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Abstract. We present a Distributed Memory Parallel (DMP) imple-
mentation of agent-based economic models, which facilitates large-scale
simulations with millions of agents. A major obstacle in scalable DMP
implementation is to distribute a balanced workload among MPI pro-
cesses, while making all the topological graphs, over which the agents
interact, available at a minimum communication cost. We addressed this
problem by partitioning a representative employer-employee interaction
graph, and all the other interaction graphs are made available at negligi-
ble communication costs by mimicking the organizations of the real-world
economic entities. Cache-friendly and low-memory intensive algorithms
and data structures are proposed to improve runtime and scalability, and
the effectiveness of each is demonstrated. The current implementation is
capable of simulating 1:1 scale models of medium-sized countries.

Keywords: Agent-based economic models · large-scale simulations · MPI

1 Introduction

A recent trend in macroeconomics is to use Agent-based models (ABMs), that
simulate the behavior of individual economic entities, often using simple deci-
sion rules. Macroeconomic ABMs relax two key assumptions at the core of the
New Neoclassical Synthesis–the single, representative agent and the rational, or
model-consistent, expectations hypothesis[1]. Since the financial crisis of 2007-
2008, ABMs have been increasingly used[1]. In recent years several ABMs that
depict entire national economies have been developed. The European Commis-
sion has in part supported this endeavor by funding large research projects like
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CRISIS5[2, 3], and EURACE6 which is a large micro-founded macroeconomic
model with regional heterogeneity[4–6]. Some of the recent ABMs aim to simu-
late entire national or regional economies, like the Eurozone, with comprehensive
models that include each individual economic entity–each household, each firm,
etc [4, 7]. Such 1:1 scale simulations with hundreds of millions of interacting
agents are computationally demanding.

The lack of scalable High Performance Computing (HPC)–enhanced macroe-
conomic ABMs that are capable of simulating hundreds of millions of agents is
a major barrier in the application of ABMs to simulate an entire national or a
regional economy. A major difficulty in implementing scalable HPC extensions
is the complicated interactions among agents which occur over several topolog-
ical graphs. In shared-memory implementations, these interactions lead to race
conditions, while in Distributed Memory Parallel (DMP) implementations with
MPI (Message Passing Interface), each interaction generates one or more mes-
sages among MPI processes (e.g., CPU cores). A critical step in scalable DMP
implementation is balanced distribution of the agents among MPI processes,
while making all the interactions graphs available at least communication cost.
Some parallel implementations circumvent this difficulty by making only one in-
teraction graph available across MPI processes using non-scalable strategies[4].
Apart from such partial parallel implementations, we could not find any litera-
ture on complete parallel implementation of a macroeconomic ABM capable of
simulating several million agents.

Inspired by the need of HPC-enhanced agent-based economic models, we de-
veloped a DMP code based on MPI. Poledna et al.’s[7] model is chosen as the
base ABM since its features, like the credit-based market, expectations-based
decisions by agents, production based on the goods purchased in previous pe-
riod, etc., provide opportunities to attain higher parallel scalability. Further,
their model is attractive from the application point of view: rich in level of de-
tails, parameters estimated from real data, realistic economic interactions, etc.
To distribute a balanced workload, we partitioned the agents based on a rep-
resentative employer-employee interaction graph, and all the other interactions
were made available with a negligible amount of communications. Several meth-
ods of improving the serial performance of market interactions, which in turn
reduce the load imbalances, are presented. The current implementation takes
around 20 seconds to complete a single iteration of a 1:1 model of Austria (∼10
million agents), making the simulation of a whole nation a reality. Though the
current scalability is limited to several tens of MPI processes, it can be further
improved by using accurate estimates of the amount of computations associated
with each agent.

The rest of the paper is organized as follows. Section 2 discusses economic
ABMs in a DMP perspective, and presents the challenges in scalable implemen-

5 FP7-ICT grant 288501, http://cordis.europa.eu/project/rcn/101350_en.html
6 FP6-STREP grant 035086, http://cordis.europa.eu/project/rcn/79429_en.
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tations. Section 3 explains the details of the proposed DMP implementation
scheme, providing details of domain decomposition, solutions to the challenges
discussed in section 2, and improvements to some extensively used serial algo-
rithms. Section 4 presents runtime statistics to demonstrate the effectiveness of
solutions introduced in 3 and the parallel scalability.

