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Abstract. We present and evaluate a programming interface for high
performance Godunov-type finite volume applications with the frame-
work sam(oa)2. This interface requires application developers only to
provide problem-specific implementations of a set of operators, while
sam(oa)2 transparently manages HPC features such as memory-efficient
adaptive mesh refinement, parallelism in distributed and shared memory
and vectorization of Riemann solvers. We focus especially on the perfor-
mance of vectorization, which can be either managed by the framework
(with compiler auto-vectorization of the operator calls) or directly by
the developers in the operator implementation (possibly using more ad-
vanced techniques). We demonstrate the interface’s performance using
two example applications based on variations of the shallow water equa-
tions. Our performance results show successful vectorization using both
approaches, with similar performance. They also show that the applica-
tions developed with the new interface achieve performance comparable
to analogous applications developed without the new layer of abstraction.

Keywords: High performance computing · vectorization · Finite Vol-
ume methods · shallow water equations.

1 Introduction

Most modern processors used in scientific computing rely on multiple levels of
parallelism to deliver high performance. In this paper, we particularly focus on
vectorization (i.e., SIMD parallelism) due to the recent increases in the width
of the SIMD instructions provided by high-end processors. For example, latest
generations of Intel Xeon architectures provide the AVX-512 instruction set,
which can operate simultaneously on 8 double-precision (or 16 single-precision)
values. As SIMD parallelism relies on uniform control flows, it benefits from
regular data structures and loop-oriented algorithms for effective vectorization.
This poses a particular challenge to applications that exploit non-regularity.

Adaptive mesh refinement (AMR) is a key strategy for large-scale applica-
tions to efficiently compute accurate solutions, as high resolution can be se-
lectively applied in regions of interest, or where the numerical scheme requires
higher accuracy. Managing dynamic mesh refinement and coarsening on parallel
platforms, however, requires complex algorithms, which makes minimizing the
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time-to-solution a non-trivial task. Tree-structured approaches were proven suc-
cessful to realize cell-wise adaptivity, even for large-scale applications (e.g., [6, 20,
23]). They allow to minimize the invested degrees of freedom, but previous work
has shown that SIMD parallelism and meshing overhead push towards combin-
ing tree-structure with uniform data structures, such as introducing uniformly
refined patches on the leaf-level [5, 24]. Block-wise AMR approaches (e.g., [3, 2,
22]) extend refined mesh regions to uniform grid blocks – thus increasing the
degrees of freedom, but allowing to stick to regular, array-based data structures.
We found, however, that even then, efficient vectorization is not guaranteed, but
requires careful implementation and choice of data structures [8].

In this work, we address the area of conflict between dynamic AMR and vec-
torization, on the development of a general Godunov-type finite volume solver in
sam(oa)2 [17], a simulation framework that provides memory- and cache-efficient
traversals on dynamically adaptive triangular meshes and supports parallelism
in distributed (using MPI) and shared memory (using OpenMP). We provide an
easy-to-use and highly customizable interface that hides from the application de-
velopers (here referred to as users) all the complexity of the meshing algorithms
and simplifies the creation of high-performance solvers for various systems of
partial differential equations (PDEs). The use of patches for efficient vectoriza-
tion is also transparent to the user, which is accomplished by a tailored concept
of operators. Performance experiments confirm the effectiveness of vectorization
for two shallow-water models developed with this interface, which perform com-
parably to analogous applications developed without the abstraction layer.

2 Numerical background

We consider hyperbolic PDE systems written in the general form

qt + f(q)x + g(q)y = ψ(q, x, y), (1)

where q(x, y, t) is a vector of unknowns and the flux functions f(q) and g(q),
as well as the source term ψ(q, x, y) are specific for each PDE. In the following,
we describe two PDEs that serve to demonstrate the usability and performance
of sam(oa)2. Then, we discuss a numerical approach often used to solve such
problems, usually known as Godunov-type finite volume methods.

