, u, v] and M[i > 1, j = 1, u, v]. Some arrows were hidden for the
purpose of clarity, but cells with the same hatching pattern are in the same set of
candidate alignments. As we can see in this specific example, it is necessary that b0 ≺
b1 ≺ . . . ≺ bu and c0 ≺ c1 ≺ . . . ≺ cv (i.e., no overlapping segments in B and C), for
the sets of candidate alignments to be like those depicted above.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

The Chain Alignment Problem 7

Upon completion of M, the value of the optimal solution can be found as

max
bk∈B,cl∈C

{M[|bk|, |cl|, k, l]}.

The solution for the CAP, i.e., a chain ΓB of B and a chain ΓC of C such that
simω(Γ •B, Γ

•
C) is maximum, can be constructed by a traceback procedure. This

procedure builds a path that begins at the position in M that stores the value
of the optimal solution, and goes back to the cell used to calculate this value. It
keeps building this path backwards until M[0, 0, 0, 0] is reached. To determine
ΓB (ΓC), the procedure logs every segment of B (C), except b0 (c0), in this path
in LIFO order.

The proposed algorithm runs in O(|B| ∗ |C| ∗ bmax ∗ cmax) time and it needs
O(|B| ∗ |C| ∗ bmax ∗ cmax) space to store M, where bmax (resp. cmax) is the size
of the longest segment in B (resp. C).

4 The MCAP is NP-hard

In this section it is shown that the MCAP isNP-hard, that is, it has a polynomial-
time algorithm if and only if P = NP. To this end, consider the following decision
version of the MCAP, called MCAPD:

Multiple Chain Alignment Problem - decision version (MCAPD): given n > 2
strings s1, s2, . . . , sn, n ordered sets of segments B1,B2, . . . ,Bn, where Bi is
an ordered set of segments of si, a scoring function ω, and a positive integer
l, are there n chains Γ1, Γ2, . . . , Γn, where Γi is a chain of Bi, such that∑n
i=2

∑i−1
j=1 simω(Γ •i , Γ

•
j) = l?

To prove theNP-completeness of the MCAPD, we will reduce from the following
decision version of the Longest Common Subsequence Problem:

Longest Common Subsequence Problem - decision version (LCSPD): given
n > 2 strings s1, s2, . . . , sn and a positive integer k, is there a string t with
|t| = k such that t is a subsequence of s1, s2, . . . , sn?

A NP-completeness proof of the LCSPD can be found in [10].

Theorem 1. The MCAPD is NP-complete.

Proof. It is not hard to see that the MCAPD is in NP. For this matter, con-
sider a simple verification algorithm that receives as input an instance 〈{s1, s2,
. . . , sn}, {B1,B2, . . . ,Bn}, ω, l〉 of the MCAPD and a certificate 〈Γ1, Γ2, . . . , Γn〉,
and then checks if each Γi is a chain of Bi and if

∑n
i=2

∑i−1
j=1 simω(Γ •i , Γ

•
j) = l.

It is trivial to see that this naive algorithm runs in polynomial time.
For the reduction step, suppose there is a polynomial-time decision algorithm

for the MCAPD called AlgMCAPD. We will thus prove there is a polynomial-
time algorithm for the LCSPD by transforming an arbitrary instance I =

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

8 Lima et al.

〈{s1, s2, ..., sn}, k〉 of the LCSPD into an instance I ′ = 〈{s′1, s′2, ..., s′n}, {B1,B2,
...,Bn}, ω, l〉 of the MCAPD such that I is positive if and only if I ′ is positive.

In what follows, four steps are described to build I ′ from I. In the first step,
{s1, s2, ..., sn} is assigned to {s′1, s′2, ..., s′n}, i.e., the sets of strings are the same
for both instances.

The second step defines the n ordered sets of segments B1,B2, ...,Bn. An
ordered set of segments Bi is constructed by adding, in order, each symbol of si
as a segment of Bi.

