
Security-Aware Distributed Job Scheduling in
Cloud Computing Systems: A Game-Theoretic

Cellular Automata-based Approach

Jakub Gąsior and Franciszek Seredyński

Department of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński
University, Warsaw, Poland

j.gasior@uksw.edu.pl f.seredynski@uksw.edu.pl

Abstract. We consider the problem of security-aware scheduling and
load balancing in Cloud Computing (CC) systems. This optimization
problem we replace by a game-theoretic approach where players tend
to achieve a solution by reaching a Nash equilibrium. We propose a
fully distributed algorithm based on applying Iterated Spatial Prisoner’s
Dilemma (ISPD) game and a phenomenon of collective behavior of play-
ers participating in the game. Brokers representing users participate in
the game to fulfill their own three criteria: the execution time of the sub-
mitted tasks, their execution cost and the level of provided Quality of
Service (QoS). We experimentally show that in the process of the game
a solution is found which provides an optimal resource utilization while
users meet their applications’ performance and security requirements
with minimum expenditure and overhead.

Keywords: Collective behavior; Multi-agent systems; Spatial prisoner’s
dilemma game; Second order cellular automata.

1 Introduction

An increasing popularity of the CC paradigm [2, 5] is lately accompanied by
another phenomenon, namely fast developing of the Internet of Things (IoT).
A large number of IoT devices will require automatic access to the resources of
CC and, together with human clients, will create a huge number of potential CC
users. The users sending their computational requests to CC will require fulfilling
at least two criteria: predefined efficiency and predefined level of security. These
criteria potentially can be fulfilled by solving in a centralized way a huge multi-
criteria optimization problem with a request of full information about the system
resources and users demands, what seems to be intractable for realistic problems.

Within the proposed simulated framework, we analyze a novel approach to
considered multi-objective job scheduling problem aiming to optimize both afore-
mentioned performance criteria. Firstly, we apply algorithmic game-theory to
extend the notions of independence and selfishness of each user submitting his
jobs to the cloud. We give to the users the freedom to choose the best strategy for

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

2 Jakub Gąsior and Franciszek Seredyński

their jobs. The proposed users’ strategies and resulting job allocations are used
as an input in our distributed scheduling scheme employing a non-cooperative
game-theoretic approach. The whole process is realized in the two-dimensional
Cellular Automata (CA) space where individual agents are mapped onto a reg-
ular square lattice. Main issues that are addressed here are: a) incorporating the
global goal of the system into the local interests of all agents participating in
the scheduling game, and b) formulation of the local interaction rules allowing
to achieve those interests.

Moreover, we propose to develop a fully distributed approach based on con-
verting an optimization problem into a game-theoretic problem where brokers
representing users demands will search a solution as a Nash equilibrium. For this
purpose we will use a variant of ISPD game proposed by [6] in the context of
CA space. The game has many interesting features. It has built-in “soft secu-
rity” mechanisms called membranes and it has potential of providing a collective
behavior. Similar to [8, 14], we will combine this approach with a traditional
Multiobjective Genetic Algorithm (MOGA) approach in order to account for
different trade-offs between QoS, computation time, and its associated costs.

The remainder of this paper is organized as follows. In Section 2, we describe
the proposed CC system model and define the scheduling problem. Section 3
contains some background concerning CA, details of the studied ISPD game and
some results of the experimental study of the game from positions of collective
behavior. Section 4 presents the proposed agent-based game-theoretic scheduling
scheme and its application. Section 5 demonstrates the performance metrics,
the input parameters and experimental results. Finally, Section 6 concludes the
paper.

2 Multi-objective Scheduling in Cloud Environment

2.1 Cloud Datacenter Model

The system model is an extension of the architecture introduced in [13] and fur-
ther developed in our earlier paper [4]. A system consists of a set of geograph-
ically distributed Cloud nodes M1, M2, ..., Mm, which are specified by several
characteristics, including their processing capacity si in million floating point
operations per second (MFLOPS), cost per hour ci, memory and storage space.
For the purpose of this paper, we follow the specification of Compute Optimized
Virtual Machine (VM) series provided by Amazon EC2.