(Single-layer) Shallow Water Equations. The shallow water equations are
depth-averaged equations that are suitable for modeling incompressible fluids in
problems where the horizontal scales (x and y dimensions) are much larger than
the vertical scale (z dimension) and the vertical acceleration is negligible. As
such, they are widely used for ocean modeling, since the ocean wave lengths are
generally very long compared to the ocean depth [2, 13].

The single-layer shallow water equations take the form h
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where h(x, y, t) is the fluid depth; u(x, y, t) and v(x, y, t) are the vertically aver-
aged fluid velocities in the x and y directions, respectively; g is the gravitational
constant; and b(x, y) is the bottom surface elevation. In oceanic applications, b
is usually relative to mean sea level and corresponds to submarine bathymetry
where b < 0 and to terrain topography where b > 0. Here, the source term
ψ(x, y, t) = [0,−ghbx,−ghby]T models the effect of the varying topography, but
may also include further terms, such as bottom friction and Coriolis forces.

Two-layer Shallow Water Equations. Although the single-layer equations
are appropriate for modeling various wave propagation phenomena, such as
tsunamis and dam breaks, they lack accuracy for problems where significant
vertical variations in the water column can be observed. For instance, in storm
surge simulations wind stress plays a crucial role and affects more the top of the
water column than the bottom [15]. The single-layer equations are not able to
properly model this effect, because the water momentum gets averaged vertically.

Vertical profiles can be more accurately modeled using multi-layer shallow
water equations, which can provide more realistic representations while keeping
the computational costs relatively low. Using the simplest variation of these
equations, one can model the ocean with two layers: a shallow top layer over a
deeper bottom layer, allowing a more accurate representation of the wind effects.
The system of two-layer shallow water equations can be written as
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where h1, u1 and v1 are the quantities in the top layer and h2, u2 and v2 are in the
bottom layer; and r ≡ ρ1/ρ2 is the ratio of the densities of the fluid contained in
each layer. The equations can be generalized for an arbitrary number of vertical
layers [4]; however, in this work we deal only with the single- and two-layer forms
discussed above, using them as example applications for our framework.

Godunov-type Finite Volume Methods. To solve PDE systems as in equa-
tions (1), (2) and (3), we adopt Godunov-type finite volume methods, following
the numerical approach described in [12, 13], which we slighly modify to match
the triangular meshes in sam(oa)2 (cf. [17] for details). We discretize on tree-
structured adaptive triangular meshes, where the solution variables q are aver-
aged within each cell. We represent these variables as Qn

i , the quantities vector
in cell Ci at time tn. To update Ci, we first need to approximately solve the
so-called Riemann problem on all of its edges, i.e., to compute the numerical
fluxes F that reflect the quantities being transferred between Ci and each of its
neighbors. We can then use these numerical fluxes to update Ci, according to

Qn+1
i = Qn

i +
∆t

Vi

∑
j∈N (Ci)

F(Qn
i , Q

n
j ), (4)
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where N (Ci) is the set of neighbors of Ci; F(Qn
i , Q

n
j ) is the numerical flux be-

tweens cells Ci and Cj ; Vi is the volume of Ci; and ∆t is the time step applied
(computed independently for every time step according to the CFL condition).

The Riemann solver, i.e., the numerical algorithm used to compute the nu-
merical fluxes, is typically the most important and complex part of the scheme.
As further discussed in Section 4, users need to provide a proper Riemann solver
for their specific problem. In our example applications, we used solver imple-
mentations extracted from GeoClaw [2]: the augmented Riemann solver [10] for
the single-layer and the solver proposed in [14] for the two-layer equations.