The third step defines the scoring function ω as

ω(a, b) =

1, if a = b
−(Opt+ + 1), if a 6= b
−(Opt+ + 1), if a = − or b = −,

where Opt+ = n∗(n−1)
2 ∗ |smax| and smax is the longest input string. In other

words, Opt+ is an upper bound for
∑n
i=2

∑i−1
j=1 simω(Γ •i , Γ

•
j).

Finally, the fourth step defines

l =
n ∗ (n− 1) ∗ k

2
.

It is not hard to check that the transformation of I into I ′, using the four
steps previously explained, takes polynomial time. It is thus possible to build
an algorithm, called AlgLCSPD, to decide the LCSPD. This algorithm receives
an arbitrary instance I of the LCSPD, transforms I into an instance I ′ of the
MCAPD, and then calls AlgMCAPD taking I ′ as argument. AlgLCSPD then
decides I as positive (negative) if AlgMCAPD decides I ′ as positive (negative).
Since both the transformation of I into I ′ and the execution of AlgMCAPD take
polynomial time, it is easy to see that AlgLCSPD also runs in polynomial time.
To complete the proof, we need to show that I is positive if and only if I ′ is
positive.

(Proof of “only if.”) Suppose I is positive. In this case, there is a string t with
|t| = k such that t is a subsequence of s1, s2, . . . , sn. We will prove that I ′ is also
positive. As I ′ is defined, it is always possible to build n chains Γ1, Γ2, . . . , Γn
such that Γ •1 = Γ •2 = ... = Γ •n = t. Therefore,∑n

i=2

∑i−1
j=1 simω(Γ •i , Γ

•
j) =

∑n
i=2

∑i−1
j=1 simω(t, t)

=
∑n
i=2

∑i−1
j=1 |t|

=
∑n
i=2

∑i−1
j=1 k

= n∗(n−1)∗k
2

= l.

Hence I ′ is positive.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

The Chain Alignment Problem 9

(Proof of “if.”) Suppose I ′ is positive. Thus, there are n chains Γ1, Γ2, . . . , Γn,

where Γi is a chain of Bi, such that
∑n
i=2

∑i−1
j=1 simω(Γ •i , Γ

•
j) = l. We will show

that I is also positive.
Since I ′ is positive, we can show that Γ1 = Γ2 = ... = Γn. Suppose, by contra-

diction, that Γ1 = Γ2 = ... = Γn is not true, i.e., there is at least one pair of chains

(Γi, Γj) such that Γi 6= Γj . In this case, in at least one of the n∗(n−1)
2 alignments

between Γ •1 , Γ
•
2 , ..., Γ

•
n , there will be a mismatch or a space. As the score of a

mismatch or a space is negative enough to make
∑n
i=2

∑i−1
j=1 simω(Γ •i , Γ

•
j) < 0,

we have a contradiction of our hypothesis that
∑n
i=2

∑i−1
j=1 simω(Γ •i , Γ

•
j) = l,

since l is a positive integer.
As Γ1 = Γ2 = ... = Γn, we have that Γ •1 = Γ •2 = ... = Γ •n . Besides, due to the

way we transformed I into I ′, it is easy to check that each Γ •i is a subsequence
of s1, s2, ...sn. With the previous observations in mind, we have∑n

i=2

∑i−1
j=1 simω(Γ •i , Γ

•
j) =

∑n
i=2

∑i−1
j=1 simω(Γ •x , Γ

•
x)

=
∑n
i=2

∑i−1
j=1 |Γ •x |

=
n∗(n−1)∗|Γ•x |

2 .

Since I ′ is positive,
∑n
i=2

∑i−1
j=1 simω(Γ •i , Γ

•
j) = l. Thus, we have

l =
n ∗ (n− 1) ∗ |Γ •x |

2

|Γ •x | =
2 ∗ l

n ∗ (n− 1)
= k.