Users (U1, U2, ..., Un) submit to the system workflow application Jj
k for exe-

cution. Each application is the set of n tasks or jobs. Users are expected to pay
appropriate fees to the Cloud provider dependent on the Service Level Agree-
ment (SLA) requested. Job (denoted as Jj

k) is jth job produced (and owned) by
user Uk. Jk stands for the set of all jobs produced by user Uk, while nk = |Jk|
is the number of such jobs. Each task has varied parameters defined as a tuple
< rj

k, sizej
k, tj

k, dj
k >, specifying its release dates rj

k ≥ 0; its size 1 ≤ sizej
k ≤ mm,

that is referred to as its processor requirements or degree of parallelism; its work-
load tj

k defined in MFLOPs and a deadline dj
k.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

Distributed Job Scheduling in Cloud Computing Systems 3

Rigid jobs require a fixed number of processors for parallel execution: this
number is not changed until the job is completed. We assume that job Jj

k can
only run on machine Mi if sizej

k ≤ mi holds, that is, we do not allow multi-site
execution and co-allocation of processors from different machines. We assume
a space sharing scheduling approach, therefore a parallel job Jj

k is executed on
exactly sizej

k disjoint processors without preemptions.
In mapping jobs onto cloud resources, we have to tackle a number of security-

related problems [7]. The first step is for a user to issue a Security Demand (SD)
to all submitted jobs. When setting up the SD values, users should be concerned
about issues related to job sensitivity, job execution environment, access control
and data integration [12], etc. On the other hand, the Security Level (SL) of
a machine can be attributed to the available intrusion detection mechanisms,
firewalls, and anti-virus capabilities, as well as prior job execution success rates.
This defense capability is evaluating the risk existing in the allocation of a sub-
mitted job to a specific machine.

Thus, a job is expected to be successfully carried out when SD and SL satisfy
a security-assurance condition (SD ≤ SL) during the job mapping process. The
SD is a real fraction in the range [0,1] with 0 representing the lowest and 1
the highest security requirement. The SL is in the same range with 0 for the
most risky resource site and 1 for a risk-free or fully trusted site. Specifically,
we define a Job Failure Model as a function of the difference between the job
security demand and a resource trust (Equation 1):

P F ailure
i,j =

{
0, SDj ≤ SLi,

1− exp−(SDj−SLi), SDj > SLi.
(1)

Meeting the security assurance condition (SDj ≤ SLi) for a given job-
machine pair guarantees successful execution of that particular job. Such schedul-
ing will be further called as a Secure Job Allocation. On the other hand, suc-
cessful execution of the job assigned to machine without meeting this condition
(SDj > SLi), will be dependent on the calculated probability and further re-
ferred to as a Risky Job Allocation.

Our goal is to design a dynamic and fully decentralized scheduling archi-
tecture oriented to on-line CC platforms. In this paper, we make the following
assumptions about the characteristics of the modeled CC system and workload
scheduler:

– The model is on-line;
– The scheduler is decentralized and clairvoyant;
– Each resource has a different number of processing elements;
– Jobs are parallel and rigid. Job Jj

k must be executed in parallel on sizej
k

processors of exactly one resource.
– Jobs are characterized by their release dates (rj

k ≥ 0);
– Preemption is not allowed;
– Processors are time-shared between jobs. Resources are space-shared and

time-shared between jobs.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

4 Jakub Gąsior and Franciszek Seredyński

Our main scheduling objective is to ensure fairness among multiple users
requesting access to cloud resources by distributing user’s Uk jobs among the
available machines. A detailed explanation of this process is provided in Sec-
tion 4.

