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Abstract. Over the last decade, computational modeling has proved a useful tool 

to simulate the transmission dynamics of nosocomial pathogens and can be used 

to predict optimal control measures in healthcare settings. Nosocomial infections 

are a major public health issue especially since the worldwide increase of anti-

microbial resistance worldwide. Here, we present CTCmodeler, a framework that 

incorporates an agent-based model to simulate pathogen transmission through 

inter-individual contact in a hospital setting. CTCmodeler uses real admission, 

swab and contact data to deduce its own parameters, simulate inter-individual 

pathogen transmission across hospital wards and produce weekly incidence esti-

mates. Most previous hospital models have not accounted for individual hetero-

geneity of contact patterns. By contrast, CTCmodeler explicitly captures tem-

poral heterogeneous individual contact dynamics by modelling close-proximity 

interactions over time. Here, we illustrate the use of CTCmodeler to simulate 

methicillin-resistant Staphylococcus aureus dissemination in a French long-term 

care hospital, using longitudinal data on sensor-recorded contacts and weekly 

swabs from the i-Bird study. 

Keywords: agent based model, hospital, multiresistant bacteria. 

1 Introduction 

Healthcare-associated infections are an important public health threat in the hospital 

setting, in particular as a result of increasing selection for bacterial pathogens that are 

multi-resistant to antibiotics [20, 21]. Effective control strategies are needed to limit the 

global expansion of multi-resistant pathogens, yet better understanding of the transmis-

sion dynamics of nosocomial pathogens is necessary to design and implement optimal 

strategies.  
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Mathematical models are useful tools to understand and predict the dynamics of 

pathogen spread in hospitals [1, 8, 10]. Such models have two main objectives: to de-

scribe the epidemiology of pathogen transmission and to assess the impact of control 

strategies such as hand hygiene, on endemic situations at the hospital scale [4, 12, 16, 

17, 19]. The majority of published epidemiological mathematical models are so-called 

“compartmental” models, which group individuals into compartments according to 

their epidemic status (e.g. infectious, susceptible or recovered). However, because hos-

pital settings typically host small populations with highly heterogeneous characteristics 

and behaviors, agent-based models (ABMs) may be more realistic, allowing for sto-

chastic simulation of dynamics at the individual level [2, 3, 6, 9, 11, 13–15, 18].  

In this paper, we present a new stochastic ABM set within a framework called 

CTCmodeler (Clinical Transmission and Contact modeler), which simulates the dis-

semination of pathogens at the hospital scale. The originality of our model is twofold. 

First, it explicitly accounts for networks of inter-individual within-hospital contacts. 

Second, it includes a module that computes model parameters from observed data. 

Here, we describe the ABM and illustrate the output of CTCmodeler using the example 

of methicillin-resistant Staphylococcus aureus (MRSA) spread in a French long-term 

stay hospital. For this illustration, the model is informed by detailed data on contacts 

and MRSA colonization collected over 6 months during the i-Bird study.  

 

2 Methods 

2.1 General framework description   

CTCmodeler consists of three modules: learning, modeling and contact simulation. The 

learning module estimates parameters from observed data, including pathogen trans-

mission rates, durations of colonization, probabilities of colonization at admission and 

daily swab frequencies. The modeling module is the ABM, detailed further below. Fi-

nally, the contact module simulates contact networks for future predictions. To simulate 

realistic contacts, this last module computes hourly probabilities of contact between 

different individual categories from observed contact data provided by the user. The 

whole framework was programmed in C++ with the repast HPC library 2.2.0 and is 

illustrated in a class diagram in Figure 1. 
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Fig. 1. Simplified class diagram for CTCmodeler. Patient and Staff objects inherit from Indi-

vidual, which inherits all its common variables from Organism. Bacteria inherits from Patho-

gen, which also inherits from Organism. 

2.2 Overview of the ABM modeling module 

The modeling module of CTCmodeler has two options. The first option runs the ABM 

using user-provided data to reproduce and visualize real output. The second option sim-

ulates the transmission of a pathogen along the contact network using three sources of 

input described in further detail below: (i) input parameters that may be estimated from 

the learning module or directly provided as a csv file by the user, (ii) a contact file that 

may either be user-provided (based on observed data) or generated by the contact sim-

ulation module, and (iii) a patient admission file that can either by user-provided or 

obtained from the learning module based on real admission data. In the following, we 

describe the ABM following the ODD protocol of Grimm et al. [7]. R software (version 

3.4.2) was used for graphics.  

 

Purpose. The CTCmodeler ABM module simulates nosocomial pathogen transmission 

between humans, using admission, contact and swab data from any hospital. The main 

goals are to trace the possible routes of transmission at the individual scale and to de-

scribe interaction dynamics between individuals. In the future, potential control 

measures can be implemented in the ABM.  

