
Adaptive Objective Functions and Distance
Metrics for Recommendation Systems

Michael C. Burkhart[0000−0002−2772−5840] and Kourosh
Modarresi[0000−0002−9419−8235]

Adobe Inc., 345 Park Ave, San José, California 95110 USA
{mburkhar, modarres}@adobe.com

Abstract We describe, develop, and implement different models for the
standard matrix completion problem from the field of recommendation
systems. We benchmark these models against the publicly available Netflix
Prize challenge dataset, consisting of user’s ratings of movies on a 1-5
scale. While the original competition concentrated only on RMSE, we
experiment with different objective functions for model training, ensemble
construction, and model/ensemble testing.

Our best-performing estimators were (1) a linear ensemble of base models
trained using linear regression (see ensemble e1, RMSE: 0.912) and (2)
a neural network that aggregated predictions from individual models
(see ensemble e4, RMSE: 0.912). Many of the constituent models in our
ensembles had yet to be developed at the time the Netflix competition
concluded in 2009. To our knowledge, not much research has been done
to establish best practices for combining these models into ensembles. We
consider this problem, with a particular emphasis on the role that the
choice of objective function plays in ensemble construction.

1 Background

In 2006, Netflix released a dataset containing 100,480,507 movie ratings (on a 1-5
scale) from m =480,189 users on n =17,770 movies [10]. The set was divided into
99,072,112 training points and 1,408,395 probe points for contestants to train and
validate models. Netflix’s in-house algorithm Cinematch scored an RMSE (root
mean square error) of 0.9514 on the probe set. The prize of one million dollars
went to the first contestants to improve RMSE on a hidden test set by 10%. A
combined team of “Bellkor in BigChaos” and “Pragmatic Theory” accomplished
this in 2009 with an RMSE of 0.8558 on the probe data [9,61,79]. As one of the
largest real-life datasets available, the Netflix Prize data remains a benchmark
for innovations in recommender systems today.

1.1 Results

Tables 1 and 2 catalogue the final results. Full details and methods follow in the
subsequent sections.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

2 M.C. Burkhart and K. Modarresi

Table 1. Normalized model performance under different metrics.

model name n. MAE n. RMSE n. L3 n. L4 n. Cos. Dist.

m0 baseline 0.878 0.901 0.913 0.923 0.807
m1 irlba 5 0.860 0.888 0.903 0.916 0.784
m2 irlba 7 0.857 0.886 0.902 0.915 0.781
m3 irlba 13 0.853 0.883 0.899 0.913 0.775
m4 softImpute 5 0.787 0.841 0.876 0.904 0.702
m5 softImpute 7 0.780 0.837 0.874 0.903 0.695
m6 softImpute 13 0.773 0.836 0.876 0.909 0.692
m7 softImpute 100 0.824 0.903 0.952 0.989 0.806
m8 movie k-NN 0.855 0.901 0.924 0.942 0.808
m9 user k-means 0.845 0.893 0.922 0.947 0.794
m10 avg of m8,m9 0.832 0.869 0.890 0.906 0.751
m11 cross k-NN 0.816 0.862 0.891 0.915 0.738
m12 time-aware cross k-NN 0.793 0.862 0.907 0.943 0.735
m13 neural v5 0.784 0.854 0.897 0.932 0.723
m14 neural v11 0.780 0.830 0.861 0.886 0.684
m15 neural v13 0.771 0.836 0.879 0.915 0.695
m16 time-aware neural 0.764 0.829 0.87 0.904 0.681
m17 neural one-hot 0.791 0.842 0.874 0.901 0.702
m18 time-binned SVD 0.827 0.873 0.900 0.922 0.757
m19 WALS 0.778 0.837 0.876 0.909 0.695
m20 xgboost 0.79 0.845 0.879 0.908 0.708
m21 Gaussian factorization 0.769 0.839 0.885 0.922 0.696
m22 sparse tensor factorization 0.87 0.901 0.917 0.931 0.808
m23 Poisson factorization 1.013 1.002 0.971 0.942 0.741
m24 factorization machine 0.862 0.892 0.908 0.921 0.792
m25 VAE 0.881 0.905 0.917 0.927 0.814

Table 2. Normalized ensemble performance under different metrics.

ensemble name n. MAE n. RMSE n. L3 n.L4 n. Cos. Dist.