3 Collective Behavior in Iterated Spatial Prisoner’s
Dilemma Game

3.1 Cellular Automata

CA are spatially and temporally discrete computational systems originally pro-
posed by S. Ulam and J. von Neumann in the late 1940s. Today they are a
powerful tool used in computer science, mathematics and natural science to
model different phenomena and develop parallel and distributed algorithms [15].

We will consider two dimensional (2D) CA which is 2D lattice consisting of
n × n elementary cells. For each cell a local 2D neighborhood of a radius r is
defined (see, Fig. 1). At a given discrete moment of time t each cell (i, j) is in
some state qt

i,j , in the simplest case it is a binary number 0 or 1.

(a) (b)

Fig. 1: 2D CA of the size 5×5. Examples of a local neighborhood
of the size r = 1 of a central cell (in light gray): a) von Neumann
neighborhood consisting of 4 neighbors, b) Moore neighborhood
consisting of 8 neighbors.

At discrete moments of time, all cells synchronously update their states ac-
cording to the assigned local rules (transition functions), which depend on states
of their neighborhood. A cyclic boundary condition is applied to finite size of
2D CA. If two or more different rules are assigned to CA to update cells, such
CA is called non-uniform.

3.2 Iterated Spatial Prisoner’s Dilemma Game

We consider 2D CA of the size n×n. Each cell of CA has a Moore neighborhood
of radius r, and also a rule assigned to it which depends on the state of its
neighborhood.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

Distributed Job Scheduling in Cloud Computing Systems 5

Each cell of 2D CA will be considered as an agent (player) participating
in the ISPD game [6]. Each player (a cell of CA) has two possible actions: C
(cooperate) and D (defect). It means that at a given moment of time each cell
is either in the state C or the state D. Payoff function of the game is given in
Tab. 1.

Table 1: Payoff function of a row player participating in ISPD
game.

Action Cooperate (C) Defect (D)
Cooperate (C) R = 1 S = 0
Defect (D) T = b P = 0

Each player playing a game with an opponent player in a single round (iter-
ation) receives a payoff equal to R, T , S or P , where T > R > P > S. Values of
these payoffs used in this study are specified in Tab. 1, where P = S = 0, R = 1,
and T = b (1.1 < b < 1.8). If a player takes action C and the opponent player
also takes action C than the player receives payoff equal to R = 1. However, if a
player takes action D and the opponent player still takes action C, the defecting
player receives payoff equal to T = b. In two remaining cases, a player receives
a payoff equal to 0.

In fact, each player associated with a given cell plays in a single round a game
with each of his 8 neighbors and this way collects some total score. After a q
number of rounds (iterations of CA) each cell (agent) of CA can change its rule
(strategy). We assume that considered 2D CA is non-uniform CA, and to each
cell one of the following rules can be assigned: all-C (always cooperate), all-D
(always defect), and k-D (cooperate until not more than k (0 ≤ k ≤ 7) neighbors
defect). The strategy k-D is a generalized strategy TFT, and when k = 0 it is
exactly the strategy TFT.

A player changes its current strategy into another one comparing collected
during q rounds total score with scores collected by his neighbors. He selects as
his new strategy the strategy of the best performing neighbor, i.e. the player
whose the collected total score is the highest. This new strategy is used by a cell
(player) to change its current state, and the value of the state is used in games
during the next q rounds.

It is worth to notice that the considered 2D CA differs from a classical CA,
where rules assigned to cells do not change during evolving CA in time. A CA
with a possibility of changing rules is called a second-order CA. In opposite to
a classical CA, a second-order CA has potential to solve various optimization
problems.

The main research issue in [6] was to study conditions of appearing of specific
structures called membranes created by cells using k-D rules which protected
cooperated players from defected players. In this study, we are interested in

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

6 Jakub Gąsior and Franciszek Seredyński

the collective behavior of a large team of players, in particular in conditions of
emerging global cooperation in such teams.

