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Abstract. To increase the reliability of numerical simulations, it is im-
portant to use more reliable models. This study proposes a method to
generate a finite element model that can reproduce observational data
in a target domain. Our proposed method searches parameters to de-
termine finite element models by combining simulated annealing and
finite element wave propagation analyses. In the optimization, we utilize
heterogeneous computer resources. The finite element solver, which is
the computationally expensive portion, is computed rapidly using GPU
computation. Simultaneously, we generate finite element models using
CPU computation to overlap the computation time of model generation.
We estimate the inner soil structure as an application example. The soil
structure is reproduced from the observed time history of velocity on the
ground surface using our developed optimizer.

Keywords: heuristic optimization, CPU-GPU collaborative computing, CUDA,
Finite Element Analysis, Conjugate Gradient Method

1 Introduction

Numerical simulations with large number of degrees of freedom are becoming fea-
sible due to the development of computation environments. Accordingly, more
reliable models are required to obtain more reliable results for the target domain
with complex structures. This approach has been discussed in various fields in-
cluding biomedicine [2, 9], and it is also important for the numerical simulation
of earthquake disasters. It is rational that we allocate resource and take counter-
measures after detecting an area with potentially substantial damage. We can
apply numerical simulation for estimating damages. The authors of [10] found
that the geometry of the target domain significantly affects the distribution of
displacement on the ground surface and strain in underground structures. To un-
dertake well-suited countermeasures, three-dimensional unstructured finite ele-
ment analysis is preferred, as it considers complex geometry. This analysis results
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in problems with large degrees of freedom because it targets large domains with
high resolution. The computation mentioned above has become more attainable
due to the development of the computation environment and analysis meth-
ods for CPU-based large-scale systems [5]. However, inner soil structure is not
available with high resolution, which hampers the generation of finite element
models. On the ground surface, [13] is used as elevation data for Japan. With
the advance of sensing technology, it is possible to observe earthquake waves on
many points on the ground surface. It is desirable that we generate a finite ele-
ment model which can reproduce observational data on the ground surface and
conduct analyses using an estimated model. On the other hand, it is difficult to
measure the underground structure with high accuracy and resolution.
One of realistic ways to address this issue is introduction of an optimization
method using observation data on the ground surface for a micro earthquake.
If we can generate many finite element models and conduct wave propagation
analyses for each model, it is possible to select a model which can reproduce
available observation data most closely. Using optimized models will increase
the reliability of the analyses. There are some gradient-based methods for opti-
mization as [12] proposed for three-dimensional crustal structure optimization.
These methods have the advantage that the number of trials is small; how-
ever, they may be difficult to escape from a local solution if control parameters
have low sensitivity to an error function. Thus, this study focuses on heuristic
methods such as simulated annealing so that we can reach the global optimal
solution robustly. The expected optimization requires many forward analyses,
and the challenge is an increase in the computation cost for many analyses with
large number of degrees of freedom.
We use GPUs in this paper. Its hardware and development environment are
rapidly evolving [8]. The computation time can be reduced by using parallel
computation with many GPU cores. However, it is known that GPU compu-
tation requires the consideration of memory access and communication cost to
attain better performance. This paper proposes an algorithm that combines very
fast simulated annealing and wave propagation analyses and repeats generation
of finite element models and the computation of the solver for estimation of
inner soil structure. Some computations in our optimizer are not suitable for
GPU computation. Thus, computer resources are allocated so that we can ben-
efit further from the introduction of GPU computation. A finite element solver
appropriate for GPU computation is proposed to reduce the computation time
in the solver, which is the most computationally expensive part. At the same
time, generation of finite element models, which requires serial operations, is
computed on CPUs so that computation time for model generation can be over-
lapped. We confirm that the inner soil structure has a large effect on the results
and that our proposed method can estimate the soil structure with sufficient
accuracy for damage estimation. Our proposed optimizer is proposed in the fol-
lowing section. Section 3 describes the estimation of soil structure using our
developed optimizer. Section 4 describes our conclusions and future prospects.
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2 Methodology