e0 subset avg 0.762 0.814 0.849 0.878 0.658
e1 linear regression 0.750 0.808 0.847 0.879 0.649
e2 random forest 0.757 0.811 0.847 0.877 0.653
e3 xgboost 0.754 0.809 0.848 0.880 0.649
e4 one-hot NN 0.749 0.808 0.848 0.881 0.648
e5 neural network 0.752 0.811 0.851 0.885 0.653

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

Adaptive Metrics for Recommendation Systems 3

2 Problem Description

Let M be an m× n matrix where entry Mij ∈ {1, . . . , 5} contains user i’s rating
of movie j. The matrix completion problem aims to recover the matrix M from
a subset Ω ⊂ [m]× [n] of its entries. We let PΩ(M) denote the projection of M
onto this subset, which amounts to zeroing out unobserved elements of M . We
further divide the probe data randomly into a test set of 1,000,000 points and a
validation set of the remaining 408,395 points. Our aim is to construct ensembles
of predictors. We build individual predictors using the training set and build
ensemble estimators using the validation set. We then report RMSE performance
on the test set.

As the de facto standard error for regression tasks, RMSE penalizes larger
errors more than MAE (mean absolute error). However, the extent to which
RMSE accurately represents misclassification loss remains debatable. For example,
correctly distinguishing between 3- and 5-star ratings may prove much more
important than distinguishing between 1- and 3-star ratings [30]. If the ultimate
goal is to produce a user’s top-N movies, [17] argue precision- and recall-based
metrics much better characterize success.

3 SVD

SVD methods play an important role in matrix completion. We discuss this
approach first because many of the subsequent methods benefit greatly from
leveraging a learned SVD decomposition, either by using SVD parameters for
initialization or to estimate user-user and movie-movie similarities.

Under the common additional assumption that M is of low rank r, where
r � min{m,n}, we can consider the SVD of M given by M = UΣV >, where U
is an m × r matrix with orthonormal columns, Σ is an r × r diagonal matrix
of positive entries, and V is an r × n matrix with orthonormal columns. Such
a matrix has O(mr) degrees of freedom (assuming, as in our case, that m >
n). Considering uniform sampling with replacement as a coupon collector’s
problem, we then require at least O(mr logm) entries from M in order for a
successful reconstruction [15]. We hypothesize that users rate movies based upon
r underlying features, having importance relative to the singular values of M .
The rows of U correspond to feature weightings for each user and the rows of V
correspond to feature weightings for each item.

3.1 Low Rank Recovery

[14,15] described sufficient conditions on the incoherence of the rows of U and
V such that M could be recovered with high probability through nuclear norm-
minimization. Recall that the nuclear norm is given ‖M‖∗ =

∑r
k=1 σk(M) where

σk(M) denotes the kth singular value of M . The precise optimization problem
was to minimize ‖M̂‖∗ subject to PΩ(M) = PΩ(M̂), where M̂ denotes the
estimate for M . Such a choice of objective function makes the problem convex

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

4 M.C. Burkhart and K. Modarresi

(indeed, all norms are convex), as opposed to minimizing rank(M̂). In a similar
vein, [52] developed “soft-thresholded” SVD to find M̂ minimizing 1

2‖PΩ(M̂ −
M)‖2F + λ‖M̂‖∗, where ‖ · ‖F denotes the Frobenius matrix norm.

4 Factorization Models

We implemented numerous approaches to matrix factorization. In this approach,
we estimate M̂ = UV > where U is an n×k matrix of user factors and V is an m×k
matrix of item factors. Unconstrained matrix factorization [75,76] simply finds
Û , V̂ = arg minU,V ‖PΩ(UV > −M)‖2, where the matrix norm is the Frobenius

norm, and predicts M̂ = Û V̂ > . The straightforward mathematical description
leaves a handful of implementation choices. We can initialize U, V either randomly
or from the SVD decomposition by taking, for example, U

√
Σ,
√
ΣV from a

learned SVD model. We can perform optimization with the whole dataset in
memory or perform batch-based optimization by iterating over subsets of the
training data.

We also implemented Tikhonov-regularized [77,78] matrix factorization [66,73]
to solve Û , V̂ = arg minU,V ‖PΩ(UV >−M)‖2+λ(‖U‖2+‖V ‖2) and non-negative
matrix factorization [46,47], with the constraint that all entries of U, V be non-
negative. In our experience, model performance seemed tightly coupled with
initialization.