3 Patch-Based Parallel Adaptive Meshes in Sam(oa)2

Sam(oa)2 [17] is a simulation framework that supports the creation of finite ele-
ment, finite volume and discontinuous Galerkin methods using adaptive meshes
generated by recursive subdivision of triangular cells, following the newest-
vertex-bisection method [18]. The cells in the resulting tree-structured mesh
are organized following the order induced by the Sierpinski space-filling curve –
which is obtained by a depth-first traversal of the binary refinement tree. The
Sierpinski order is used to store the adaptive mesh linearly without the need to
explicitly store the full refinement tree, leading to low memory requirement for
mesh storage and management. The order also allows to iterate through all mesh
elements in a memory- and cache-efficient way [1]. Sam(oa)2 is implemented in
Fortran and features a hybrid MPI+OpenMP parallelization that is also based
on the Sierpinski order induced on the cells, which are divided into contiguous
sections of similar size. The sections are independent units that can be assigned
to different processes/threads and processed simultaneously with low communi-
cation requirements. Previous research [17] has shown that this parallelization
is very efficient and scales well on up to 8,000 cores.

To better support vectorization, we modified the mesh structure to store
uniformly refined patches in the leaves of the refinement tree, instead of single
cells [7]. This allows reorganizing the simulation data into temporary arrays that
effectively define lists of Riemann problems and to which vectorization is applied,
following the approach proposed in [8]. In addition to enabling vectorization, the
patch-based approach also leads to further performance gains due to improved
memory throughput (because of the new data layout) and to lower overhead for
managing the refinement tree (because its size was considerably reduced) [7].

Each patch is obtained by newest-vertex bisection of triangular cells, up to
a uniform refinement depth d, resulting in patches with 2d cells. To guarantee
conforming meshes (i.e., without hanging nodes), all patches are generated with
identical depth d (whose value is set by the user at compilation time) and we
only allow even values for d. Our results in Section 6 show that the best time-
to-solution is achieved already for comparably small patches (d = 6 or d = 8).

Note that compared to [7] we recently changed the refinement strategy within
patches: patch refinement now follows the adaptive tree-refinement strategy,
which simplifies interpolation schemes for refinement and coarsening.
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4 FVM Interface

To simplify the creation of new PDE solvers in sam(oa)2, we designed a pro-
gramming interface with which users can easily define implementation details
that are particular to each system of PDEs. Using the abstraction layer of the
new interface, users work with simple data structures (arrays) and application-
specific algorithms, while sam(oa)2 transparently manages cache-efficient grid
traversals, distributed/shared-memory parallelism, adaptive mesh refinement,
dynamic load balancing and vectorization. In the following, we will refer to the
new programming interface as FVM interface, applications developed with it as
FVM applications and subroutines provided by the users as FVM operators.

4.1 Data Structures Used in the FVM Interface

For a new FVM application, users first need to declare how many quantities
should be stored for each cell. Following the approach used in GeoClaw [2],
these are divided into two types: Q quantities are the actual unknowns in the
system of equations and are updated at every time step following the numerical
scheme, as in Equation (4); AUX quantities are other cell-specific values that are
required for the simulation, but are either constant in time or updated according
to a different scheme. E.g., in our FVM application for the single-layer shallow
water equations, Q=(h,hu,hv) and AUX=(b).

The user specifies the number of Q and AUX variables via the preprocessor
macros FVM Q SIZE and FVM AUX SIZE. Using these values, sam(oa)2 creates 2D
arrays Q and AUX for each patch to store the respective quantities for all patch
cells. The arrays are stored similarly to a “structs of arrays” layout, i.e., the cell
averages of any given quantity are stored contiguously, which is very important
for efficient vectorization. We designed the FVM interface to transparently man-
age the data in the patches, such that users do not need any knowledge of their
geometry or data layout. Instead, users only need to implement simple FVM
operators that are applied to the mesh on a cell-by-cell or edge-by-edge basis.

4.2 FVM Operators

In the FVM operators, users define how cells should be initialized, refined, coars-
ened and updated. This includes providing a Riemann solver for the particular
problem – where we anticipate that users might want to use existing solvers
(e.g., from the GeoClaw package [2]). In the following we briefly describe the in-
terface and what is expected from the most important operators. We note that
due to limited space, we omit descriptions of further operators that are mostly
concerned with details of the input and output formats used by sam(oa)2.