For estimating the inner structure of the target domain, this study proposes
a method to conduct many wave propagation analyses and accept the inner
structure with its maximum likelihood. In this study, optimization targets the
estimation of boundary surfaces of the domain that has different material prop-
erties. For simplicity and for the purposes of this study, we have assumed that
the target domain has a stratified structure and that target parameters for op-
timization are an elevation of the boundary surface on control points which are
located at regular intervals in the x and y directions. A boundary surface is gen-
erated in the target domain by interpolating elevation on control points using
linear functions. Figure 1 depicts the scheme for optimization. In this scheme,
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Fig. 1: Rough scheme for our proposed optimizer for an estimation of soil structure.

we conduct finite element analyses for evaluation of parameters many times in
very fast simulated annealing. Our optimizer is designed so that the generation
of a finite element model and the finite element solver, which account for the
large proportion of the whole computation time, can be computed at the same
time by CPUs and GPUs, respectively. We describe the details for each part of
our optimizer in the following parts.

2.1 Very Fast Simulated Annealing

Very fast simulated annealing, which is a heuristic optimization method for prob-
lems with many control parameters [7], is applied. Simulated annealing has a pa-
rameter that corresponds to temperature, and the temperature decreases as the
number of trials increases. We search and evaluate parameters in the following
manner. First, trial parameters are selected randomly based on current parame-
ters. The search parameter domain is wider when the temperature is higher. The
evaluation value of trial parameters and that of previous ones are compared, and
if the evaluation value is improved, parameters are always updated. Even if the
evaluation value is worse, parameters are updated with a high degree of proba-
bility while the temperature is high. By repeating this procedure, this method
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can move out of the local optimal solution and find the global optimal solution
robustly. To evaluate the parameters, finite element analysis is conducted. We
assume that we have many observation points on the surface of the target do-
main. Our error function is defined by the time histories of displacement in the
analyses and observation data on observation points. The actual error function
is defined in Section 3.
In very fast simulated annealing, temperature at the k-th trial is defined using
initial temperature T0 and the number of control pointsD as Tk = T0exp(−ck

1
D ),

where parameter c is defined by T0, D, lowest temperature Tf , and the number
of trials kf as Tf = T0exp(−m), kf = expn, and c = mexp(− n

D ). The initial
temperature, lowest temperature, and number of iterations depend on problems.
A certain number of iterations are conducted for this simulation, though we can
stop searching by other conditions, including acceptance frequency of new solu-
tions. Also, we don’t use re-annealing method mentioned in [7] because the cost
for computing sensitivity of each parameter to the error function increases as D
increases.

2.2 Finite Element Analyses

In the scheme, we must conduct more than 103 finite element analyses; thus, it
is essential to conduct these analyses in a realistic timeframe. We target linear

wave propagation analyses. Our governing equation is ρ∂2u
∂t2 − ∇ · σ(u) = f on

Ω, where u and f are displacement and force vector, ρ is density, and σ is
strain, respectively. By using Newmark-β method with β=1/4 and δ=1/2 for
time integration and discretizing the governing equation in space with finite
element method, we can obtain the target equation

(
4

dt2M+ 2
dtC+K

)
un =

fn +Cvn−1 +M
(
an−1 +

4
dtvn−1

)
, where v and a are velocity and acceleration

vector, and M, C, and K are mass, damping, and stiffness matrix, respectively.
In addition, dt is the time increment, and n is the number of time steps. For
the damping matrix C, we use Rayleigh damping and compute it by linear

combination as C = αM + βK. Coefficients α and β are set so that
∫ fmax

fmin
(h −

1
2 (

α
2πf +2πfβ))2df is minimized, where fmax, fmin, and h are maximum targeting

frequency, minimum targeting frequency, and damping ratio. Vectors vn and an
can be described as vn = −vn−1 + 2

dt (un − un−1), an = −an−1 − 4
dtvn−1 +

4
dt2 (un−un−1). We obtain displacement vector un by solving the equation above
and updating vectors vn and an. Computation in the finite element solver and
generation of finite element models are most computationally expensive parts in
our optimizer.