4.1 Accounting for Implicit Preferences

Hu et al. developed a weighted matrix factorization method that accounts for
the implicit preference a user gives to a movie through the act of watching and
rating it [38]. Called weighted alternating least squares (WALS), this method
seeks Û , V̂ = arg minU,V ‖PΩ

(√
W � (UV > −M)

)
‖2 + λ(‖U‖2 + ‖V ‖2) where

W denotes the number of movies a user has rated and � denotes element-wise
multiplication. We used the contributed TensorFlow model and initialized with
SVD output.

4.2 Neural Network Matrix Factorizaton

This estimator constituted a feedforward fully-connected neural network mapping
learned representation vectors for users and movies through the network to predict
the corresponding rating. Such an approach is commonly referred to as neural
network matrix factorization [21,32]. Learned model parameters consist of m user
vectors in Rr, n movie vectors in Rr, and all parameters for the neural network.
We initialized user vectors with the U matrix and the movie vectors with the
V matrix from the soft-thresholded SVD model. Neural network parameters
received Glorot uniform initialization [28]. For each batch, we performed three
training steps: neural network parameters were updated, user representations
were updated, and movie representations were updated. We applied Tikhonov
L2-regularization to U and V . For all parameter updates, we used the Adam

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

Adaptive Metrics for Recommendation Systems 5

optimizer [41] that maintains different learning rates for each parameter like
AdaGrad [20] and allows these rates to sometimes increase like Adadelta [84]
but adapts them based on the first two moments from recent gradient updates.
We used a leaky rectified linear unit (ReLU) activation [57,50], and applied
dropout after the first hidden layer to prevent overfitting [74]. Neither Nesterov
momentum-aided Adam [19] nor Batch Normalization [39] appeared to improve
our results. Many different versions of neural networks were developed with minor
variations in architecture, initialization, and training.

4.3 Probabilistic Matrix Factorization

Factorization can also be performed in a probabilistic setting, by specifying a
generative graphical model and then finding the maximum a posteriori (MAP)
parameters [70] or by performing Gibbs sampling in a Bayesian setting [69]. In
Gaussian matrix factorization, we model Mij ∼i.i.d. N (UiV

>
j + bij , σ

2) where,
as before, U is an n × k matrix of user factors and V is an m × k matrix of
item factors. The bij denote the average of the mean rating from user i and the
mean rating of movie j, and account for user- and movie- effects. We learn U
and V to maximize the log likelihood of the observed data under this model.
In Poisson matrix factorization [29], Mij ∼i.i.d. Poisson(UiV

>
j + bij). We predict

M̂ij = E[X̂ij |X̂ij ∈ {1, . . . , 5}] where X̂ij ∼ Poisson(ÛiV̂
>
j +bij) and Û , V̂ denote

our learned model parameters.

4.4 Factorization Machine

A factorization machine [64,65] of second degree learns a regression model ŷ(x) =

w0 +
∑`
i=1 wixi +

∑
1≤i<j≤`〈vi, vj〉xixj for parameters wk ∈ R and vk ∈ R`,

k = 1 . . . , `. Such models were designed for sparsity, and in our case, we let
x ∈ Rm+n denote a one-hot vector representation for the user concatenated with
a one-hot vector representation for the movie.

5 Neighborhood Models

Neighborhood-based techniques prove to be useful ingredients in a Netflix en-
semble [42,80]. A k-NN model estimates a function’s value at a test point by
averaging the values of the k nearest training points. In our case, we can predict
the rating for a (user, movie)-pair by averaging the user’s ratings for the k nearest
movies or averaging the k nearest users’ ratings of the movie. To do so, we must
first set k and a metric for comparing two movies (or users). Given the sparseness
of the Netflix dataset, we must also account for the cases where we have no
training data on any of the k nearest neighbors of a given test point. In this
case, we typically fall back to the baseline global rating. A lower value of k tends
to increase the accuracy of the ratings we can calculate, but also increases the
number of test points for which we have insufficient training data.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

6 M.C. Burkhart and K. Modarresi

In addition to comparing the performance yielded by choice of metric, it may
also be illustrative to consider how the choice of metric impacts training data
availability. Suppose, given a (user, movie)-pair, the user tends to have rated
many more of the 20 nearest movies under the cosine metric than of the 20 nearest
under the Euclidean metric. Under the hypothesis that the act of expressing
a rating indicates preference (the ratings matrix is not revealed uniformly at
random), this fact might also provide us with information, independent of how
closely the ratings aligned to the target.