Therefore, if t = Γ •x , for all 1 ≤ x ≤ n, we have that |t| = k so that t is a
subsequence of s1, s2, . . . , sn. Hence, I is positive.

�

5 Heuristics for the Multiple Chain Alignment Problem

Given the NP-hardness of the MCAP, we propose here three heuristics for it.
Two of them are based on the solution proposed by us for the CAP and the
third heuristic is based on the algorithm described in [4] to solve the Spliced

Alignment Problem (SAP). Informally, this problem consists in, given as input
two strings s and t, and an ordered set of segments B = {b1, b2, . . . , bu} of s,
finding an ordered subset Γ = {bp, bq, . . . , br} of non-overlapping segments of B
such that the string resulting from the concatenation of all segments in Γ is very
similar to t.

For a better understanding of the proposed heuristics, consider the follow-
ing. The input to the Multiple Chain Alignment Problem is given by the
triple ({s1, s2, . . . , sn}, {B1,B2, . . . ,Bn}, ω). We can invoke the algorithm that
solves the Chain Alignment Problem as CAP (si, sj ,Bi,Bj , ω), which in turn

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

10 Lima et al.

will return a pair of chains Pi,j = (Γi, Γj) such that simω(Γ •i , Γ
•
j) is maximum

among all chains of Bi and Bj . Further, given a pair of chains Pi,j , we can ref-
erence its first chain by Pi,j .Γi, its second chain by Pi,j .Γj , and its value by
val(Pi,j) = simω(Pi,j .Γ •i ,Pi,j .Γ •j).

All three heuristics here described work on a common framework. They com-
pute, at each iteration i, the chain Γi to be included in the final solution. Thus,
it is enough to describe how only one Γi is determined. In addition, their first
step in order to calculate Γi is to always invoke Pi,j = CAP (si, sj ,Bi,Bj , ω) for
all 1 ≤ j ≤ n, j 6= i. Thus, in the description of the heuristics, we will always
suppose that all pairs Pi,j are already precomputed.

5.1 H1 - Heuristic of the Consensus Chain

The consensus chain C(Γi) of an ordered set of segments Bi of a sequence si is
obtained as follows. We count how many times each segment of Bi is present in
each pair Pi,j for 1 ≤ j ≤ n, j 6= i. C(Γi) is then defined as the segments of Bi
that are present more than bn−12 c times. This heuristic thus defines Γi as C(Γi).

5.2 H2 - Greedy Heuristic

The Greedy Heuristic determines each Γi as

Γi = Pi,j .Γi|val(Pi,j) = max
1≤j≤n,j 6=i

{val(Pi,j)}.

5.3 H3 - Heuristic of the Central Chain

For the Heuristic of the Central Chain, consider that we can invoke the algorithm
described in [4] to solve the Spliced Alignment Problem as SAP (s, t,B, ω), and
that this invocation returns the value of optimal solution. This heuristic let

Γi = Pi,j .Γi|
n∑

k=1, k 6=i

SAP (sk,Pi,j .Γ •i ,Bk, ω) is maximum ∀ 1 ≤ j ≤ n, j 6= i.

6 Application to the Gene Identification Problem

In this section we model a variant of the Gene Identification Problem as the
CAP and the MCAP, and present some results which attest one of the applica-
tions of these latter problems, justifying their previous formalization and study.