 

Entities, State Variables and Scales. Figure 1 summarizes all agent variables in a 

simplified class diagram. The ABM has a main abstract class, the Organism agent, 

which is split into the Individual and Pathogen classes. Individual class has two chil-

dren, Patient and Staff classes, which inherit some common variables from Individual, 
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while Pathogen class is composed of a Bacteria class only. Each class has its own set 

of variables. The unique id variable characterizes each object during the simulation. 

Common variables for individuals are hospital anonymous number, age, gender, status 

(patient or staff), admission date, discharge date, allocated ward, a map of colonization, 

current positive pathogens and positive pathogens. Current positive pathogens lists all 

pathogens carried by the individual at a given point in time. Positive pathogens is a 

container with dates of swabs undergone by the individual and a list of pathogens car-

ried at each swab date. The map of colonization contains decolonization dates for each 

pathogen carried by the individual. Patient class also includes a hospital flag variable, 

which describes the reason for hospitalization, while the staff class also includes a cat-

egory variable, which describes that individual’s occupation (nurse, hospital porter, 

physician, etc.).  

 

Common variables for Pathogen class are the type (bacteria), positive individuals and 

current positive individuals. Current positive individuals lists all individuals who carry 

the pathogen at a given point in time. Positive individuals is a container with the last 

individual date of carriage and the corresponding individual. Bacteria class-specific 

variables are id, family, genus, species, spatype, MRB (type of multiresistance) and 

phenotypes. The learning module of CTCmodeler computes environmental parameters 

such as the transmission rate, the colonization at admission rate, the colonization dura-

tion and the patient and staff daily probabilities of getting swabbed. 

 

Scales. ABM timescales are set by the user, including simulation dates and time step 

size. At each time step, the model builds a contact between any two individuals. The 

computer code for CTCmodeler is fully parallelized, with separate processes for each 

hospital ward.  Hence, a distinct computer process is associated with each ward. For 

example, if the hospital has three wards, the program will have three processes in which 

individuals will be scattered. At the beginning of the model, corresponding ward-pro-

cesses receive newly admitted individuals. The simulator also adds pathogens carried 

by the newly added individual’s process if she/he acquires new ones. At each time step, 

an individual has contacts with another individual through a network space based on 

the contact file. 

 

Process Overview and Scheduling. Simulations are run on three time levels: weeks, 

days and time steps. 

 

Weeks. Each week, the simulation chooses which individuals to swab. Selected indi-

viduals only have a single swab day. This is based on the learning module of CTCmod-

eler, which computes the mean and standard deviation from the swab distribution of 

each swab day from provided data. On each simulation day, the model chooses a set of 

individuals thanks to a normal distribution deduced from mean and standard deviation 

of the corresponding day of the week.  

 

Days. The model performs four actions on each day: add, remove, swab and decolonize 

individuals. Individuals are added or removed based on daily admissions and discharges 
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listed in the admission file. Readmissions are possible during the simulation for both 

patients and staff. When individuals leave the simulation, they go into a transitory con-

tainer to keep track of their information (e.g. colonization status). The model simulates 

swabs for each individual listed among a set determined weekly. Finally, colonization 

is cleared (“decolonization”) for each pathogen carried by a given individual if the cur-

rent simulation date matches the patient’s decolonization date (stored in the map of 

colonization for all pathogens stored inside current positive pathogens).  

 

Time step. At each time step, the model simulates contacts and possible pathogen trans-

mission events between individuals. Users choose the time step that corresponds to the 

contact frequency recorded in the contact file. The model builds an edge if two individ-

uals are in contact. Colonized individuals can transmit all the pathogens they carry (i.e. 

all pathogens listed in current positive pathogen) with the transmission rate either (i) 

previously determined by the learning module of the framework or (ii) user-defined. 

The transmission rate is different for each couple (patient-to-patient, staff-to-patient, 

patient-to-staff and staff-to-staff). When a contact results in a new colonization, the 

duration of this colonization is randomly drawn from a Gamma distribution. The shape 

and scale parameters of this distribution are deduced from the mean and standard devi-

ation calculated from real data or user-defined in the learning module of the framework. 

 

2.3 Design concept 

Interaction. Two types of interactions occur during the simulation. 

 

Inter-individual contacts. The ABM uses the contact file to link individuals during the 

simulation. At each time step, the model reads the file and adds an edge to the network.  