In [6], Bell, Koren, and Volinksy remark that neighborhood-based kernel
regression approaches may fail to account for relationships in the similarity space.
They describe Lord of the Rings as an example, where a neighborhood in movie-
movie similarity space might include all three movies from the trilogy, causing the
underlying effect from the trilogy to be counted three times. To account for this,
they optimize weights with shrinkage instead of relying on a predefined similarity
metric [5,7]. They also allow a neighborhood based method to defer judgement,
when provided insufficient or low-quality neighborhood information [8]. There
are also factorized versions of learned user similarity [80].

5.1 k-NN on SVD Latent Space

Consider the r-dimensional rows of U from the soft-thresholded SVD decom-
position of PΩ(M). These vectors give a dense, low-dimensional (we let r = 5)
representation for each user. We use a k-d tree [11] to find the k = 15 nearest
neighbors for each user according to the Euclidean metric. For a given (user,
movie)-pair in the probe set, we determine if any of the user’s neighbors rated the
queried movie, and if so, calculate a weighted average over these ratings, where
the weights are proportional to the exponentiated negative distance between the
user and her neighbors (cf. Nadaraya–Watson kernel-regression [56,82]).

A smaller value for k restricts to only the most similar neighbors, and so
decreases the bias of this estimate. However, it also increases the chance that
very few (or none) of the neighbors will have expressed a rating for the given
movie. In the case that fewer than three of the k = 15 nearest neighbors to a user
expressed a preference for a queried movie, then this method does not return a
rating, and the average ensemble is taken over the remaining estimators. This
allows the estimator to abstain from rating when it is not sufficiently confident,
and elegantly fall back to estimators that will be more reliable for a given (user,
movie)-pair. In a similar vein, we can cluster users according to k-means and use
the above approach with cluster members in place of neighbors. Clustering can
yield improved efficiency through memoization [54], as ratings for a given cluster
need only be computed once, and can then be applied to subsequent queries. We
also created a similar estimator that instead operates on the latent representation
for movies.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

Adaptive Metrics for Recommendation Systems 7

5.2 Crossing User Neighborhoods with Movie Neighborhoods

The original k-NN approach would find neighbors for either users or movies and
then aggregate ratings along a vector in the dual dimension (movies or users,
respectively). It is possible instead to use k-NN to find neighbors for both rows
and columns, and then aggregate along the sub-matrix consisting of the cross
product between neighboring users and neighboring movies. In other words, to
predict on a rating for user i on movie j, we would find indices Nui ⊂ [m]
corresponding to the neighbors of user i, and indices Nvj ⊂ [n] corresponding
to the neighbors of movie j, and compute a weighted average over the available
rankings in Nui × Nvj , where the weights account for distances in user-space,
movie-space, and the difference in time between the ratings. This allows us to
leverage ratings of similar movies provided by similar users.

6 Gradient Boosted Trees

Ensemble methods combine multiple weak learners (estimators) into a single
strong estimator [18,22,31,71]. Breiman’s bootstrap aggregating (“bagging”) ap-
proach trains multiple learners (in parallel) on bootstrapped samples. In contrast,
boosting algorithms like Adaboost [25] and gradient boosting [51,26,27] iteratively
add weak learners to improve an ensemble, concentrating effort on currently mis-
classified examples. (Note that concentrating on currently misclassified examples
is not required of a boosting algorithm: see, for example, Boost by Majority [23]
and Brown Boost [24].) In gradient boosting, we supply a loss function L(·, ·) and
a method to train new weak learners hi; in our case, we use regression trees [13].
For our application, we learned ratings for a (user, movie) pair as a function of
their representations in thresholded SVD feature space. We used XGBoost [16]
to build the estimator.

7 Variational Autoencoding

Variational autoencoding learns parameters for an autoencoder using a common
Bayesian technique known as variational inference. An autoencoder models
the identity function with a neural network [68,33]. Its architecture includes a
hidden layer of relatively small dimensionality that serves as an information
bottleneck. Upon training, the output from this layer yields a lower-dimensional
representation of the original data. If we restrict to linear maps and impose L2

loss on our reconstruction, autoencoding solves for the principal components
from PCA [59,37]. In this way, we can consider autoencoding to be a nonlinear
extension of PCA.