Finite Element Solver We developed a solver based on our MPI-parallel solver
using conjugate gradient method [5]. The original solver has been developed for
CPU-based supercomputers. The solver combines a conjugate gradient method
with adaptive preconditioning, geometric multigrid method, and mixed precision
arithmetic to reduce the amount of arithmetic counts and data transfer size. In
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the solver, sparse matrix vector multiplication is computed by the Element-by-
Element (EbE) method. It computes element matrix on-the-fly and reduces the
memory access cost. Specifically, the multiplication y = Ax is computed as
y =

∑ne
i=1(Q

(i)T (A(i)(Q(i)x))), where ne is the number of elements in the do-
main, Q(i) is a mapping matrix from local node numbers in the i-th element
to the global node numbers, and A(i) is the i-th element matrix and satisfies
A =

∑ne
i=1 Q

(i)TA(i)Q(i). In this problem, A(i) = 4
dt2M

(i) + 2
dtC

(i) +K(i). The
entire part of the solver is implemented in the multiple GPUs using CUDA. To
exhibit higher performance using GPUs, we have to reduce the operations that
are not suitable for GPU computation; thus, we modify the algorithm of the
solver.
When we compute EbE kernel in GPU, we assign one thread for one element and
each element adds temporal results per element into the global vector. This sum-
mation can be operated without data race conditions using atomic operation;
however, many random accesses to the global vector in this scheme may decrease
the performance of the kernel. To improve the performance of this part, we use
shared memory as a buffer and reduce the number of data accesses to global
memory. These methods are extension of the finite element solver for crustal
deformation computation by [14].
In addition, we overlap computation and communication as described in [11].
In the domain of each MPI process, some elements are adjacent to domains of
other MPI processes and require point-to-point communications, and others do
not require these communications. First we compute elements that require data
transfer among other GPUs. Next we communicate with other GPUs while we
are computing elements that do not require data transfer. By following this pro-
cedure, it is possible to overlap MPI point-to-point communication in the solver.
In the conjugate gradient solver, the coefficients are derived from the result of
inner product calculations so that orthogonal residual vector and A-orthogonal
searching vector can be generated to those in the previous iteration, respectively.
When multiple GPUs are used with MPI, calculations of these coefficients require
data transfer and synchronization among MPI processes such as MPI Allreduce.
Thus, they become relatively time-consuming taking into account that other
computations including vector operations and sparse matrix vector multiplica-
tion are accelerated by GPUs. In our solver, we employ the method described
in [1]. This algorithm requires one MPI Allreduce per iteration, which halves
the number of MPI Allreduce per iteration in the original conjugate gradient
method. The amount of vector operation increases in this scheme. However, the
reduction of calculations of coefficients is more effective for GPU-based systems.

Generation of the Finite Element Model We automatically generate fi-
nite element model using the method by [3]. Its procedure utilizes OpenMP
parallelization, where each thread has temporal array required to compute con-
nectivity of elements and numbering of nodes. This enables us to compute model
generation with up to 102 OpenMP threads on CPU; however, we cannot apply
GPU computation for this part as GPU requires more than 10,000 threads for
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Table 1: Material properties in target domain. Vp, Vs, and ρ are primary and sec-
ondary wave velocity, and density, respectively. h is the damping ratio used
in the linear wave field calculation, hmax is maximum damping ratio, and γ
is the reference strain used in the non-linear wave analyses.