4 Game-theoretic Approach to Cloud Scheduling

This section provides a complete overview of our proposed agent-based game-
theoretic distributed scheduling scheme. To develop a truly distributed multi-
objective scheduling framework we propose a four-stage procedure consisting
of:

– Stage 1 : For each user Uk submitting his batch of jobs Jk to the cloud we
assign a broker Bk, responsible for allocation of user’s Uk jobs in the system;

– Stage 2 : A Pareto frontier is calculated for each broker Bk and batch of
jobs Jk submitted by user Uk under an assumption that all cloud resources
belong exclusively to the broker Bk using the MOGA approach;

– Stage 3 : Specific job allocation solutions (Scheduling Strategies) from the
Pareto frontier are selected according to the Pareto Selection Policies char-
acterizing user’s preferences (namely, Maximum Reliability, Minimum Cost
and Minimum Cost with Deadline). These solutions will be subsequently
used by a broker Bk representing user’s Uk interests;

– Stage 4 : Individual brokers employ previously selected Scheduling Strategies
in the ISPD game realized in a two-dimensional CA space, trying to find
a compromise global scheduling solution (Nash Equilibrium (NE) point) in
their selfish attempts to obtain cloud resources.

An equilibrium is reached when none of the participating brokers is inter-
ested in changing its own task allocation strategy. This is experienced when no
improvement is achieved in the individual scores and a valid global problem so-
lution S is obtained. A more detailed explanation of this process was provided
in our earlier work [3].

In this paper, we are more interested in the problem of incorporating this
global goal of the system into the local interests of individual brokers. To study
a possibility of emergence of a global collective behavior of players in the sense of
the second class of the collective behavior classification [1, 10] we will introduce
a number of local mechanisms of interaction between brokers, which can be
potentially spread or dismissed by the brokers during the evolution of system
in the process of the iterated game and study their impact on the scheduling
performance.

The first mechanism is the possibility of sharing locally profits obtained by
players participating in the game. Some kind of hard local sharing was success-
fully used [11] in the context of LA games. Here we will be using a soft version
of sharing, where a player decides to use it or not. It is assumed that each player
has a tag indicating whether he wishes (on) or not (off) to share his payoff with
players from the neighborhood who also wish to share their payoffs. The sharing
works in such a way that if two players play a game and both wish to share their
payoffs, each of them receives half of the payoff from the sum of payoffs received

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

Distributed Job Scheduling in Cloud Computing Systems 7

by both players in the game. Before starting the iterated game each player turns
on its tag with a predefined probability psharing.

The second mechanism which will be used is a mutation of a number of
the system parameters. With some predefined value of probability, a CA-based
agent of the first type can change the currently assigned strategy (rule) to one
of the two other strategies. Similarly, a CA-based agent of the second type can
increase/decrease its probability of cooperation.

The third mechanism which can be used is a competition which is a gen-
eralization of the idea proposed in [9]. In fact, each player associated with a
given cell plays in a single round a game with each of his neighbors and this way
collects some total score. If the competition mechanism is in turned on, after a
q number of rounds (iterations) each agent compares its total payoff with total
payoffs of its neighbors. If a more successful player exists in the neighborhood
of a given player this player is replaced by the most successful one.

5 Experimental Analysis and Performance Evaluation

5.1 Parameter settings

A number of experiments with the proposed system have been conducted with
the following settings of parameters. A 2D array of the size of 50 × 50 cells
(players) was used, with an initial state C or D (player action) set with the
probability equal to 0.5. Initially, the rule k-D was assigned (if applied) to CA
cells with the probability equal to 0.7, and the remaining three rules with the
probability equal to 0.1. When the competition mechanism was turned on, up-
dating the array cells (by a winner in a local neighborhood) was conducted after
q = 1 iterations.

5.2 Experiment #1. Typical runs of ISPD game with variable
values of parameter b.

The purpose of this set of experiments was to observe the dynamics and con-
ditions of appearing in the game a collective behavior of players measured by
a total number of cooperating players in the game. Initially conducted experi-
ments have shown that the ability of emergence of collective behavior depends
mainly on values of parameter b and only a little bit on a value of k. Therefore,
we will show some experimental results for the same value k = 4 and different
values of b.