For the sake of brevity, in the rest of the paper, the term rank or MPI-
rank denotes an MPI process (e.g., CPU core), the term parallel implies dis-
tributed parallel implementation with MPI, and message or communication im-
plies a point-to-point or collective MPI communication (e.g. MPI Send() and
MPI Recv(), MPI Bcast(), etc.).

2 Agent-based economic models: an HPC point of view

Though they vary in rules defining the agents’ actions, most of the general eco-
nomic ABMs have common agent types and interactions among them. Figure
1 shows a schematic diagram of a typical ABM. Depending on the simulated
economic zone, there can be several tens to a few hundred industries, each con-
sisting of a large number of firms. The regional economy is connected to the
rest of the world through foreign buyers and sellers. The largest in number are
household agents, consisting of workers, inactive households, and investors. The
total number of firms is roughly 10% of the workers.

At a glance, simulating millions of agents by assigning equal-sized subsets
of agents to each MPI process seems to be an ideal DMP application. However,
scalable DMP implementation is a challenging task due to the complicated inter-
actions among agents. Most of the interactions take place over either centralized
graphs or dense graphs with random links. In DMP implementations, each link
represents either one or two communications among ranks that possess the two
agents defining the link. Unless the interactions are between random pairs of
agents, all the messages between a pair of ranks can be combined and delivered
in a single message. On the other hand, each interaction over random graphs
requires an independent message per link, and an independent reply message if
the interaction is bidirectional. The rest of this section gives the details of differ-
ent interactions among the agents, and explains the difficulties in implementing
a scalable HPC extension.

2.1 Interactions over centralized graphs

The interactions involving government and banks take place over centralized
graphs (see Fig 2a). Of these, uni-directional interactions are easier to paral-
lelize, while the bi-directional interactions introduce load imbalances due to the
serialization of the related decision-making of the government or bank.

Interactions of households, firms, and banks with government All
the workers, investors, firms, and banks pay various taxes to the government,
while government pays various social benefits to the households. Tax paying is
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Fig. 1: Schematic diagram of a typical agent-based economic model. Each indus-
try consists of a large number of firms.

(a) A centralized graph (b) A dense random graph

Fig. 2: Major sources of difficulties in shared- or distributed-memory parallel
implementations. (a) hot spots like banks and government in centralized inter-
action graphs, (b) dense random interaction graphs like goods and job markets.

an unidirectional interaction, and can easily be parallelized by making each rank
collect taxes and send them to the rank holding the government agent. On the
other hand, paying social benefits is bi-directional, and involves three stages:
first, the income states of households are gathered using MPI Gatherv(); next,
the social benefits to be paid to each household are sequentially calculated by
the government agent; and finally, the social benefits are scattered to respective
households using MPI Scatterv().

Interaction of households and firms with banks While depositing money
is uni-directional, withdrawal and loan requests are bi-directional. The bi-directional
interactions involve three stages, just like when the government is paying out so-
cial benefits: each MPI-rank sends households’ or firms’ requests to withdraw or
borrow with MPI Gatherv(); the bank sequentially processes each request; and
responses are sent using MPI Scatterv().
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2.2 Interactions over dense random graphs

Unlike the interactions over centralized graphs, the interactions of goods and job
markets take place over a set of dense random graphs: the connectivity of the
graphs randomly changes in each time period to mimic the randomness in the
goods and job market. These random graphs make it quite hard to implement
scalable DMP extensions.

2.3 Interactions in the goods market

In each period, the consumers (i.e., firms, households, foreign buyers, and gov-
ernment sectors) visit random sets of sellers (i.e., firms and foreign sellers) from
each industry to purchase the necessary consumption and capital goods. The
number of sellers visited by a consumer agent is unpredictable, and depends on
its current budget and the amounts available with each seller at the time it visits
the seller. As a result, each buy-sell interaction involves independent messages
among the ranks that possess the buyer and the seller. Being bi-directional, each
visit to a seller involves three stages; a message to the rank possessing the corre-
sponding seller, decision-making by the seller, and a reply message to the buyer.
Developing a scalable shared- or distributed-memory parallel computing code
to facilitate such random interactions among millions of agents is undoubtedly
challenging.

