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Abstract We consider the problem of training models to predict se-
quential processes. We use two econometric datasets to demonstrate how
different losses and learning algorithms alter the predictive power for
a variety of state-of-the-art models. We investigate how the choice of
loss function impacts model training and find that no single algorithm
or loss function results in optimal predictive performance. For small
datasets, neural models prove especially sensitive to training parame-
ters, including choice of loss function and pre-processing steps. We find
that a recursively-applied artificial neural network trained under L1 loss
performs best under many different metrics on a national retail sales
dataset, whereas a differenced autoregressive model trained under L1

loss performs best under a variety of metrics on an e-commerce dataset.
We note that different training metrics and processing steps result in
appreciably different performance across all model classes and argue for
an adaptive approach to model fitting.

1 Introduction

We develop time series estimators for current datasets and use them to iteratively
forecast a few steps into the future. We consider the effects of using different
training loss functions and different evaluation metrics. The training methodology,
including the choice of loss function, seems to impact model performance more
than typically reported, potentially due to the relatively smaller amounts of
available training data.

2 Datasets

We used time series datasets from the fred Economic Data portal provided by
the Federal Reserve Bank of St. Louis.

2.1 Advance Retail Sales

The Advance Retail Sales: Retail and Food Services Total (rsafsna) dataset is a
monthly accounting of retail and food services sales totals in the US, provided by
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2 M.C. Burkhart and K. Modarresi

the U.S. Bureau of the Census [21]. The data begins in January 1992 and includes
a final estimated value for October 2018. This monthly data is strongly periodic.
We split the time series into two contiguous sets: a training set containing 310
observations from Jan. 1992 to Oct. 2017 and a testing set of 12 observations from
Nov. 2017 to Oct. 2018. Models learned to use the previous ` = 11 observations
to predict the next datapoint. All training and validation was conducted on
the training set. See Figure 1 (left) for a plot of the data and Figure 2 for its
autocorrelation and partial autocorrelation plots.
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Figure 1. (Left) Plot of the Advance Retail Sales dataset. Note the strong seasonality
for this monthly data. The recession of 2008 is clearly visible in the data. (Right) Plot
of the E-Commerce Retail Sales dataset. This coarser, quarterly data displays less
seasonality than the Retail Sales numbers. While the 2008 recession remains visible, its
relative effect seems less pronounced. Even as total consumption dropped, the share of
online consumption increased.

0 5 10 15 20 25

Time Lags

0

0.2

0.4

0.6

0.8

1

Au
to

co
rr

el
at

io
n

Autocorrelation for RSAFSNA Data

0 5 10 15 20 25

Time Lags

-0.5

0

0.5

1

Pa
rt

ia
l A

ut
oc

or
re

la
tio

n

Partial Autocorrelation for RSAFSNA Data

Figure 2. Diagnostic plots for the Advance Retail Sales dataset. (Left) Autocorrelation
function; (Right) Partial Autocorrelation function. The two bumps in the acf correspond
to lags at times 12 and 24, exactly one and two years prior, respectively. Similarly, the
bump in the pacf corresponds to the lag at time 12, exactly one year prior.
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2.2 E-Commerce Retail Sales

The E-Commerce Retail Sales (ecomsa) dataset is a quarterly accounting of
goods and services sales totals where orders were placed or prices were negotiated
online. The U.S. Bureau of the Census provides data from Q4 1999 to Q3 2018 [22].
We split the time series into two contiguous sets: a training set containing 72
observations from Q4 1999 to Q3 2017 and a testing set of 4 observations from
Q4 2017 to Q3 2018. Models used the previous 7 observations to predict the next
datapoint. All training and validation was conducted on the training set. See
Figure 1 (right) for a plot of the data and Figure 3 for its autocorrelation and
partial autocorrelation plots.
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Figure 3. Diagnostic plots for the E-Commerce Retail Sales dataset. (Left) Autocor-
relation function; (Right) Partial Autocorrelation function. Periodicity may be less
apparent for this data due to the general strong trend of growth.