The experiments were conducted for 2D CA of the size n × n = 10000 and
Fig. 2 shows results averaged over 50 runs of the game. Depending on the value of
b we can notice four regions of behavior resulting in different types of equilibria.
When b is in the range [1.1, . . . , 1.3] about 96% of players (see, Fig. 2a) decides
quickly (after about 25 iterations) to cooperate (red color). Among cooperative
players around 91% of players uses strategy all-C, (yellow color) and around 5%
uses the strategy k-D, (green color). Remaining about 4% of players use strategy
all-D.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

8 Jakub Gąsior and Franciszek Seredyński

(a)

(b)

(c)

Fig. 2: Averaged runs of ISPD game with k = 4 for: a) b = 1.2,
b) b = 1.4 and c) b = 1.6.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

Distributed Job Scheduling in Cloud Computing Systems 9

When parameter b is the range [1.4, . . . , 1.5] (see, Fig. 2b) the behavior of
players is more complex, and the system achieves an equilibrium after about
450 iterations. During about first 50 iterations global cooperation of the level of
around 90% is reached (red color), and next it is slowly decreasing during around
200 iterations to return back to the previous level after around 450 iterations.
We can observe the changing strategies structure of cooperating players.

While at the beginning of the game about 80% of coopering players use the
strategy all-C (yellow) and about 10% of cooperating players use the strategy k-
D, after around 450 iterations we can see a new stable proportion of cooperating
players: around 65% of them use strategy k-D and around 25% use the strategy
all-C. Still, a few percents of players use the strategy all-D. Comparing to the
previous experiment we can see the increasing standard deviation of cooperation
level and strategies applied by players.

When the value of b is close to the value 1.6 (see, Fig. 2c) a global cooperation
grows very slowly and reaches the level of around 20% (red color) after about
100 iterations, and it is supported by about 18% of players applying the strategy
all-C (yellow color). The remaining players use either k-D strategy (about 41%,
green color) or all-D (about 39%, blue color). About 2% of players applying k-D
strategy support a global operation.

When b ≥ 1.7 (not shown) global cooperation is not observed.

5.3 Experiment #2: Patterns of agents’ strategies.

For the presented above dependencies between the level of global cooperation and
the parameter b, we can also observe accompanying spatial patterns of strate-
gies used by players. Fig. 3 (left) shows corresponding spatial pattern of players’
strategies used in the game with the parameter b = 1.1. One can see that domi-
nating strategy used by players is strategy all-C (white color) and some players
use strategies all-D (black color) and k-D (tones of orange color which depends
on the value of k). Strategies of players which use either all-D or k-D strategies
create short, isolated, sometimes vertical or horizontal regular structures.

For games with values b = 1.2 (not shown) and b = 1.3 (see, Fig. 3 (right))
spatial structures of strategies are similar to the game with b = 1.1, but we can
observe an increasing length of regular vertical and horizontal structures, which
are still isolated for b = 1.2, but more connected with b = 1.3 . We can see also
an increasing number of strategies k-D which replace the strategy all-C.

For b = 1.4 (see, Fig. 4 (left)) spatial structure of strategies are created by
isolated small clusters of all-C strategies and rarely clusters of strategies all-D,
both surrounded by strategies k-D. When b = 1.5 (see, Fig. 4 (right)) spatial
structures of strategies are created by long irregular isolated chains with two
types of granularity of k-D strategies and all-D strategies. When b = 1.6 (see,
Fig. 5 (left)) the structure of spatial strategies is similar to that observed for
b = 1.4.