A näıve solution is to introduce a queue at each seller, into which each con-
sumer can submit a request with an MPI point-to-point communication, with the
seller sending the reply message once the request is processed. Though logically
correct, obviously the computational performance is much worse, even compared
to the serial version.

2.4 Interactions in the labor market

At the start of each period, firms hire a random set of unemployed workers,
according to their labor requirements. When the available number of workers
assigned to a rank is less than the total labor demand of the firms assigned
to that rank, workers from the surrounding ranks have to be hired. Firms hire
workers from a limited geographical extent to ensure real-life constraints, like
travel time to work. If each firm independently seeks the required labor, it leads
to a complicated situation similar to that of the goods market.

3 Distributed-memory parallel computing extension

This section presents the major steps involved in implementing an MPI-based
DMP extension: partitioning the agents to assign balanced workloads to each
rank; scalable solution for the difficulties discussed in the previous section; and
some techniques for reducing the runtime of extensively called serial algorithms.

Though blocking MPI functions are used in the following text, corresponding
non-blocking functions with user-defined MPI data types should be utilized to
attain higher communication efficiency.
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workers
inactive
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firms

foreign sell-
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(a) Input graph to METIS (b) 8 partitions

Fig. 3: Input graph with 50,000 agents, and 8 partitions obtained with METIS.
For clarity, different types of agents are drawn at three different elevations.

3.1 Domain decomposition

In order to distribute balanced computational workload among ranks, the agents
are partitioned into mutually exclusive subsets. We use a graph representing the
job market (i.e., employer-employee graph) in partitioning the agents, while tak-
ing different strategies to ensure the availability of rest of the topological graphs.
The sections that follow explain how the remaining graphs, like buyer-seller,
bank-customer, employer-employee, government-tax payers, foreign seller-local
buyers, etc., are made available. What is desired are partitions with nearly equal
sum of nodal weights (i.e., computational workload associated with agents) while
minimizing the number of graph edges intersected by the partition boundaries,
since each intersecting link gives rise to communications among ranks.

The graph to be partitioned is constructed by connecting each firm, fi, with
the closest ni worker agents, where ni is an approximate number of the labor
requirement of fi in the first period. To capture the reality, each agent is placed
at the respective physical location, and the closest worker agents are identified
using k-d tree. In order to ensure that the graph sufficiently reflects the employer-
employee relations and has insignificant effects due to the presence of inactive
households, foreign sellers, and foreign buyers, these three types of agents are
connected to only one or two of the closest firms with low link weights. Further,
each firm is connected to a few neighboring firms, with a low link weight, to
reduce the possibility of producing a disconnected graph. The nodes of the graph
(i.e., the agents) are assigned weights according to the amount of computations
associated with each agent type. We partitioned this graph using METIS[8].
Figures 3a and 3b show a sample input graph and the 8 partitions generated.

Investors, banks, government, and central bank are not included in the above
graph partitioning. Investors are assigned according to the number of firms in
each partition. Government, bank, and central bank are assigned to the master
rank (e.g., rank 0) to make them interact without any communications.

3.2 Scalable solutions for interactions over centralized graphs

By introducing representative agents of government, and banks in each rank,
it is possible to almost eliminate the associated communications and equally

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_30

https://dx.doi.org/10.1007/978-3-030-22741-8_30


Distributed Parallel Agent Based Economic Models 7

distribute the associated computational workloads, making the centralized in-
teractions involving the government, and banks nearly perfectly scalable.