InitializeCell. With this operator, users define the initial conditions and the
initial mesh refinement in a cell-by-cell basis. Given the coordinates of a cell’s
vertices, this operator returns the initial value of all cell quantities (Q and AUX),
as well as an estimate for the initial wave speed (for computing the size of the
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first time step), and a refinement flag: 1 if this cell should be further refined in
the following initialization step, or 0 otherwise.

ComputeFluxes. This operator is responsible for solving the PDE-specific Rie-
mann problems at all edges in the mesh and for returning the numerical fluxes
at each edge, as well as the speed of the fastest wave created by the discon-
tinuities between the cells. This is usually the most computing-intensive and
time-consuming step in the simulations and where optimization efforts achieve
the best results. Thus, to give users finer control of the code used at this step, es-
pecially with respect to vectorization, we provide two options to implement this
operator: a single-edge or a multi-edge operator, as described in the following.

The single-edge operator is applied to one edge at a time, solving a single
Riemann problem. In this case, the operator code provided by the users does not
need to implement vectorization, because it is completely handled by the frame-
work. Consider the example shown in Fig. 1(a): the framework loops through
a list of N Riemann problems extracting the input data of each problem and
calling the operator with the respective data, while the operator only needs to
extract the quantities from the input arrays and call the Riemann solver with the
appropriate parameters. That loop is annotated with an !$OMP SIMD directive,
and the operator call with a !DIR$ FORCEINLINE directive, to inform the com-
piler that we want the loop to be vectorized and the operator to be inlined and
vectorized as well. In the operator call we use Fortran’s subarrays, which intro-
duce an overhead for their creation, but still support vectorization by the Intel
Fortran Compiler. Note that whether the loop actually gets vectorized depends
on the operator implementation, because it may contain complex operations or
library calls that can inhibit auto-vectorization by the compiler.

In a multi-edge operator users can provide their own optimized code for
the main loop. Instead of dealing with a single Riemann problem, the multi-
edge operator takes a list of problems as input. It gives users complete control
of the loop that iterates through the list, as well as of the compiler directives
for vectorization. For illustration, see Fig. 1(b). The implementation of a multi-
edge operator can become considerably more complex, allowing advanced users
to exploit any technique for improved vectorization (intrinsic functions, etc.).

We created successfully vectorized FVM applications using single- and multi-
edge operators both for the single- and two-layer shallow water equations. Sec-
tion 6 will present and compare the performance achieved by each approach.

UpdateCell. This operator defines how the Q quantities of each cell should be
updated with the Riemann solutions. After obtaining the numerical fluxes at
each edge in the mesh, sam(oa)2 computes the sum of all fluxes leaving/entering
each cell through its three edges. The total flux is then used to update the
cell quantities, usually following Equation (4); however, users have flexibility to
modify this, and may also take care of special cases that arise for the particular
problem (e.g., drying or wetting of cells with the shallow water equations). The
operator also returns a refinement flag for the cell, to inform whether it should
be refined (1), kept (0) or coarsened (-1) for the next time step.
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1 ! OPERATOR CALL (FRAMEWORK CODE , NOT TOUCHED BY THE USER):
2 real , dimension(N,_FVM_Q_SIZE) :: qL, qR ! Data from cells to
3 real , dimension(N,_FVM_AUX_SIZE) :: auxL , auxR ! left/right of each edge
4 real , dimension(N,2) :: normals ! Vectors that are normal to each edge
5

6 !$OMP SIMD PRIVATE(waveSpeed) REDUCTION(max: maxWaveSpeed)
7 do i=1,N ! Loop for all N Riemann problems
8 !DIR$ FORCEINLINE
9 call computeFluxesSingle(normals(i,:),qL(i,:),qR(i,:),auxL(i,:),