3 Methodology

We describe some of the modeling approaches used on this data. Consider a
real-valued time series X1, X2, . . . . Our problem is to use the historical data
Xt−`, Xt−`+1, . . . , Xt−1 to predict the next realization of the series Xt. The length
` of the historical data used by our model is often referred to as number of lags
in the model. Once we have learned a model for Xt given Xt−`:t−1, we can use it
iteratively to predict multiple steps into the future by using our predictions in
place of known historical data. For example, if we predict X̂t given Xt−`:t−1, we
can then predict X̂t+1 given Xt−`+1:t−1, X̂t. Note however, that the uncertainty
associated to this second prediction X̂t+1 will be higher than that for X̂t, because
we are now using uncertain data to make predictions.
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3.1 Autoregressive Model

An autoregressive model with ` lags models

Xt = α1Xt−1 + · · ·+ α`Xt−` + εt

where εt ∼ N (µ, σ2) for parameters α1, . . . , α`, µ, σ. We often denote such a
model AR(`). The hyperparameter ` is often selected by considering the partial
autocorrelation function, that measures the correlation between Xt and Xt−i
after accounting for the linear dependence of Xt on Xt−1, . . . , Xt−i+1.

3.2 Artificial Neural Network Model

We can use a fully-connected multiple layer artificial neural network fθ : R` → R
to model

Xt = fθ(Xt−1, . . . , Xt−`)

We learn the parameters θ by passing batches of data to any standard optimizer.

3.3 Long Short-Term Memory Model

A Long Short-Term Memory model [9,7] maintains a stateful representation of
history to overcome the vanishing and exploding gradient problems encountered
by rnn’s when presented with long-term dependencies [2]. See Figure 3.3 for an
illustration.

Figure 4. Schematics for recurrent neural network variants lstm (left, shown in se-
quence) and gru (right, cell only). Images courtesy of Chris Olah; re-used with permis-
sion.

3.4 Gated Recurrent Unit Model

A variant of the lstm, the Gated Recurrent Unit (gru) model simplifies lstm
architecture [3]. Chung, et al. suggested that gru’s can outperform lstm’s on
smaller datasets [4]. See Figure 3.3 for a side-by-side comparison.
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3.5 Temporal Convolutional Network Model

The Temporal Convolutional Network (tcn) model presents an alternative neu-
ral network-based approach to time series modeling [12,1]. This convolutional
architecture creates connections that are causal (dependent only on previous time
steps) and dilated (periodic in time). See Figure 3.5 for a schematic. Sometimes
such models employ residual blocks [8] that stack networks and include a copy of
the first layer in the final layer.

Figure 5. Schematic for tcn model. Causal convolutions are those that only go backward
in time. Dilated convolutions use only every k-th entry. Stacking dilated convolutions
increases the receptive field multiplicatively. Diagram re-used from [1].

3.6 Gaussian Mixture Model

A Gaussian Mixture Model fits the model

p(x) =
∑k
i=1 ϕi · η(x;µi, Σi)

where η(·;µi, Σi) denotes the p.d.f. of a normal distribution with mean µi and
covariance Σi. This model consists of a mixture of k Gaussian distributions. As
both the latent parameters and mixture memberships must be inferred from
the dataset, the Expectation Maximization (em) algorithm is commonly used to
fit such a model [5]. Expectation Maximization alternates between computing
soft assignments (expectations) of datapoints to mixtures and finding the latent
parameters that maximize model likelihood under these assignments. Its estimates
converge to the Maximum Likelihood (mle) parameters [23].

Note that gmm is a generative model. We distinguish generative probabilistic
models that learn the joint distribution p(x, y) from discriminative probabilistic
models that learn the conditional distribution p(y|x) [14]. For example, we
consider most regressive models (including the autoregressive and Gaussian
process models described here) to be discriminative. To apply this model for our
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purposes here, we learned the joint distribution of (Xt−`:t−1, Xt) as a Gaussian
mixture and then for a given test sequence xt−`:t−1, we predicted

x̂t = arg max
xt

{pθ(xt−`:t−1, xt)}

under our trained model pθ.