Interactions with government on centralized graphs The simple solu-
tion given in section 2.1 has quite a poor scalability since a single rank has to
calculate the social benefits to be paid to millions of households, and involves
messages of large volumes. A scalable solution is to introduce in each rank a
local government agent which collects tax, calculates and pays the social ben-
efits, and finally communicates the total tax collected and the social benefits
paid to the master rank which holds the government agent. This simple solution
is highly scalable since the computational workload is well distributed, all the
bi-directional communications are eliminated, and the numbers of messages and
volume of data communicated are drastically reduced.

Interactions with banks on centralized graphs A scalable solution for
banks (see section 2.1) is to introduce into each rank local bank branches, that
keep the accounts of all the customers in the corresponding ranks, and locally
process all the deposit and withdrawal requests, thereby completely eliminating
any messages and distributing the involved computations among the ranks.

When issuing loans to firms, a bank has to make sure that the total amount of
the issued loans is less than a certain percentage of its total equity. That is, when
processing mth loan in period t, L(t− 1) +

∑m
i ∆Li < ηE(t), where L(t− 1) is

the loans granted until the end of period t−1, ∆Li is the ith loan granted by the
bank in period t, E(t) is the equity of the bank, and η is the maximum allowable
leverage for the bank. To strictly follow this condition at each local branch in a
scalable manner, either a pre-estimated upper limit of the loans issuable at each
local branch should be set or a relaxed condition like L(t−1) < ηE(t) should be
used. We adopted the latter option since ∆L� L(t−1) is always valid. Both the
options allow the local branches to issue loans without any need for contacting
branches in other ranks, thereby eradicating any communications.

At the end of each period, local branches send a sum of their savings, loans,
etc., to the main bank located in the master rank with a single MPI Gather().

This drastic reduction in the number of messages and balanced distribution of
computational workload make the introduction of local branches scalable.

3.3 Scalable solution for interactions over dense random graphs

Though, at a first glance, it seems impossible to implement a scalable parallel
extension (see section 2.2), there are simple real-world solutions for goods and
labor markets: sales outlets and recruitment agencies. We visit sales outlets,
like supermarkets, instead of directly buying from producers. Scalable and least
compromised solutions for the labor and goods market can be implemented by
mimicking these real-world solutions.
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Fig. 4: Desired data layout of sales-outlets, and communications pattern.

Goods market We introduced sales-outlets, each of which sells products of
a seller (i.e., a firm or a foreign seller). Each seller has one sales-outlet in each
rank. The sellers communicate the total amount to be sold to all their sales-
outlets using collective communications. The sales-outlet of the seller i in the
rank r sets its amount to be sold based on the ratio sri (t−1)/

∑M

r=0
sri (t−1), where

sri (t−1) is the amount it sold in last period, and M is the total number of ranks.
This requires an additional communication to gather

∑
r s

r
i (t−1)) to each sales-

outlet. Once selling is complete, total sales and the demand of each seller are
found by summing the corresponding data of its sales-outlets to master rank
with MPI Reduce(). Finally, the total sales and demands are scattered from the
master rank to the corresponding parent sellers. This simple solution drastically
reduces the number of MPI communications and completely eliminates any ran-
dom communications, without compromising the buyer-seller interactions (i.e.,
buyers can use any random process within their respective rank).

While the introduction of sales-outlets solves the complicated communication
problem, further planning is necessary to efficiently exchange the data among
sellers and their outlets located in each rank. Figure 4 shows the desired layouts
of the data of sellers and sales-outlets. The leftmost pairs of boxes indicate the
sellers in each rank. The right-hand-side arrays of boxes indicate the correspond-
ing sales-outlets. Using common MPI collective functions is not the most efficient
since it involves at least 2I messages, where I is the number of industrial sectors;
I calls to MPI Allgatherv() to distribute products, and MPI Scatterv() to col-
lect sales information (e.g., sales and demand). This is a significant overhead[9]
in simulating a country like Japan, which has 108 industrial sectors.

Some of communication overheads associated with I independent collective
messages can be eliminated by combining [9] all the I using MPI Alltoallw().
This more general collective function generalizes MPI Allgatherv() by allowing
to separately specify counts, displacements and MPI data types. Appropriately
defining the MPI data types and displacements at the send and receive ends,
MPI Alltoallw() can be used to mimic Allgatherw() and Scatterw() opera-
tions and fetch and deliver the data in the desired format shown in Fig. 4.
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In the rest of the paper, this implementation of the goods market is referred
to as buy(), and when referring to a specific consumer it is prefixed with the
name of the consumer (e.g. households’ buy()).