In Bayesian statistics, variational inference approximates intractable integrals
(expectations) through optimization, by substituting the integrand (probability
distribution) for the closest member of a parametrized family of distributions [40].
When optimization is batch-based, this process is known as stochastic variational
inference [67,36].

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

8 M.C. Burkhart and K. Modarresi

A variational autoencoder learns a probabilistic autoencoding model, as two
conditional distributions described by neural networks. The encoding distri-
bution qθ(z|x) describes how to sample the latent low-dimensional represen-
tation from an observation x and the decoding distribution pϕ(x|z) describes
how to sample a reconstructed x from the latent representation. Optimiza-
tion aims to maximize L(θ, ϕ) = Eqθ(z|x)[log pϕ(x|z)] −DKL

(
qθ(z|x)||p(z)

)
For

computational expediency, the expectations above are often approximated via
single-sample Monte Carlo integration [53]. In particular, for the ith data-
point Xi, we sample Zi ∼ qθ(·|X = xi)and form the unbiased approximations
Eqθ(z|x)[log pϕ(x, z)] ≈ log pϕ(Xi, Zi) and Eqθ(z|x)[log qθ(z|x)] ≈ log qθ(Zi|Xi).

Multiple authors have implemented VAE’s for collaborative filtering. [48]
learned item representations from known content data. [49] concentrated on
implicit ratings data; they consider observations in the form of a single user’s
(sparse) vector counts for item consumption, and argued that their two adjust-
ments, using a multinomial likelihood and adjusting the VAE objective, were key
to their performance.

We take Xi ∈ R17770 to be user i’s ratings for each movie (more precisely, the
residual ratings after subtracting off half of user i and movie j’s mean ratings). We
model qθ(z|x) = η10(z; f1(x), exp(f2(x)I10)) where η10 denotes a 10-dimensional
Gaussian, I10 is the identity matrix, and f1, f2 are leaky relu-activated neural
networks. Here, θ corresponds to the parameters for the neural networks f1, f2.
We model pφ(zi|x) = ηmi(z; g(x), Imi)) where mi denotes the number of movies
user i rated, g is a leaky relu-activated neural networks with a single hidden
layer, and φ denotes the parameters for g.

8 Incorporating Rating Time

The Netflix training and probe sets include a time stamp for each rating event.
We consider ways to leverage the effect of time in our model.

8.1 Time-aware Neural Factorization

Building on the success of Neural Network Matrix Factorization, this model added
two time components as inputs to the neural network: (1) the time of rating,
normalized to lie in [0, 1] and (2) the approximate number of years between the
movie’s release and the time of rating. As updates to U and V are sparse (any
given row only updates a handful of times for each run through the data set), we
used a Nesterov Momentum optimizer [62,58] to train them, while continuing
to apply the Adam optimizer for the neural network parameters (all of which
are updated at each training step). Newer optimizers such as Adam tweak the
learning rate for each parameter depending on a window of previous gradients
for each parameter. This approach may not be best when updates to a given
parameter occur only sporadically [63], so here we use Nesterov.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

Adaptive Metrics for Recommendation Systems 9

8.2 Neural One-Hot Factorization with a Time Component

In this approach, we designed a neural network that takes user- and movie-
representations, and time features “movie release year” and “time of rating”
and “time of user’s first rating,” and outputs a probability distribution on
{1, . . . , 5}. Training minimizes the cross-entropy between the the (point-mass,
or slightly modified point-mass) distribution on the underlying label and the
model’s predicted distribution. In addition to providing estimates for (user, movie,
time)-ratings, this model allows us to predict the variance or uncertainty of our
estimate.

8.3 Time-Binned SVD

We can partition the training and probe data into approximately equally sized
bins based on the time stamps associated to them (so ratings that occur around
the same time will be placed in the same or a neighboring bin) and learn a
separate SVD model for each time window. Each of these models can then be
used to predict a rating for a given (user, movie, time) probe pair, and a weighted
average formed over all such predictions, with a higher weight given to the bin
into which the query was placed.

8.4 Tensor Factorization

After partitioning our data into time bins (in the same way as for time-binned
SVD), we can view our training data as a ratings tensor, where the users by movies
matrix now extends along a third, temporal dimension. This allows us to perform
time-aware factorization into three tensors, one for each dimension. Hitchcock
pioneered a generalization of SVD to tensors, known as the minimal canonical
polyadic (CP) decomposition [34] , yielding the model M =

∑r
i=1 λia

1
i ⊗ a2i ⊗ a3i .