3.7 Gaussian Process Regression Model

A Gaussian Process (gp) is an infinite collection of random variables for which
every finite subset has a multivariate Gaussian distribution [17]. For the purposes
of a regression, the gp specifies a covariance structure on function outputs that
depends on the function inputs. Given a dataset {(xi, yi)}ni=1, and a kernel
function kθ(·, ·) where θ is a set of tunable hyperparameters, the gp model
specifies

Y1:n|x1:n ∼ N (0,K + σ2In)

where Kij = kθ(xi, xj) for each 1 ≤ i, j ≤ n, and σ2 is a tunable hyperparameter
for process noise. Learning amounts to finding the hyperparameters θ, σ2 that
maximize the likelihood for our data under this model. We made predictions at
a new test point x∗ by leveraging the consistency of our stochastic model. We
consider [

Y1:n
Y∗

]
∼ N

(
0,

[
Kθ + σ2In (k∗)>

k∗ k∗∗

])
where (k∗)i = kθ(xi, x∗) and k∗∗ = kθ(x∗, x∗). This implies that

Y∗|x1:n, Y1:n, x∗ ∼ N
(
(k∗)>K −1Y1:n, k∗∗ − (k∗)>K −1k∗

)
We used the mean of this conditional distribution for predictive purposes, with a
squared exponential kernel.

4 Results

We tuned the artificial neural networks by hand. The following choices were made
for each network:

– Model architecture: For recurrent neural networks, the size of the hidden layer
and whether to include fully connected layers above or below the recurrent
layer can significantly alter model performance.

– Regularization: Common approaches include dropout [18], added Gaussian
noise [15], batch normalization [10], and Tikhonov regularization [19,20].

– Optimizer: There are a variety of modern optimization strategies that adap-
tively vary learning rates and add momentum. For this project, we used the
Adam optimizer [11].

– Optimization parameters: Learning rate and training batch size were hand-
selected.
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– Synergistic effects: Choices in one category impact choices in another. For
example, learning rate and training batch size are interdependent: adjust-
ments to learning rate should often accompany adjustments to batch size,
and vice versa. While the literature presents many individual solutions for
deep learning, less is known about how they interact. For example, there has
been considerable discussion on where to place dropout in a recurrent archi-
tecture [16,24,6]. In tcn’s, we saw a clear connection between architecture
size and learning rate as well.

For all neural models, we preprocessed data by subtracting the training mean
and dividing by the training standard deviation for each datapoint. We trained
and predicted on these scaled data, and inverted the transformation before
calculating prediction error.

For the models denoted “∆,” we learned and predicted on the time series of
differences, and then took a cumulative sum of predicted differences to tabulate
our final predictions. Differencing can remove time-based effects in the data
(non-stationarities).

4.1 Advance Retail Sales
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Figure 6. Model predictions for Advance Retail Sales data on models trained to predict
Xt from Xt−`:t−1 For clarity, we only include the L2 training runs. Full numerical
results are in Table 1.

The ar predictions appear to be overly conservative. Training under the
L1 objective loss results in uniformly worse performance than L2 (for the non-
differenced model).

The gru and lstm architectures generally perform less well than the ann
architecture.
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Figure 7. Model predictions for Advance Retail Sales data on models trained to predict
∆Xt from ∆Xt−`:t−1, reconstructed from last training point and predicted differences.
For clarity, we only include the L2 training runs. Full numerical results are in Table 1.

Due to the way we tested the models, a single missed prediction feeds back
into the model and compounds the error for subsequent results. For example, the
lstm model badly misses its second prediction and then appears to be off by a
time step for the rest of the test. These models have not been given the month
of the year as input, only the 11 previous values for retail sales. We see how a
single poor prediction that is fed back into the model as input can disrupt the
model’s sense of seasonality.

Differencing proved especially effective for the recurrent neural network mod-
els.

4.2 E-Commerce Retail Sales

For L2, we used least squares optimization, for which the optimal parameter
values have explicit solutions. For L1 and L4, we performed gradient descent
with momentum to find parameters that minimized training error on the full
training set. We initialized at the L2 optimum and checked for convergence.

Finally, it is worth noting that the performance of the tcn (non-differenced)
on this data set was extremely poor (for the non-differenced model), under all
objective functions. For any metric we consider, it would be much better to
use the null predictions than the tcn predictions. It is possible that the tcn
architecture requires a different regularization or training strategy in this case of
a very small dataset. One might imagine that the tcn is reverting to the mean of
the training data. (We note in Figure 1 the strong upward trend of this data.) In
the future, it may be advisable to include a separate linear trend for datasets like
this, and fit the neural networks to residuals. Differencing appears to ameliorate
this issue.
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Figure 8. Model predictions for E-Commerce Retail Sales data on models trained
to predict Xt from Xt−`:t−1; For clarity, we only include the L2 training runs. Full
numerical results are in Table 2.