In short, the Gene Identification Problem (GIP) consists in, given a DNA
sequence, determine the exons of the genes encoded by the given sequence [11].
The GIP is one of the most important problems in Molecular Biology, since it is
directly related to disease prevention and treatment, pest control, etc. However,
even nowadays, it still remains a challenging and complicated problem, which
justifies additional research on this topic.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

The Chain Alignment Problem 11

We propose to tackle a variant of the GIP by modelling it as the CAP.
To formally define this variant, we briefly recall the definition of some biolog-
ical concepts. Firstly, consider the fact that an organism’s DNA may change
permanently during time. These changes are called mutations and they can be
either beneficial, neutral or negative, according to their effect on the organism.
It is also important to note that mutations are observed more frequently on
non-coding regions of the DNA, which impact less on the protein biosynthesis
process, than on coding regions. Beneficial mutations may be transferred to the
organism’s descendants and, in some cases, even originate new species. In this
context, given two different organisms O1 and O2, we say that a gene G1 of O1 is
homologous to a gene G2 of O2 if G1 and G2 evolved from a same gene present in
a common ancestor of O1 and O2. Finally, we can define the Homologous Gene

Identification Problem as follows.

Homologous Gene Identification Problem (HGIP): given two DNA sequences
D1 and D2, which contain two unknown homologous genes G1 and G2, re-
spectively, a set of putative exons E1 of G1, and a set of putative exons E2
of G2, find a set R1 of E1 and a set R2 of E2 such that R1 contains the real
exons of G1 and R2 contains the real exons of G2.

To model the HGIP as the CAP, let’s consider Σ = {A,C,G, T}, map the input
of the HGIP to an input of the CAP, and the output of the CAP to an output of
the HGIP. To map the inputs, let s, t, B and C be D1, D2, E1 and E2, respectively,
and let ω(a, b) = {1, if a = b;−1, if a 6= b;−2, if a = − or b = −}.

To map the outputs, let R1 and R2 be ΓB and ΓC , respectively. The main
supposition behind this modeling is that the coding regions of the two unknown
homologous genes G1 and G2 will be similar, even if they have been affected by
independent mutations. In this sense, the probability that the segments in ΓB
and ΓC correspond to the real exons of G1 and G2 is high.

Similarly as we extended the CAP to the MCAP, we can extend the HGIP

to a multiple version, where we receive n DNA sequences containing n unknown
homologous genes, and a set of putative exons of each gene, and we aim to
find the set of real exons of each gene. In this way, it is also possible to apply
the MCAP to the HGIP. The strength of doing so stands out when several
homologous genes are available, instead of only two. In these situations, we
apply the heuristics proposed for the MCAP to make an effective use of this
additional data, in order to get better solutions.

The dataset considered to evaluate the accuracy of the proposed model
was built using data from the ENCODE project [3] and from the HomoloGene
database [15]. In short, the ENCODE project aimed at identifying all functional
elements in the human genome sequence, and the HomoloGene database allowed
for the automatic detection of homologous genes from several eukaryotic, com-
pletely sequenced DNAs. To build the dataset, we firstly selected all genes from
the 44 regions studied in the pilot phase of ENCODE project, such that 1) coded
for only one protein; 2) their size were a multiple of 3; 3) presented the canon-
ical exon-intron structure. For each of these selected human genes, we searched

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

12 Lima et al.

for homologous genes from other species by using HomoloGene. We removed all
homologous sequences that: 1) did not code for a protein; 2) coded for hypothet-
ical proteins; 3) not all exons were completely identified; 4) did not present the
canonical exon-intron structure; 5) had exons composed by other bases besides
A, C, G or T. Finally, we added to the dataset the DNA sequences encoding all
genes selected so far (these sequences also included 1000 bases before the start
of the gene and after its end).

To finish the construction of the dataset, a simple tool was implemented to
retrieve the set of putative exons for each DNA sequence. To do so, we used
the method GAP3 described in [6] coupled with some metrics. For each pair of
human and homologous sequences, GAP3 is applied to find the similar regions
of both sequences, which we consider as the putative exons. As we might have a
large number of putative exons in this step, we decided to filter the 50 best, by
using a combination of four metrics: the WAMs defined in [14], the codon usage
[5], the optimal general alignment score [6], and the PWMs defined in [2]. We
would like to note that the sequences in the dataset presented an average of 6.8
exons. However, the sets of putative exons generated by this tool included less
than 50% of the real exons. Thus, we ultimately decided to add the missing real
exons to each set. Finally, the dataset included 206 test instances.