We initialize with higher-order SVD [35,81,45] and use alternating least squares
to fit the model.

9 Ensembling

Famously, the winning solution to the Netflix Prize challenge consisted of a blend
of 107 different models [9,61,79]. Our best-performing models, too, aggregated
predictions from other models. After building individual models using only data
from the training set, we built ensembles of models using data only from the
validation set. We distinguish ensembles with the letter e from our base models
lettered m.

9.1 Average over a Selected Subset

Considering all
(
19
10

)
size 10 subsets of {m1, . . . ,m19}, we found the subset whose

simple average produced the smallest RMSE on the validation set. The average
of these models was then computed for the test set. We performed the brute-force
search with the Numba package that allows for just-in-time compilation (to
LLVM) and parallelized for-loops.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

10 M.C. Burkhart and K. Modarresi

9.2 Linear Regression

We performed stepwise variable selection using the Bayesian Information Crite-
rion [72] (see also Akike’s Information Criterion [2]) for a multiple linear regression
model. We also used linear regression to select the most informative subset of 10
predictors [55].

9.3 Random Forests for Regression

We used Breiman’s random forest regression algorithm [12] on the 10 top pre-
dictors, as determined by linear regression in the above section. We also tried a
boosting approach for ensembling, the XGBoost algorithm [16]. The importance
matrix calculated from boosting gives the top 10 models, in order, as: m14, m16,
m15, m19, m7, m13, m17, m12, m18, m10.

9.4 Neural Network Regression

We trained neural networks on the validation set using predictions from individual
models as inputs and true values on the validation set as outputs. We adopted two
main architectures: (1) a direct continuous-valued function that was trained to
minimize RMSE, and (2) a distributional function that was trained to minimize
cross-entropy between its pdf-outputs and one-hot representations of the true
values. These models were then applied to the test set to measure performance.

9.5 Impact of Objective Function on Ensemble Building

To illustrate the role that the choice of objective function plays in ensemble
building, we took the boosted ensemble model and optimized it on the validation
data under a range of different objective functions. See Table 3 for results. As
extreme gradient boosting uses second derivatives of the objective function, we
do not include L1 or Huber loss.

Table 3. RMSE performance after optimizing e5 under different objective functions.

objective n. MAE n. RMSE n. L3 n. L4 n. L5 n. Cos. Dist.

L2 0.752 0.811 0.851 0.885 0.912 0.653
L3 0.780 0.817 0.842 0.863 0.881 0.655
L4 0.810 0.836 0.846 0.855 0.864 0.664
L5 0.844 0.859 0.858 0.857 0.857 0.677
Cosh 0.766 0.813 0.843 0.868 0.889 0.653

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

Adaptive Metrics for Recommendation Systems 11

10 Conclusions

The vast majority of benchmarks against the Netflix dataset report only RMSE
performance, in line with the prize’s original objective. For estimators that aim
to select a user’s top n movies, people sometimes consider precision-recall metrics.
We summarize our results under numerous metrics in Table 1 for base models
and Table 2 for ensembles. We normalize the Lp metrics by diving by the loss
obtained by predicting the mean training value for all test points. For example,
predicting the training mean (3.67 stars) for all movies in the test set yields
an RMSE of 1.127, so all reported normalized RMSE’s correspond to standard
RMSE divided by 1.127.

Ensembles proved essential to the winning solution for the Netflix Grand Prize.
In 2009 when the competition concluded, matrix factorization and neighborhood
methods provided the fundamental components from which the ensembles were
built. Since 2009, researchers introduced many new machine learning approaches
for recommender systems including neural network matrix factorization, factor-
ization machines, extreme gradient boosting, and variational autoencoding. These
methods have been tested individually, but little work has been done to consider
how these new approaches can be combined to form more effective ensemble
estimators. This paper provides a first step in that direction.