Labor market As mentioned in section 2.4, the labor market also poses a com-
plicated communication problem similar to that of the goods-market. Though
our partitioning scheme minimizes the number of labors to be imported/exported
from/to neighboring ranks, the firms have to meet the required additional labor
demands due to growth. We are exploring the advantage of mimicking recruit-
ment agencies as a scalable solution. The recruitment agent in each rank keeps a
record of which worker works where, and negotiates with the recruitment agents
in neighboring ranks to allow excess workers of one rank to work in another.

3.4 Communication hiding

In order to attain higher parallel scalability, almost all the communications are
overlapped with computations. Due to the space limitations, which communi-
cation is hidden behind which computations is not presented. Even though the
blocking MPI functions are mentioned in the above explanations, we use corre-
sponding non-blocking MPI functions (e.g., MPI Ibcast(), MPI Ialltoallw(),
etc.). Whenever possible, we strive to post the non-blocking messages as soon
as required data are available and finalize the receive right before the data are
needed at the receiving ranks. Though not explicitly measured, this communi-
cation hiding must have made significant contributions to the scalability.

3.5 Serial performance enhancements

Several attempts were made to reduce the runtime of extensively called func-
tions and thereby reduce the load imbalance among the ranks. As shown in the
next section, the buy() function consumes about 95% of the total runtime. The
runtime of buy() is significantly reduced by implementing a better performing
function to draw random samples, and by using a data-oriented approach.

Draw from random distributions In most ABMs, consumer agents search
for the best bargain. The consumers draw random samples from a distribution of
sales-outlets of the industry from which they want to buy. The distributions are
computed such that the outlets of the firms charging lower prices and/or pro-
ducing larger quantities have a higher likelihood of being visited by customers.

To randomly select an outlet to visit, an agent generates a uniform random
number r in the range 0 < r ≤ ∑n

1 pj , and selects the corresponding outlet

Oi from the distribution such that
∑i−1

1 pj < r ≤ ∑i
1 pj , where n is the total

number of active outlets and pj is the likelihood of buying from active outlet
Oj . Inclusion of the sold-out outlets in the distribution makes the consumer
agents visit those pointlessly, thereby wasting a large number of CPU cycles.
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To eliminate this large wastage of CPU cycles, sales-outlets are removed from
the distribution as soon as they are sold out. We refer this implementation of
drawing from distribution as the primitive draw dist() function.

The primitive draw dist() is inefficient since deleting elements from the
large arrays holding the distributions, is time-consuming. The efficiency of draw dist()

can be improved by disabling the sold-out outlets, instead of deleting. The sold-
out Ok can be efficiently disabled by updating the distribution with Pj = Pj−pk
for k ≤ j < Ns, where Ns is the total number of sales-outlets in the industrial
sector s, and Pj =

∑j
1 pl. To skip this sold-out Ok, when drawing a random

sales outlet from this new distribution, the smallest j which satisfies r ≤ Pj is
chosen, for a given uniform random number r. This improved draw dist() not
only eliminates deletion from large arrays, but also eliminates a large number
of conditional branching (i.e., if conditions). As shown in the next section, this
improved draw dist() significantly reduces the computation time.

Data-oriented design In the buy(), millions of consumers visit hundreds
of thousands of sellers from several tens of industries, one industry at a time.
Obviously, this is highly memory-bound, and the size of the consumer objects and
memory access patterns significantly influence the computational performance.
In our C++ implementation, a household agent consist of 12 + 2 × I double-
precision variables, where I is the number of industries. These bloated objects
makes buy() of households an excessively memory-bound computation. Further,
to provide fair buying opportunities, consumer agents are made to visit outlets in
random sequences. Random access of a large array with bloated objects obviously
has poor cache performance, leading to further performance degeneration.