The results of the application of the three heuristics for the MCAP and the
algorithm that solves the CAP to the HGIP can be found in Table 1. The accu-
racy of each solution was evaluated by using the measures introduced by Burset
and Guigó in [1] to evaluate the performance of gene prediction tools on three
distinct levels: nucleotide, exon and border. Briefly speaking, at the nucleotide
level, a true positive (TP) is a coding nucleotide that was correctly predicted as
coding, a true negative (TN) is a non-coding nucleotide that was correctly pre-
dicted as non-coding, a false positive (FP) is a non-coding nucleotide that was
incorrectly predicted as coding, and a false negative (FN) is a coding nucleotide
that was incorrectly predicted as non-coding. Considering this, the specificity
(resp. sensitivity) at the nucleotide level is defined as Spn = TP

TP+FP (resp.

Snn = TP
TP+FN), and the approximate correlation, which summarize both mea-

sures, as Ac = 1
2 ∗(TP

TP+FN + TP
TP+FP + TN

TN+FP + TN
TN+FN)−1. At the exon level,

let Re be the set of real exons and let Pe be the set of predicted exons. The

specificity (resp. sensitivity) at the exon level is thus defined as Spe = |Re
⋂
Pe|

|Pe|

(resp. Sne = |Re
⋂
Pe|

|Re|) and both measures are summarized as Ave = Spe+Sne

2 .

For the border level, suppose that the exon borders denote its start and end
positions, and let PRb be the set of exon borders that were correctly predicted,
let Re be the set of real exons, and let Pe be the set of predicted exons. The

specificity (resp. sensitivity) at the border level is thus defined as Spb = |PRb|
2∗|Pe|

(resp. Snb = |PRb|
2∗|Re|) and both measures are summarized as Avb = Spb+Snb

2 .

In this work these measures were calculated considering only the predictions
on the human sequence. The algorithm for the CAP was applied to the human
sequence and to each of its homologous, and the best solution was selected.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

The Chain Alignment Problem 13

Table 1. The results of the application of the three heuristics for the MCAP and the
algorithm that solves the CAP.

Algorithm
Nucleotide Exon Border

Spn Snn Ac Spe Sne Ave Spb Snb Avb
H1 0,945 0,935 0,923 0,897 0,881 0,889 0,919 0,901 0,910

H2 0,910 0,994 0,940 0,803 0,880 0,841 0,838 0,925 0,882

H3 0,942 0,988 0,958 0,865 0,909 0,887 0,894 0,943 0,919

CAP 0,916 0,969 0,933 0,826 0,881 0,854 0,856 0,916 0,886

As we can see in Table 1, the CAP got the worst performance, followed by
H2. The best results were obtained by H3, followed by H1, as H3 got the best
performance on Ac and Avb, and lost on Ave to H1 by a very small margin.
As expected, these results show that if we increase the number of evidences in
the HGIP, we can get better results. In this specific test, by obtaining several
homologous genes to a human gene, and by processing these data collectively,
using the heuristics for the MCAP, it was possible to produce better results than
processing these homologous sequences individually, using the algorithm for the
CAP. We can conclude then, even though we do not have an exact solution for
the MCAP, in some applications, the extra data and evidence given by multiple
inputs are too valuable to be ignored. Thus, future works can focus on a deeper
study of better heuristics or approximate solutions for the MCAP.

7 Concluding remarks

This paper presented two new string related combinatorial optimization prob-
lems, namely the Chain Alignment Problem and the Multiple Chain Alignment

Problem, and some results for them. More specifically, the first problem was
solved via a polynomial-time dynamic programming algorithm. For the second
one, it was proved that it is hard to develop a polynomial-time exact algorithm,
unless P = NP. We also attested that these problems can model practical prob-
lems, by applying them to a variant of the Gene Identification Problem, and
by getting appropriate results.