 

Inter-individual transmission. Colonized individuals can transmit their pathogens to a 

susceptible individual through the contact network. The transmission rate may either 

be user-defined or calculated from the learning module of CTCmodeler. In the latter 

case, it is computed from the observed data as,  

  𝑇𝑐1−𝑐2 = ∑
𝐴𝑠

∑ 𝐶𝑐1−𝑐2,𝑠−𝑛
𝑁
𝑛=1

𝑆
𝑠=1  (1) 

Where 𝑇𝑐1−𝑐2 represents the transmission rate between an individual from category 1 

(e.g. patient) and another individual from category 2. S is the total number of weeks, As 

is the number of acquisitions observed during week s and 𝐶𝑐1−𝑐2,𝑠−𝑛 is the cumulative 

duration of contacts between colonized individuals from category 1 and non-colonized 

individuals from category 2 during weeks s-n. N is the number of previous weeks that 

are taken into account.   

For each interaction, the transmission rate is multiplied by the duration of the con-

tact. If desired, the model can incorporate transmission rate saturation for longer con-

tacts. This option (named duration threshold) is done by using 1+log(∑ 𝐶𝑐1−𝑐2,𝑠−𝑛
𝑁
𝑛=1 ) 

as the denominator in 𝑇𝑐1−𝑐2. 
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Stochasticity. Colonization duration, transmission rate, swab day of week probabilities 

and colonization at admission are randomly drawn from probability distributions during 

the simulation. Moreover, admission and discharge rates, as well as contacts, are ran-

domly simulated when the user does not choose to read them directly from observed 

data. 

 

Observations. The model predicts weekly incidence of pathogen acquisition, calcu-

lated as the number of new acquisitions at week s divided by the number of negatively 

swabbed individuals during week s-1. To account for possible lack of swab sensitivity, 

the user may also choose to define a new acquisition as a positive swab following two 

negative swabs. In this case, the number of new acquisitions at week s is divided by the 

number of negatively swabbed individuals during both weeks s-1 and s-2.  

 

2.4 Details 

Initialization. Before the first time step, the initial number of colonized individuals is 

determined. When a swab file is available, the model observes the number of colonized 

swabbed individuals at time 0 and estimates the number of colonized non-swabbed in-

dividuals based on proportions of colonized swabbed patients and staff. When no swab 

data is available, the number of colonized individuals is computed from a user-defined 

number. Initially colonized individuals of each category are chosen at random. 

 

Input. The three input files needed to run the ABM (admission, contact and parameter 

files) can either be user-provided or computed by the framework from the learning and 

contact modules. The admission file lists dates of hospital arrival and departure for all 

individuals included in a simulation. When not user-provided, admission files are ran-

domly simulated based on daily admission and discharge rates for each category of 

individuals. The contact file lists all unsymmetrized contacts that occur between pa-

tients and staff over time during simulations. When not user-provided, contact files are 

randomly simulated using contact probabilities between individual categories. These 

contact probabilities may change depending on the hour of the day and on the type of 

day (weekday vs. weekend).The parameter file gathers all parameter values that the 

ABM needs. When not user-provided, these parameter values are computed from ob-

served contact, admission and swab data. 

3 Results 

3.1 Data 

Data from the i-Bird study of nosocomial pathogen transmission were used in this il-

lustrative example of CTCmodeler. This study took place at Berck-sur-Mer in a French 

long-term care facility (LTCF) from the beginning of May to the end of October 2009, 

with the first two months as a pilot phase.  
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During July to October, 95% of patients and hospital staff carried an RFID sensor. 

Sensors recorded all close proximity (<1.5 meters) interactions occurring in the 5 wards 

of the hospital every 30 seconds over this 4-month period. The 5 wards were specialized 

in neurology rehabilitation, geriatric rehabilitation, nutrition and post-operation reha-

bilitation. The staff population was heterogeneous and included nurses, auxiliary 

nurses, hospital porters, physicians, administration and animation staff, etc. This diver-

sity entailed idiosyncratic contact dynamics, with many patient-to-patient, patient-to-

physician and patient-to-hospital porters’ contacts, as described in an earlier paper [5].  

Moreover, over the entire study period, dedicated nurses swabbed patients and hos-

pital staff weekly for MRSA colonization.  

For this illustration, we used the iBird data to simulate MRSA spread in the hospital 

from July 6, 2009 to the September 28, 2009. During this period, sensors recorded 

1,147,005 contacts and dedicated nurses swabbed 505 individuals (264 of whom were 

found to carry MRSA at some point during the study). 

 

3.2 Input and parameters 

CTCmodeler was run using the i-Bird user-contact data file as the contact file to create 

the contact network. Individual admissions and discharges reproduced the observed 

data stored in the i-Bird user-admission file. The learning module calculated transmis-

sion rates, means and standard deviations of the colonization duration distribution and 

daily swab probabilities, based on i-Bird user-admission and i-Bird user-swab files. 