↪→ auxR(i,:),fluxL(i,:),fluxR(i,:),waveSpeed)
10 maxWaveSpeed = max(maxWaveSpeed , waveSpeed)
11 end do

1 ! OPERATOR CODE , IMPLEMENTED BY THE USER:
2 subroutine computeFluxesSingle(normal ,qL ,qR,auxL ,auxR ,fluxL ,fluxR ,waveSpeed)
3 real , dimension (2), intent(in) :: normal !Normal vector
4 real , dimension(_FVM_Q_SIZE), intent(in) :: qL,qR
5 real , dimension(_FVM_AUX_SIZE), intent(in) :: auxL ,auxR
6 real , dimension(_FVM_Q_SIZE), intent(out) :: fluxL ,fluxR
7 real , intent(out) :: waveSpeed
8 real :: hL,huL ,hvL ,bL, hR ,huR ,hvR ,bR ! local variables
9

10 !Extract data from input arrays to local variables
11 hL = qL(1); huL = qL(2); hvL = qL(3); bL = auxL (1)
12 hR = qR(1); huR = qR(2); hvR = qR(3); bR = auxR (1)
13

14 !The Riemann solver fills the output (fluxL , fluxR and waveSpeed):
15 !DIR$ FORCEINLINE
16 call RiemannSolver(normal ,hL ,huL ,...,hvR ,bR,fluxL ,fluxR ,waveSpeed)
17 end subroutine

(a) Single-edge version of the ComputeFluxes operator.

1 ! OPERATOR CALL (FRAMEWORK CODE , NOT TOUCHED BY THE USER):
2 ! ... (Declaration of qL, qR , auxL , auxR and normals , exactly as above)
3

4 call computeFluxesMulti(normals ,qL,qR ,auxL ,auxR ,fluxL ,fluxR ,maxWaveSpeed)

1 ! OPERATOR CODE , IMPLEMENTED BY THE USER:
2 subroutine computeFluxesMulti(normals ,qL ,qR,auxL ,auxR ,fluxL ,fluxR ,

↪→ maxWaveSpeed)
3 real , dim(N,2), intent(in) :: normals !Normal vectors
4 real , dimension(N,_FVM_Q_SIZE), intent(in) :: qL ,qR
5 real , dimension(N,_FVM_AUX_SIZE), intent(in) :: auxL ,auxR
6 real , dimension(N,_FVM_Q_SIZE), intent(out) :: fluxL ,fluxR
7 real , intent(out) :: maxWaveSpeed
8 real :: hL,huL ,hvL ,bL, hR ,huR ,hvR ,bR, normal (2) ! local variables
9

10 !$OMP SIMD REDUCTION(max: maxWaveSpeed) PRIVATE(normal ,hL ,huL ,...,hvR ,bR)
11 do i=1,N ! Loop for all N Riemann problems
12 !Extract data from input arrays to iteration -private variables
13 hL = qL(i,1); huL = qL(i,2); hvL = qL(i,3); bL = auxL(i,1)
14 hR = qR(i,1); huR = qR(i,2); hvR = qR(i,3); bR = auxR(i,1)
15 normal = normals(i,:)
16

17 !DIR$ FORCEINLINE
18 call RiemannSolver(normal ,hL ,huL ,...,hvR ,bR,fluxL ,fluxR ,waveSpeed)
19 maxWaveSpeed = max(maxWaveSpeed , waveSpeed)
20 end do
21 end subroutine

(b) Multi-edge version of the ComputeFluxes operator.