In order to reduce the memory consumption and improve the cache perfor-
mance of buy(), the amount of memory involved in buy() is drastically reduced
by iterating though an array V , into which only 6 buy() related variables are
copied from the household array. Further, the cache performance is significantly
improved by randomizing V , instead of randomly accessing its components.
Though lightweight, element-wise randomization of V is a memory-intensive
task; hence we opt for block-wise shuffling. Since the size of V is large, block-
wise shuffling is sufficient to produce fair opportunities in buy(). For efficient
block-wise shuffling, a modified version of the Fisher-Yates algorithm[10] is used.

4 Computational performance

Based on the agent-based economic model by Sebastian et al.[7], we developed a
distributed parallel code using C++11 and MPI-3.2. The code is designed accord-
ing to the domain decomposition and other techniques presented in the previous
section. This section accesses the effectiveness of the improvements discussed in
section 3.5, and the strong scalability.
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(c) Data-oriented buy()

Fig. 5: Mean runtimes (of 20 runs) of the 32 events. Zoomed views show the
standard deviations.
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(a) Improved draw from dist()
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(b) Data-oriented buy()

Fig. 6: Zoomed views of Figs. 5b and Fig. 5c.

4.1 Problem settings

All the simulations were conducted with a 1:1 scale data set pertaining to the
Austrian economy: altogether 10 million agents with 62 industries, 634,019 firms,
98,270 foreign sellers, 158,505 foreign buyers, 4,130,385 inactive households,
4,267,202 workers, 634,020 investors, one bank, central government, and cen-
tral bank. The population is set to increase at the rate of 0.25% per time period.

Each simulation is conducted for 20 time periods with 4, 8, 16, 32, and 64
MPI processes in the ReedBush supercomputer of the Univ. of Tokyo. Each
computing node consists of Intel Xeon E5-2695 v4 (2.1 GHz with 18 cores)×2
socket, and 256 GB memory with 153.6 GB/s bandwidth.

4.2 Significance of serial performance enhancements

Three sets of simulations were conducted to quantitatively estimate the con-
tributions from the serial performance enhancements presented in section 3.5:
primitive draw dist(), improved draw dist(), and data-oriented buy(). The
main loop of the code comprises 32 events which include the basic events in the
agent-based model, and the posting and finalizing of non-blocking messages.
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(a) Primitive dist draw()
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(b) Improved dist draw()
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(c) Data-oriented buy()

Fig. 7: Runtime histories for the 20 simulated time steps.

4.3 Load balance and computational time

Figure 5 shows the time taken for each of 32 events of the main loop. The circles
and dots indicate the mean values of the shortest and longest time taken by the
respective ranks to complete each event. Differences between the corresponding
circles and dots indicate the degree of load imbalance among ranks at each event.

The events 18, 19, 20, 24, 30, and 32 finalize non-blocking communications,
while the events 2, 11, 12, 14, 15, 16, 22, 27, and 29 involve some computations
and one or more non-blocking communications. Event 21, 24, and 27 are the
buy(), finalization of the MPI Iallreduce() to collect total sales to master
rank, and finalization of the IScatterw() to inform the respective parents of
the sales-outlets of those sales data (see section 3.3); events 22 and 25 post the
corresponding messages.

Comparison of event 21 of Figs. 5a and 5b indicates that the primitive
dist draw() introduces a significant load imbalance, and its adverse effects are
visible in events 24 and 27, which finalize the non-blocking messages related to
buy(). Figure 5b shows that disabling of sold-out outlets, instead of deleting
them from the distribution (see section 3.5), has not only eliminated a signifi-
cant amount of load imbalances, but has also reduced the runtime of buy() by
almost 25%. Further, it drastically reduces the imbalances in events 24 and 27.

Comparison of Figs. 5b and 5c shows that the lightweight data structure
and cache-friendly data access introduced by the data-oriented improvements
(see section 3.5) reduce the runtime by nearly 50%. The zoomed views of Fig.
6, shown in Figs. 5b and 5c, indicate that the data-oriented improvements of
buy() have further reduced the imbalances of the events 10, 24, 27, and 29,
which correspond to finalization of non-blocking messages. Event 29 updates the
parent firms according to the sales information delivered by event 27; hence the
reduction in event 29’s runtime due to improvements in buy(). Since the main
loop does not have any event that synchronizes the ranks, the load imbalances in
buy() are transferred to the next time step, thereby introducing load imbalance
to the events 10 and 11.