A particularly interesting point to be investigated concerns the cases where
each ordered set of segments βi of si has linear size on si. In such cases, algo-
rithms for the classical Spliced Alignment Problem were improved from cubic
to almost quadratic time [8, 13, 17]. Surely, such restriction may not be applica-
ble depending on the modeled problem, but regarding the main application of
both the Chain Alignment Problem and the Multiple Chain Alignment Prob-

lem, namely the Gene Identification Problem, such constraint is appropriate.
Therefore, the techniques described in those papers could lead to faster solutions
to the problems presented in this work. It is also worth noting that the results
shown in this paper for the Multiple Chain Alignment Problem assumed a
specific scoring function. As future works, it would be of interest to explore the
complexity of this problem under other scoring functions, especially those usu-

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

14 Lima et al.

ally employed in practical problems. Still regarding this problem, the study of
probabilistic algorithms, linear programming models, and heuristics for it could
reveal interesting results. The application of both problems in other practical
tasks also remains as a future work.

Acknowledgements. The authors acknowledge Coordenação de Aperfeiçoamen-
to de Pessoal de Nı́vel Superior (CAPES), Brazil, for the support of this work.

References

1. Burset, M., Guigó, R.: Evaluation of gene structure prediction programs. Genomics
34, 353–367 (1996)

2. Cavener, D.R., Ray, S.C.: Eukaryotic start and stop translation sites. Nucleic Acids
Research 19(12), 3185–92 (1991)

3. Consortium, T.E.P.: The ENCODE (ENCyclopedia Of DNA Elements) Project.
Science 306(5696), 636–640 (2004)

4. Gelfand, M.S., Mironov, A.A., Pevzner, P.A.: Gene Recognition Via Spliced Se-
quence Alignment. Proceedings of the National Academy of Sciences of the United
States of America 93, 9061–9066 (1996)

5. Guigo, R.: GENETIC DATABASES: DNA Composition, Codon Usage and Exon
Prediction, chap. DNA Composition, Codon Usage and Exon Prediction (chapter
4), pp. 53–80. Academic Press (1999)

6. Huang, X., Chao, K.M.: A generalized global alignment algorithm. Bioinformatics
19(2), 228–233 (2003)

7. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall. (1988)
8. Kent, C., Landau, G.M., Ziv-Ukelson, M.: On the complexity of sparse exon as-

sembly. Journal of Computational Biology 13(5), 1013–1027 (2006)
9. Lewin, B., Krebs, J., Goldstein, E., Kilpatrick, S.: Lewin’s Genes X. Jones and

Bartlett (2009)
10. Maier, D.: The Complexity of Some Problems on Subsequences and Superse-

quences. J. ACM 25(2), 322–336 (1978)
11. Majoros, W.: Methods for computational gene prediction. Cambridge University

Press (2007)
12. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for sim-

ilarities in the amino acid sequence of two proteins. Journal of Molecular Biology
48, 443–453 (1970)

13. Sakai, Y.: An almost quadratic time algorithm for sparse spliced alignment. Theory
of Computing Systems 48(1), 189–210 (2011)

14. Salzberg, S.: A method for identifying splice sites and translational start sites in
eukaryotic mRNA. Bioinformatics 13(4), 365–376 (1997)

15. Sayers, E.W., et al.: Database resources of the National Center for Biotechnology
Information. Nucleic Acids Research 38(Database-Issue), 5–16 (2010)

16. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1), 1–47 (2002)

17. Tiskin, A.: Semi-local string comparison: Algorithmic techniques and applications.
Mathematics in Computer Science 1(4), 571–603 (2008)

18. Ye, Y., Jaroszewski, L., Li, W., Godzik, A.: A segment alignment approach to
protein comparison. Bioinformatics 19, 742–749 (2003)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_2

https://dx.doi.org/10.1007/978-3-030-22744-9_2