Fig. 1: Example implementations of the single-edge (a) and multi-edge (b) ver-
sions of the ComputeFluxes operator for the single-layer shallow water equations,
as well as the framework codes that call them. In both we assume the existence
of a subroutine called RiemannSolver that solves a Riemann problem.
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SplitCell and MergeCells. These two operators control how adaptivity is
performed on the cells. SplitCell takes the data from a cell Cin as input, and
outputs data for two finer cells Cout1 and Cout2 , that result from splitting Cin.
MergeCells takes data from two neighbor cells Cin1 and Cin2 as input, and returns
data for a coarse cell Cout that results from merging both input cells. These
operations are often performed by simply copying or interpolating cell quantities,
but again the users can customize the operator and handle special cases.

5 FVM Applications and Test Scenarios

We used the FVM interface to create two FVM applications that simulate
tsunami wave propagation with the single- and two-layer shallow water equa-
tions discussed in Section 2. Here, we refer to them as FVM-SWE and FVM-SWE2L.
They are based on two applications that already existed within sam(oa)2 for
those same systems of PDEs and were implemented directly into the frame-
work’s core (i.e., without the FVM interface). To distinguish them from the new
FVM applications, we will refer to the older applications as SWE and SWE2L.

While the implementations of SWE and SWE2L are considerably more complex
because their codes deal directly with the data structures and algorithms used
in sam(oa)2, that may be advantageous in terms of performance, because they
do not have the overhead due to additional memory management performed by
the FVM interface’s abstraction layer. Therefore, we will use their performance
as baseline for evaluating the new applications FVM-SWE and FVM-SWE2L.

Before presenting our experimental results, we first give more details about
the simulation scenarios we used in our experiments in the following.

Tohoku Tsunami 2011. For SWE and FVM-SWE, we simulated a real tsunami
event that took place near the coast of Tohoku, Japan, in 2011 – see Fig. 2.
We used bathymetry data from the Northern Pacific and the Sea of Japan
(GEBCO 08 Grid, version 20100927) and initial bathymetry and water displace-
ments obtained from a simulation of the Tohoku earthquake [9]. All geographical
input data was handled by the parallel I/O library ASAGI [19].

Although the entire simulation domain covers an area of 7 000 km × 4 000 km,
our adaptive mesh was able to discretize it with a maximum resolution of 2852 m2

in the area around the tsunami, while regions farther away can have cells with up
to 5981 km2. Considering all simulations, the minimum and maximum observed
mesh sizes were of approx. 6.8 million to 34.2 million cells. The simulations were
run for 1000 time steps and the measurements only include the regular time-
stepping phase, i.e., they do not consider the time necessary for reading the
input data and generating the initial mesh.

Parabolic Bowl-Shaped Lake. For SWE2L and FVM-SWE2L, we simulated waves
generated by a circular hump of water propagating over a parabolic bowl-shaped
bathymetry – see Fig. 3, where we show visualizations of this scenario at t = 0.
This setup is based on an example from the GeoClaw package [2] and serves as
a benchmark for the quality of numerical schemes regarding wetting/drying of
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Fig. 2: Simulation of the tsunami in Tohoku, Japan, 2011. The pictures show the
tsunami wave 10, 20 and 30 minutes after the earthquake, respectively.

(a) (b)

Fig. 3: Parabolic bowl-shaped lake at t = 0 with 3D (a) and cross-cut (b) visual-
izations. In (b), the thick (black) line depicts the bathymetry, while the dashed
(blue) and solid (cyan) lines represent the two layers of water.

layers. We used cells with sizes ranging from 2−27 to 2−13 of the computational
domain, resulting in mesh sizes from around 0.8 million to 7.2 million cells. The
measured times also consider 1000 time steps of the regular time-stepping phase.