Event 16 and 19 correspond to the posting and finalizing Iallgatherw()

with which sellers inform respective sales-outlets of the amount to be sold (see
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Number
of MPI
ranks

Dist. updated at 1 +
0.25% growth rate

Dist. updated at 1 +
0.% growth rate

Dist. updated at 50 +
0.25% growth rate

Runtime
(s)

Strong
scalability

Runtime
(s)

Strong
scalability

Runtime
(s)

Strong
scalability

4 50.10 50.0 44.52

8 31.97 78.4% 34.16 73.2% 25.97 85.7%

16 22.79 70.1% 22.87 74.7% 18.35 70.7%

32 19.12 59.6% 19.19 59.6% 15.23 60.2%

64 16.79 56.9% 16.74 57.3% 13.26 57.4%

Table 1: Average runtime and strong scalability with improved dist draw()

and data-oriented buy(). “Dist. updated at #” indicates that disabling is called
when # outlets are sold-out. “#% growth rate” is population growth per period.

section 3.3). This is not only the most complex communication involved, but also
the message carrying the largest data volume. Figure 5b and 5c clearly show that
this, the most complex message, takes significantly less time and introduces no
load imbalances, at least in relation to the imbalances introduced by buy().

Figure 7 compares the runtime of the three cases considered above, for all the
20 time steps simulated. Figure 7a shows that not only is there a notable sudden
variation and but also a notable increase in runtime with the time steps. Both
these negative effects are induced by load imbalance in buy(). Though both of
these effects diminish, the increase in runtime with the number of iterations is
still present in Figs. 7b and 7c, due to the transfer of the load imbalance of
buy() mentioned above.

4.4 Scalability

Table 1 shows the runtime and strong scalability7 of the version with the im-
proved dist draw() and data-oriented buy() (Fig. 7c), under three different
settings. In general, each setting produces a reasonable scalability up to 16 MPI
ranks. As discussed, the main reason for lower scalability is the load imbalance
in buy(). The three settings considered investigate other possible factors affect-
ing runtime and scalability. A comparison of the 2nd and 3rd columns with the
4th and 5th shows that a gradual increase in the number of agents has a negli-
gible impact on the runtime and scalability. On the other hand, a comparison
of the 4th and 5th columns with the 6th and 7th shows that the time taken to
disable the sold-out outlets by updating the cumulative probability distribution
is considerable and heterogeneous among MPI ranks. Reducing the frequency
of updating the probability distribution lowers total runtime by around 20%,
although the scalability improvements are limited to a smaller number of ranks.

It is possible to further improve the scalability by eliminating the remaining
load imbalances (see Fig. 6b) induced by buy(). When partitioning, we set the
nodal weights approximately according to the number of floating point opera-
tions in the rules of each type of agent. This approximate estimation does not

7 Strong scalability, a measure of how efficiently computational resources are utilized,
is defined as (Tm/Tn)/(n/m), where Tk is the runtime with k MPI ranks and n ≥ 2m.
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take details, like scale of production, number of workers, etc., into account. The
load imbalance in buy() can be reduced by setting the nodal weights according
to the measured runtime of each agent, thereby improving the parallel scalability.

5 Concluding remarks

A DMP implementation of an agent-based economic model capable of simulating
medium-sized economies is presented. The major obstacle of distributing a bal-
anced workload among MPI ranks, and facilitating all the agents’ interactions
at a minimum communication cost is addressed by partitioning a representa-
tive employer-employee interaction graph and mimicking real-life solutions. It is
demonstrated that the runtime can be significantly reduced using a data-oriented
design, and less memory-intensive, and cache-friendly algorithms. While the cur-
rent implementation can simulate tens of millions of agents, larger simulations
are possible through a better distribution of workload among MPI processes.
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