Finally, for these simple simulations, admission and contact file were user-provided 

and parameters file was deduced from the learning module. Table 1 summarizes all 

rates, probabilities and parameters deduced by the learning part (included in the param-

eters file) and used by the modeling part in this illustrative example. For this example, 

we assumed that an acquisition episode occurred when the individual had two negative 

swabs followed by a positive one. We also chose to focus on first acquisitions only 

(without possible recolonization). Second, the ABM used the computed patient-to-pa-

tient, patient-to-staff, staff-to-patient and staff-to-staff transmission rates to simulate 

pathogen transmission. We used a threshold to saturate patient-to-staff and staff-to-staff 

transmission rates with time. The i-Bird data is composed of 5 wards and hence 5 pro-

cesses were used for simulations. Thanks to the Repast HPC library, processes were 

run in parallel and computationally efficient (approximate runtime of 10 minutes).  

 

3.3 Output 

Simulations started with 387 individuals, 151 patients and 236 hospital staff. Among 

them, 84 swabbed individuals (40 patients and 44 staff) were colonized with MRSA on 

the first day. Figure 2 depicts the predicted incidence of MRSA colonization over time 

within the entire hospital, compared with observed data collected during the i-Bird 

study. We computed 95% prediction bands, i.e. bands that cover 95% of model output 
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obtained over 500 stochastic model simulation. These 95% prediction bands include all 

the observed data points (red points), thus validating the model predictions. 

 

Table 1. Model parameters 

Variable Value 

Transmission rates  

Patient-to-patient 0.000009 

Patient-to-staff 0.133615 

Staff-to-patient 0.000509 

Staff-to-staff 0.136793 

Colonized at admission rates  

Patient 0.21 

Staff 0.33 

Colonization duration (days)  

Patient mean (sd) 32 (771) 

Staff mean (sd) 27 (561) 

Patient daily swab (%)  

Monday mean (sd) 60.7 (15.1) 

Tuesday mean (sd) 34.9 (10.7) 

Wednesday mean (sd) 14.5 (10.4) 

Thursday mean (sd)  4.1 (2.8) 

Staff daily swab (%)  

Monday mean (sd) 24.2 (10.1) 

Tuesday mean (sd) 12.0 (4.1) 

Wednesday mean (sd) 7.4 (4.3) 

Thursday mean (sd)  10.2 (2.1) 
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Fig. 2. Weekly incidence of MRSA colonization at the hospital scale. Red points represent the 

observed incidence in the i-Bird data. Grey bands correspond to the 95% prediction bands ob-

tained with 500 ABM simulations. Incidence is in percentage of individuals found negative 

over the two previous weeks. Consequently, the first two data points are at 0. 

4 Discussion 

In this paper, we introduce CTCmodeler, a framework that simulates individual inter-

actions and pathogen transmission in a hospital setting using an agent-based modeling 

approach. The main originality of this framework is to explicitly account for the inter-

individual contact network within the hospital. This allows for tracing of transmission 

routes and makes the model realistic in terms of interaction mixing, as compared to 

most previously published models of nosocomial pathogen spread. Multiple options 

make the model flexible, such as the option for users to enter their own parameter values 
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to input real data, allowing CTCmodeler to calculate relevant hospital parameters and 

run corresponding simulations.  

The MRSA example we present illustrates how the model can be used to simulate 

the dissemination of a resistant bacteria through inter-individual contacts in a 5-ward 

long-term care facility. The framework calculated all needed parameters from real data 

and then simulated acquisition incidence over a 4-month period. The results obtained 

show that model predictions are consistent with the observed data. Indeed, the first two 

points are at zero because of the definition of acquisition chosen. The 500-simulations 

95% prediction bands include all incidence points showing that the model can predict 

MRSA acquisition.  

The current version of CTCmodeler has several limitations.  

The first limitation is the assumption that pathogens spread exclusively through in-

ter-individual contacts. This allows simulating the contact-mediated dissemination of 

pathogens such as MRSA or influenza, but would not work for pathogens spread 

through the environment for instance. Future extensions of the ABM should include the 

possibility of environmental contamination. 

In addition, the model may be used to simulate multiple pathogens simultaneously, 

but without allowing for interactions between these pathogens (e.g. exchange of a re-

sistance plasmid between two bacteria).  

Lastly, although its ability to acquire parameters directly from observed data is 

among our model’s strengths, it also makes it dependent on the precision of these data. 

When the ABM is used with parameters directly computed from real data files, any 

incorrect data entry will automatically affect simulations. Moreover, observed “con-

tact” data often reflects close interactions, rather than actual skin-to-skin contacts, as 

was the case in the i-Bird study. In that case, these “contacts” may not necessarily fa-

cilitate pathogen transmission.  

In conclusion, CTCmodeler has the potential to be a useful tool to predict pathogen 

transmission dynamics in a realistic, dynamic hospital setting. Future versions of the 

framework will include a wide array of control measures, such as hand hygiene, staff 

cohorting or antibiotic exposure and stewardship, allowing CTCmodeler to be used for 

public health decision making. 
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