6 Performance Results

We conducted experiments on the CoolMUC2 and CoolMUC3 cluster systems
hosted at the Leibniz Supercomputing Center (LRZ). CoolMUC2 contains nodes
with dual-socket Haswell systems and CoolMUC3 provides nodes with Xeon Phi
“Knights Landing” (KNL) processors. An overview of the system configuration
of the nodes in each system is presented in Table 1. As we focus on vector-
ization performance, we point out the difference in the SIMD width of these
machines: the Haswells provide AVX2 instructions (256-bit), while the KNLs
provide AVX-512 instructions (512-bit). As such, the benefits from vectorization
are expected to be more noticeable on the KNL nodes. Table 1 lists the theoret-
ical peak bandwidth and peak Flop/s throughput of each machine, along with
measurements obtained with the STREAM benchmark [16] and with the Flop/s
benchmark proposed in Chapter 2 of [11]. We use these values as estimates for
the maximum performance that can be achieved in practice on those machines.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_29

https://dx.doi.org/10.1007/978-3-030-22741-8_29


10 C. R. Ferreira and M. Bader

Table 1: Specifications of the nodes in the experimental platforms.

System overview 2×Haswell Knights Landing

Architecture Intel® Xeon® Intel® Xeon Phi�

Model E5-2697v3 7210F
Cores 2x14 64 (max. 256 threads)
Clock rate 2.60 GHz 1.30 GHz
SIMD vector width 256-bit 512-bit
Memory 64 GB 96 GB + 16 GB MCDRAM
Peak bandwidth 136 GB/s 102 GB/s
Measured bandwidth 106 GB/s 83 GB/s
Peak throughput (double) 582 GFlop/s 2 662 GFlops/s
Measured throughput (double) 156 GFlop/s 720 GFlops/s

In all reported experiments we used the Intel Fortran compiler 17.0.6 and
double precision arithmetic. On both systems we use only one node at a time
(i.e., no MPI), but we use OpenMP threading on all available cores, i.e., 28 on the
Haswells and 64 on the KNL. On the KNL we also experimented with different
number of threads per core (from 1 to 4 with hyperthreading). However, here
we only list the results with 2 threads per core (i.e., 128 in total), because this
configuration achieved the best performance in most experiments. Also, we use
the KNL in cache mode, i.e., the MCDRAM memory is used as an L3 cache.

Simulation Performance. We start by evaluating the performance of FVM-SWE
and FVM-SWE2L with different vectorization strategies and patches with various
sizes – see Fig. 4. There is a clear pattern of larger cells delivering higher per-
formance even with vectorization turned off, which can be attributed to the
improved memory throughput and the reduction of the adaptivity tree achieved
by the patch-based discretizations, as mentioned in Section 3.

When vectorization is used (“Single-edge” and “Multi-edge”), we can observe
speedups by factors of 1.1–1.6 on the Haswells and of 1.5–2.3 on the KNL,
compared to the non-vectorized versions. Vectorization is clearly more effective
for the single-layer applications and (as expected) on KNL processors, which
agrees with recent results in literature [8]. The codes developed using single-
edge operators perform only slightly slower than the multi-edge ones (up to 2%
and 5% slower on each machine), despite of the overhead introduced due to the
use of Fortran subarrays in the operator calls. This not only reveals that this
overhead is not so high, but also confirms that the Intel Fortran Compiler is able
to efficiently handle the subarrays when vectorizing the loop.

The vectorized FVM-SWE and FVM-SWE2L implementations achieve perfor-
mance very similar to their analogous applications (SWE and SWE2L) on Haswells
(up to 6% slower), while on the KNL there is a noticeable difference in perfor-
mance (up to 14% slower). Nevertheless, these experiments show that FVM ap-
plications can achieve performance comparable to other applications developed
directly within the complex framework code, despite of the additional memory
operations performed to create the interface’s layer of abstraction.
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Fig. 4: Performance of the FVM applications and their analogous applications.

Time-to-Solution. Although larger patches deliver higher throughput, they
also lead to meshes with more cells (due to more coarse-grained adaptivity). As
such, a trade-off in the patch size must be found to minimize the time-to-solution.
In Fig. 5 we compare the wall time of the “Multi-edge” implementations. These
results show that patches with 64–256 cells tend to minimize the time-to-solution
on both machines and both applications – despite of the higher throughput,
larger patches are disadvantageous, due to the considerably increased mesh size.
We also point out that by combining patch-based AMR with vectorization we
have been able to reduce the total execution time by factors of 2.7–4.2, compared
to cell-wise adaptivity (“trivial” patches with only one cell).