For the ar model, differencing effectively increases the lag by one time step
and removes any linear dependence on time. We see fairly similar results for the
differenced and non-differenced versions of the ar and ann models. However, for
the recurrent models (lstm & gru) and the tcn, taking differences can prove to
be a very effective way to boost model performance.
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Table 1. Normalized Model Performance on the Advance Retail Sales dataset. Models
were trained to optimize the loss function “obj.” (for objective function). Here, “n”
denotes the quantity has been normalized by dividing out the norm returned from
predicting the final training value for all test data, ”Cos.” denotes cosine distance, ”Corr.”
denotes Pearson correlation distance, and ”Mah.” denotes Mahalanobis distance [13].

model obj. n.-mae n.-rmse n.-L3 n.-L4 n.-L∞ n.-Cos. mape Corr. Mah.

ar L1 0.828 0.921 0.963 0.97 0.919 1.138 0.06 0.955 6.467
ar-∆ L1 0.326 0.351 0.35 0.34 0.278 0.069 0.022 0.033 4.897
ar L2 0.642 0.681 0.694 0.689 0.579 0.668 0.045 0.146 3.894
ar-∆ L2 0.41 0.435 0.433 0.421 0.326 0.122 0.028 0.062 4.803
ar L4 0.638 0.663 0.664 0.656 0.593 0.608 0.045 0.184 4.26
ar-∆ L4 0.604 0.6 0.583 0.562 0.447 0.187 0.041 0.094 5.244

ann L1 0.198 0.204 0.204 0.2 0.18 0.039 0.014 0.017 3.998
ann-∆ L1 0.281 0.296 0.293 0.284 0.22 0.06 0.019 0.03 5.209
ann L2 0.261 0.272 0.274 0.271 0.242 0.065 0.018 0.03 3.594
ann-∆ L2 0.288 0.299 0.294 0.285 0.223 0.065 0.02 0.033 4.824
ann L4 0.636 0.643 0.638 0.626 0.583 0.2 0.043 0.1 4.971
ann-∆ L4 0.316 0.33 0.328 0.319 0.256 0.142 0.022 0.073 4.88

gru L1 1.056 1.055 1.061 1.069 1.085 1.076 0.072 1.473 5.682
gru-∆ L1 0.384 0.367 0.351 0.336 0.277 0.076 0.026 0.034 4.668
gru L2 0.843 0.793 0.761 0.735 0.663 0.443 0.058 0.212 6.044
gru-∆ L2 0.216 0.221 0.222 0.22 0.209 0.068 0.015 0.028 5.076
gru L4 0.703 0.694 0.674 0.654 0.604 0.643 0.05 0.396 6.059
gru-∆ L4 0.489 0.476 0.459 0.442 0.37 0.063 0.034 0.03 4.408

lstm L1 1.066 1.027 0.991 0.956 0.809 0.336 0.074 0.137 6.0
lstm-∆ L1 0.281 0.276 0.268 0.259 0.225 0.061 0.019 0.025 4.291
lstm L2 1.652 1.635 1.593 1.538 1.214 2.761 0.115 1.04 6.898
lstm-∆ L2 0.222 0.234 0.236 0.235 0.215 0.078 0.016 0.036 3.948
lstm L4 0.441 0.526 0.583 0.614 0.642 0.332 0.032 0.183 4.828
lstm-∆ L4 0.218 0.258 0.285 0.298 0.309 0.085 0.015 0.043 5.735

tcn L1 0.915 0.917 0.911 0.898 0.793 1.182 0.064 1.108 6.752
tcn-∆ L1 0.321 0.3 0.284 0.27 0.226 0.084 0.022 0.009 3.651
tcn L2 0.798 0.775 0.755 0.734 0.656 0.739 0.055 0.376 5.108
tcn-∆ L2 0.401 0.38 0.358 0.339 0.268 0.1 0.028 0.02 3.786
tcn L4 1.004 0.991 0.977 0.962 0.916 0.902 0.069 0.57 6.123
tcn-∆ L4 0.411 0.396 0.377 0.359 0.29 0.142 0.028 0.017 4.126

gmm mle 0.219 0.22 0.218 0.214 0.203 0.063 0.015 0.028 4.516
gmm-∆ mle 0.225 0.233 0.233 0.228 0.196 0.042 0.016 0.02 4.829

gpr mle 0.729 0.674 0.627 0.588 0.435 0.097 0.051 0.034 6.062
gpr-∆ mle 0.209 0.237 0.262 0.279 0.299 0.082 0.015 0.025 4.203
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Table 2. Normalized Model Performance on the E-Commerce Retail Sales dataset.
Models were trained to optimize the loss function “obj.” (for objective function). Here,
“n” denotes the quantity has been normalized by dividing out the norm returned from
predicting the final training value for all test data, ”Cos.” denotes cosine distance,
”Corr.” denotes Pearson correlation distance, and ”Mah.” denotes Mahalanobis distance.