However, in this case we can see appearing new small clusters of all-D strate-
gies. Finally, when b = 1.7 (see, Fig. 5 (right)) we can notice that none of players

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

10 Jakub Gąsior and Franciszek Seredyński

uses all-C strategy but dominating strategy selected by them is the strategy k-D
with different values of k and some clusters of players use the strategy all-D.

Fig. 3: Strategies distribution for: b = 1.1 (left) and b = 1.3
(right).

Fig. 4: Strategies distribution for: b = 1.4 (left) and b = 1.5
(right).

5.4 Experiment #3: A distributed scheduling game.

The last series of experiments incorporated our previous findings into a fully
decentralized scheduler capable of determining a Competitive Scheduling Pro-
file that minimizes job completion times and failure probabilities by exploiting
agents’ selfish needs to maximize their own payoff scores. For that purpose, 8

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

Distributed Job Scheduling in Cloud Computing Systems 11

Fig. 5: Strategies distribution for: b = 1.6 (left) and b = 1.7
right).

independent users submitted to the system a randomly generated Bag of Tasks
containing nk = 1000 job instances. Jobs were then scheduled within m = 8 CC
nodes by independent brokering agents assigned to individual users.

Scheduling game was conducted on a rectangular CA lattice. Initial ISPD
game Actions and Spatial Strategies as well as Pareto Selection Polices were
equally and randomly distributed between the participating players. Parameters
k and b were selected in order to maximize the emergence of global cooperation
between participating players. The maximum number of game iterations has
been fixed at a value of TMax = 200 steps. 100 independent runs per configura-
tion have been carried out to guarantee statistical significance of the results and
construct an approximate Pareto frontier by gathering non-dominated solutions
in all executions.

The efficiency of the analyzed job scheduling methods was measured in terms
of:

– Makespan: the time of completion of the latest job submitted to the Cloud,
defined as Cmax = maxk{Ck

max};
– Scheduling Success Rate: the percentage of jobs successfully completed

in the Cloud;
– Total Cost: cost function dependent on both the requested level of SLA

and a number of used CC nodes.

The simulation results are given in Fig. 6 showing the Makespan (Fig. 6(a)),
Scheduling Success Rate (Fig. 6(b)) and Total Cost (Fig. 6(c)) during 200 it-
erations of ISPD game for each individual agent. These experiments aimed to
analyze the number of iterations necessary to solve potential conflicts between
the selfish strategies of the individual agents and converge to a global equilibrium
using our proposed distributed scheduling scheme. It shows how global perfor-
mance metrics improve over time due to actions taken by the brokers during our
distributed resource allocation game.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

12 Jakub Gąsior and Franciszek Seredyński

(a)

(b)

(c)

Fig. 6: Scheduling performance over time for a total of n = 8000
jobs scheduled within m = 8 CC nodes by 8 independent agents.
(a) Makespan. (b) Scheduling Success Rate. (c) Total Cost.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

6 Conclusion and Future Work

We have presented a theoretical framework and an experimental software tool
to study the behavior of heterogeneous multi-agent systems operating in an
environment described in terms of a ISPD game. This framework was defined in
order to solve global optimization tasks in a distributed way by the collective
behavior of agents. The essential from this point of view was to use a concept
of the second order CA and introduce some specific mechanisms of interaction
between agents. A set of conducted experiments have shown that these proposed
solutions are promising building blocks enabling emergence of global collective
behavior in such heterogeneous multi-agent systems.

We have studied the conditions of emergence of global cooperation in large
CA-based broker teams. We have shown that the phenomenon of global cooper-
ation depends mainly on values of the parameter b of payoff function reflecting a
gain of a player who defects while the other players still cooperate, and to some
extent on the value k describing the tolerance of players for defection by their
neighboring players.

We incorporated these findings into the paradigm of MOGA-based schedul-
ing in order to use the competition among the entities involved in the scheduling
process to converge towards Nash equilibrium. It allowed us to account for often
contradicting interests of the clients within the CC system, without the need
of any centralized control and introduced a number of desirable properties such
as adaptation and self-organization. Conditions of emerging a global behavior
of such systems depend on a number of parameters and these issues will be a
subject of our future work.