References

1. Abadi, M., et al.: TensorFlow: Large-scale mach. learn. on heterogeneous systems.
In: USENIX. pp. 265–283 (2016)

2. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automat.
Contr. 19(6), 716–723 (1974)

3. Baglama, J., Reichel, L.: Augmented implicitly restarted Lanczos bidiagonalization
methods. SIAM J. Sci. Comput 27(1), 19–42 (2005)

4. Behnel, S., Bradshaw, R., Citro, C., Dalćın, L., Seljebotn, D.S., Smith, K.: Cython:
The best of both worlds. Comput. Sci. Eng. 13(2), 31–39 (2011)

5. Bell, R., Koren, Y.: Scalable collaborative filtering with jointly derived neighborhood
interpolation weights. In: IEEE Int. Conf. Data Min. pp. 43–52 (2007)

6. Bell, R., Koren, Y., Volinsky, C.: Modeling relationships at multiple scales to
improve accuracy of large recommender systems. In: SIGKDD. pp. 95–104 (2007)

7. Bell, R.M., Koren, Y.: Improved neighborhood-based collaborative filtering. In:
SIGKDD (2007)

8. Bell, R.M., Koren, Y.: Lessons from the Netflix prize challenge. SIGKDD Explo-
rations 9(2), 75–79 (2007)

9. Bell, R.M., Koren, Y., Volinsky, C.: The BellKor solution to the Netflix prize (2009)
10. Bennett, J., Lanning, S.: The Netflix prize. In: KDD Cup and Workshop (2007)
11. Bentley, J.L.: Multidimensional binary search trees used for associative searching.

Commun. ACM 18(9), 509–517 (1975)
12. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
13. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.: Classification and Regression

Trees (1984)
14. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found.

Comput. Math. 9(6) (2009)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

12 M.C. Burkhart and K. Modarresi

15. Candès, E.J., Tao, T.: The power of convex relaxation: Near-optimal matrix com-
pletion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

16. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: SIGKDD. pp.
785–794 (2016)

17. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: RecSys. pp. 39–46 (2010)

18. Dasarathy, B.V., Sheela, B.V.: A composite classifier system design: Concepts and
methodology. Proc. IEEE 67(5), 708–713 (1979)

19. Dozat, T.: Incorporating Nesterov momentum into Adam. Int. Conf. Learn. Repre-
sent. (2016)

20. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

21. Dziugaite, G.K., Roy, D.M.: Neural network matrix factorization (2015),
arXiv:1511.06443

22. Efron, B.: Bootstrap methods: Another look at the jackknife. Ann. Stat. 7(1), 1–26
(1979)

23. Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput. 121(2),
256–285 (1995)

24. Freund, Y.: An adaptive version of the boost by majority algorithm. Mach. Learn.
43(3), 293–318 (2001)

25. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

26. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001)

27. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),
367–378 (2002)

28. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Int. Conf. Artif. Intell. Stats. vol. 9, pp. 249–256 (2010)

29. Gopalan, P., Hofman, J.M., Blei, D.M.: Scalable recommendation with hierarchical
poisson factorization. In: Uncertain. Artif. Intell. pp. 326–335 (2015)

30. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recom-
mendation tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009)

31. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal.
Mach. Intell. 12(10), 993–1001 (1990)

32. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Int. World Wide Web Conf. pp. 173–182 (2017)

33. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural
networks. Science 313(5786), 504–507 (2006)

34. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J.
Math. Phys. 6, 164–189 (1927)

35. Hitchcock, F.L.: Multiple invariants and generalized rank of a p-way matrix or
tensor. J. Math. Phys. 7, 39–79 (1928)

36. Hoffman, M., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J.
Mach. Learn. Res. 14, 1303–1347 (2013)

37. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)
38. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets.

In: IEEE Int. Conf. Data Min. pp. 263–272 (2008)
39. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In: Int. Conf. Mach. Learn. pp. 448–456 (2015)
40. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to

variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

Adaptive Metrics for Recommendation Systems 13

41. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. Int. Conf.
Learn. Represent. (2015)

42. Koren, Y.: Factorization meets the neighborhood: A multifaceted collaborative
filtering model. In: SIGKDD. pp. 426–434 (2008)

43. Lam, S.K., Pitrou, A., Seibert, S.: Numba. In: Proc. Workshop LLVM Compil.
(2015)

44. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. NIST 45(4), 255–282 (1950)

45. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decom-
position. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

46. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix
factorization. Nature 401, 788—791 (1999)

47. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Adv.
Neural. Inform. Process. Syst., pp. 556–562 (2000)

48. Li, X., She, J.: Collaborative variational autoencoder for recommender systems. In:
ACM SIGKDD. pp. 305–314 (2017)

49. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders
for collaborative filtering. In: Int. World Wide Web Conf. pp. 689–698 (2018)

50. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network
acoustic models. Int. Conf. Mach. Learn. 30 (2013)

51. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient
descent. In: Adv. Neural. Inform. Process. Syst., pp. 512–518 (2000)

52. Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for
learning large incomplete matrices. J. Mach. Learn. Res. 11, 2287–2322 (2010)

53. Metropolis, N., Ulam, S.M.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247),
335–341 (1949)

54. Michie, D.: Memo functions and machine learning. Nature 218, 19–22 (1968)
55. Miller, A.J.: Selection of subsets of regression variables. J. Royal Stat. Soc. Ser. A

147(3), 389–425 (1984)
56. Nadaraya, E.A.: On estimating regression. Teor. Veroyatnost. i Primenen. 9(1),

157–159 (1964)
57. Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines.