model obj. n.-mae n.-rmse n.-L3 n.-L4 n.-L∞ n.-Cos. mape Corr. Mah.

ar L1 0.058 0.056 0.054 0.053 0.049 0.002 0.005 0.001 0.676
ar-∆ L1 0.015 0.014 0.013 0.012 0.011 0.001 0.001 0.0 0.088
ar L2 0.017 0.02 0.02 0.02 0.019 0.001 0.001 0.0 0.432
ar-∆ L2 0.051 0.05 0.049 0.048 0.043 0.002 0.004 0.0 0.472
ar L4 0.02 0.027 0.031 0.033 0.036 0.003 0.002 0.0 0.383
ar-∆ L4 0.069 0.071 0.073 0.074 0.077 0.006 0.006 0.0 0.593

ann L1 0.283 0.281 0.285 0.29 0.305 0.062 0.023 0.003 0.847
ann-∆ L1 0.082 0.083 0.083 0.083 0.079 0.007 0.007 0.0 0.36
ann L2 0.206 0.193 0.185 0.18 0.171 0.011 0.017 0.005 0.663
ann-∆ L2 0.215 0.221 0.224 0.225 0.226 0.055 0.017 0.0 1.038
ann L4 0.614 0.645 0.64 0.632 0.593 0.784 0.051 0.152 5.266
ann-∆ L4 0.377 0.396 0.404 0.407 0.412 0.21 0.031 0.0 1.58

gru L1 0.724 0.681 0.659 0.647 0.635 0.123 0.059 0.001 0.692
gru-∆ L1 0.778 0.839 0.879 0.905 0.957 0.909 0.063 0.007 2.434
gru L2 1.263 1.204 1.176 1.162 1.153 0.491 0.104 0.002 1.361
gru-∆ L2 0.462 0.425 0.402 0.386 0.33 0.019 0.038 0.007 1.976
gru L4 1.705 1.629 1.592 1.576 1.567 0.872 0.14 0.003 1.791
gru-∆ L4 0.117 0.12 0.12 0.12 0.111 0.015 0.01 0.001 0.507

lstm L1 1.25 1.208 1.19 1.183 1.182 0.642 0.102 0.001 1.678
lstm-∆ L1 0.248 0.242 0.237 0.233 0.223 0.05 0.021 0.012 2.538
lstm L2 0.97 1.002 1.028 1.047 1.093 0.959 0.079 0.006 2.06
lstm-∆ L2 0.293 0.312 0.332 0.347 0.375 0.129 0.024 0.016 1.904
lstm L4 2.677 2.836 3.01 3.142 3.387 7.211 0.218 0.11 5.676
lstm-∆ L4 0.732 0.922 1.029 1.088 1.178 1.903 0.059 0.032 2.898

tcn L1 2.978 2.749 2.61 2.523 2.299 1.554 0.246 1.999 3.625
tcn-∆ L1 0.284 0.288 0.29 0.29 0.287 0.084 0.023 0.0 1.132
tcn L2 2.625 2.428 2.308 2.234 2.041 1.284 0.216 1.874 3.07
tcn-∆ L2 0.299 0.301 0.302 0.301 0.297 0.088 0.024 0.0 1.219
tcn L4 3.148 2.904 2.756 2.662 2.406 1.723 0.26 1.968 3.627
tcn-∆ L4 0.332 0.335 0.337 0.337 0.335 0.112 0.027 0.0 1.287

gmm mle 0.02 0.021 0.021 0.022 0.021 0.001 0.002 0.001 0.425
gmm-∆ mle 0.026 0.029 0.031 0.033 0.035 0.005 0.002 0.001 0.177

gpr mle 0.19 0.201 0.209 0.214 0.225 0.052 0.015 0.001 0.499
gpr-∆ mle 0.345 0.336 0.33 0.327 0.322 0.072 0.028 0.0 1.709
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