Component Analysis. In Fig. 5 we split the execution time into two com-
ponents: the “Numerical” component comprises all routines performed for the
numerical time step, i.e., updating the cell quantities; and “Adaptivity” is re-
sponsible for handling the remeshing performed after every time step, i.e., refin-
ing/coarsening of cells, guaranteeing mesh conformity and updating communica-
tion structures. We can observe that, while most of the time reduction happens in
the numerical component, the adaptivity component also benefits considerably,
because of the reduced complexity and size of the mesh refinement tree.
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Fig. 5: Execution times of the FVM applications, split into components.

Table 2: Performance of the numerical routines of the FVM applications.

Application Architecture Data throughput Flop/s throughput

FVM-SWE
Haswells 14.1 GB/s (13%) 66.0 GFlop/s (42%)

KNL 20.9 GB/s (25%) 97.4 GFlop/s (14%)

FVM-SWE2L
Haswells 7.9 GB/s (7%) 36.3 GFlop/s (23%)

KNL 9.5 GB/s (11%) 44.0 GFlop/s (6%)

Solver Performance. Now we evaluate the numerical routines alone, without
the mesh management algorithms. We computed the data and Flop/s through-
puts of the fastest run of each FVM application on each machine – see Table 2,
where we also show their percentages relative to the measured peak performance
of each machine. The Flop/s were measured using the library PAPI [21], and the
data throughputs calculated assuming two accesses (read & write) to Q quantities
and only one read access to AUX quantities for each cell updated.

Considering that the Riemann solver is much more complex than the bench-
mark used, the results show great utilization of the Haswell processors by the
single-layer solver (42%), indicating compute-bound behavior. On the KNL the
solver is also compute-bound, although it reaches only 14% of the peak through-
put. We point out that the entire simulation data fits in the MCDRAM memory
that is being used in cache mode, thus memory bandwidth is not an issue.

A similar analysis for the two-layer solver indicates fairly low performance,
compared to the measured peak of each machine, both for Flop/s and data
throughput. This happens because the two-layer solver is considerably more
complex than the single-layer one, mainly due to several if-then-else branches
necessary to handle special cases (such as dry cells/layers). The compiler converts
these into masked operations, which causes vectorization overhead. This reveals
that it may be possible to modify this solver’s implementation to make it more
efficient and more suitable for vectorization. However, that is beyond the scope
of this paper and is left as a suggestion for future work.
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7 Conclusions

We described and evaluated a programming interface that supports the cre-
ation of Godunov-type finite volume methods in sam(oa)2. Thanks to its simple
abstraction layer, users with no HPC expertise can create high performance ap-
plications with multiple levels of parallelism, only needing to provide problem-
specific algorithms. Experienced users also have the option of assuming complete
control of the main solver loop, such that they can manage its vectorization
and/or attempt further optimizations on it.

The interface allows easy customization of our efficient finite volume solver
to different systems of PDEs. Assuming that a Riemann solver for the specific
problem is available, the user’s work is reduced mainly to handling the solver
calls and providing application-specific operators for initialization, refinement
and coarsening of cells, which in most cases consist of trivial implementations.
In particular, we developed two applications in which we could directly apply
Riemann solver implementations from the package GeoClaw.

The underlying framework implements patch-based adaptive mesh refine-
ment, which enables vectorization and at the same time reduces the simula-
tion’s computational costs considerably by applying relatively small patches.
Our experiments revealed successful vectorization (both when it was managed
by the framework and by the users), leading to substantial speedups. The perfor-
mance results also showed that these applications achieve performance compa-
rable to analogous applications developed directly into the complex source code
of sam(oa)2, with only low to moderate overhead (2–14% slower).
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