Int. Conf. Mach. Learn. (2010)
58. Nesterov, Y.: A method of solving a convex programming problem with convergence

rate o(1/sqr(k)). Soviet Math. Dokl. 27, 372–376 (1983)
59. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos.

Mag 2(11), 559–572 (1901)
60. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res.

12, 2825–2830 (2011)
61. Piotte, M., Chabbert, M.: The Pragmatic Theory solution to the Netflix grand

prize (2009)
62. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods.

USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)
63. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. Int.

Conf. Learn. Represent. (2018)
64. Rendle, S.: Factorization machines. In: IEEE Int. Conf. Data Min. pp. 995–1000

(2010)
65. Rendle, S.: Factorization machines with Libfm. ACM Trans. Intell. Syst. Technol.

3(3) (2012)
66. Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collabo-

rative prediction. In: Int. Conf. Mach. Learn. (2005)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

14 M.C. Burkhart and K. Modarresi

67. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat.
22(3), 400–407 (1951)

68. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations
by Error Propagation, vol. 1, pp. 318–362 (1986)

69. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using
markov chain monte carlo. In: Int. Conf. Mach. Learn. pp. 880–887 (2008)

70. Salakhutdinov, R.R., Mnih, A.: Probabilistic matrix factorization. In: Adv. Neural.
Inform. Process. Syst., pp. 1257–1264 (2008)

71. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227
(1990)

72. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
73. Srebro, N., Rennie, J., Jaakkola, T.S.: Maximum-margin matrix factorization. In:

Adv. Neural. Inform. Process. Syst., pp. 1329–1336 (2005)
74. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout:

A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15,
1929–1958 (2014)

75. Tenenbaum, J.B., Freeman, W.T.: Separating style and content. In: Adv. Neural.
Inform. Process. Syst., pp. 662–668 (1997)

76. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models.
Neural Comput. 12(6), 1247–1283 (2000)

77. Tikhonov, A.N.: On the stability of inverse problems. Proc. USSR Acad. Sci 39(5),
195–198 (1943)

78. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization
method. Proc. USSR Acad. Sci 151(3), 501–504 (1963)

79. Töscher, A., Jahrer, M.: The BigChaos solution to the Netflix grand prize (2009)
80. Töscher, A., Jahrer, M., Legenstein, R.: Improved neighborhood-based algorithms

for large-scale recommender systems. In: KDD Cup (2008)
81. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-

trika 31(3), 279–311 (1966)
82. Watson, G.S.: Smooth regression analysis. Sankhyā Ser. A 26(4), 359–372 (1964)
83. Wright, M., Ziegler, A.: ranger. J. Stat. Softw. 77(1) (2017)
84. Zeiler, M.D.: Adadelta: An adaptive learning rate method (2012), arXiv:1212.5701

A Implementation Details

In Python v3.6.0, we used Scikit-learn for k-NN and k-means [60] and Tensorflow
for neural network training [1]. We performed some just-in-time for-loop optimiza-
tion with Numba [43]. We used Cython [4] to precompile some Python functions
for additional performance. The ttfm package provided our factorization machine
implementation. We compiled Tensorflow from source with MKL (Intel) support
and additional instructions.

In R v3.5.1, we used ‘irlba’ for truncated SVD [3] (cf. [44]) and ‘softImpute’
for soft-thresholded SVD [52]. While increasing the rank r tended to result in
improved performance for both algorithms, returns were modest. We used ‘MASS’
for linear regression and ‘leaps’ for subset variable selection. We trained random
forests with ‘ranger’ [83] and performed boosting with ‘xgboost.’ We used the R
package ‘Reticulate’ and the Python package ‘rp2’ to transfer data between the
two languages.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_43

https://dx.doi.org/10.1007/978-3-030-22741-8_43