Bibliography

[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–
41, Mar 2013.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud Com-
puting and Emerging IT Platforms: Vision, Hype and Reality for Delivering
Computing as the 5th Utility. Future Gener. Comput. Syst., 25(6):599–616,
June 2009.

[3] J. Gąsior and F. Seredyński. Decentralized Job Scheduling In The Cloud
Based On A Spatially Generalized Prisoner’s Dilemma Game. Applied Math-
ematics and Computer Science, 25(4):737–751, 2015.

[4] J. Gąsior, F. Seredyński, and A. Tchernykh. A Security-Driven Ap-
proach to Online Job Scheduling in IaaS Cloud Computing Systems. In
R. Wyrzykowski, J. Dongarra, E. Deelman, and K. Karczewski, editors,

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

14 Jakub Gąsior and Franciszek Seredyński

Parallel Processing and Applied Mathematics, pages 156–165, Cham, 2018.
Springer International Publishing.

[5] W. A. Jansen. Cloud Hooks: Security and Privacy Issues in Cloud Com-
puting. In Proceedings of the 2011 44th Hawaii International Conference
on System Sciences, HICSS ’11, pages 1–10, Washington, DC, USA, 2011.
IEEE Computer Society.

[6] Y. Katsumata and Y. Ishida. On a Membrane Formation in a Spatio-
temporally Generalized Prisoner’s Dilemma. In H. Umeo, S. Morishita,
K. Nishinari, T. Komatsuzaki, and S. Bandini, editors, Cellular Automata,
pages 60–66, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[7] J. Kolodziej, S. U. Khan, L. Wang, M. Kisiel-Dorohinicki, S. A. Madani,
E. Niewiadomska-Szynkiewicz, A. Y. Zomaya, and C.-Z. Xu. Security, En-
ergy, and Performance-aware Resource Allocation Mechanisms for Compu-
tational Grids. Future Gener. Comput. Syst., 31:77–92, Feb. 2014.

[8] S. Nesmachnow, C. Perfumo, and . Goiri. Controlling datacenter power
consumption while maintaining temperature and qos levels. In Cloud Net-
working (CloudNet), 2014 IEEE 3rd International Conference on, pages
242–247, Oct 2014.

[9] M. A. Nowak and R. M. May. Evolutionary Games and Spatial Chaos.
Nature, 359:826, 1992.

[10] F. Rossi, S. Bandyopadhyay, M. Wolf, and M. Pavone. Review of multi-
agent algorithms for collective behavior: a structural taxonomy. IFAC-
PapersOnLine, 51(12):112 – 117, 2018. IFAC Workshop on Networked &
Autonomous Air & Space Systems NAASS 2018.

[11] F. Seredynski. Competitive coevolutionary multi-agent systems: The ap-
plication to mapping and scheduling problems. Journal of Parallel and
Distributed Computing, 47(1):39 – 57, 1997.

[12] S. Song, K. Hwang, and Y.-K. Kwok. Risk-Resilient Heuristics and Ge-
netic Algorithms for Security-Assured Grid Job Scheduling. IEEE Trans.
Comput., 55(6):703–719, June 2006.

[13] A. Tchernykh, L. Lozano, U. Schwiegelshohn, P. Bouvry, J. E. Pecero,
S. Nesmachnow, and A. Y. Drozdov. Online Bi-Objective Scheduling for
IaaS Clouds Ensuring Quality of Service. J. Grid Comput., 14(1):5–22,
Mar. 2016.

[14] A. Tchernykh, J. E. Pecero, A. Barrondo, and E. Schaeffer. Adaptive en-
ergy efficient scheduling in Peer-to-Peer desktop grids . Future Generation
Computer Systems, 36:209 – 220, 2014.

[15] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_32

https://dx.doi.org/10.1007/978-3-030-22741-8_32