Vp(m/s) Vs(m/s) ρ (kg/m3) h hmax γ
soft layer 700 100 1500 0.001 0.23 0.007
hard layer 2100 700 2100 0.001 0.001 -

efficient computation and memory consumption greatly increases. Generation of
finite element models can account larger proportion of the whole elapsed time,
which is not negligible compared to the computation time in the finite element
solver. Therefore, we design our optimizer so that it is possible to generate a fi-
nite element model for the next trial on CPUs while wave propagation analysis is
computed on GPUs. All of the main computation in the solver can be computed
in GPUs, so we can assign only one core of CPUs for each GPU and this has
little effect on the performance of the solver. Other cores in CPUs are assigned
for the generation of finite element models. Program of the model generation is
created separately from that of the finite element solver and we executed them
asynchronously using a shell-script. Output files are shared in the file system
and controlled so that they are updated in correct timing. By allocating hetero-
geneous computer resource as mentioned above, it is possible to overlap model
generation with GPU computation.

3 Application Example

We use our developed optimizer to estimate soil structure. Our target domain
has two layers, and we define their boundary surface. We use IBM POWER
System AC922 for computation, which has two POWER9 CPUs (16 cores, 2.6
GHz) and four NVIDIA Volta V100 GPUs. We assign one CPU core to each
GPU for finite element analysis with MPI and we use the remaining 28 CPU
cores for the model generation with OpenMP.
The target domain is 300 m × 400 m × 75 m. In this problem, material prop-
erties of the soil structure are deterministic. These properties are described in
Table 1. In the model generation using [3], tetrahedral elements are generated
based on a background octree-based structured grid, and according to the pre-
vious study [4], its resolution ds must satisfy the condition ds < Vs

10fmax
in soft

layers. The frequency components below 2.5 Hz are dominant in the strain re-
sponse analysis, so we set fmax = 2.5 Hz. Thus, we set ds = 2.5 m so that the
condition above is satisfied. Elevation data at the surface are available. They are
flat and we set them as z = 0 m. Control points are located at regular intervals
in the x and y directions. We simplify the problem and notate the elevation of
the hard layer on points (x, y) = (100i, 100j)(i=0-3, j=0-4) as αij in metric
units. The points x = 0, x = 300, y = 0, and y = 400 are the edges of the
domain, and we assume αij = 0 for these points. The parameters for optimiza-
tion are αij(i=1-2, j=1-3). Initial parameters and reference parameters, which
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Table 2: Parameters. The units of α are meters.

α11 α21 α12 α22 α13 α23

initial model -9.190 -16.260 -6.490 -11.660 -4.980 -7.050
reference model -28.030 -16.260 -25.550 -21.140 -12.790 -11.090
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 0

(a) Initial model

-30

-25

-20

-15

-10

-5

 0

(b) Reference model

Fig. 2: Distribution of elevation (m) of the hard layer.

Fig. 3: One of finite element models in the analysis.

are true, are shown in Table 2. We assume the information from the boring sur-
vey are available at points (x, y) = (50, 50), (150, 350), (200, 100). Elevations at
these points are -7.01 m, -5.97 m, and -16.3 m, respectively, and these elevations
are interpolated to make the initial boundary surface. The distributions of the
boundary surface for initial and reference models are described as Fig. 2. An un-
structured mesh with approximately 3,000,000 degrees of freedom is generated
by using the method by [3]. Figure 3 shows one of the FE models in the analysis.
Input waves for wave propagation analyses can be obtained by pulling back ob-
served waves on the ground surface. In this paper, we assume that input waves
are generated by micro earthquakes, and linear analysis can be applied. It is then
possible to use Ricker wave as our input wave. We derive amplification functions
from observation data and pulled back waves. Using these functions, it is possible
to estimate observation data when we input Ricker wave. These operations re-
duce time steps for wave propagation analyses and the entire computation time.
Ricker waves, represented as (1− 2π2f2

c (t− tc)
2)exp(−π2f2

c (t− tc)
2), are input
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as x and y components of velocity at the bottom of models. t is time in second,
fc is central frequency and tc is central time and they can be set independently.
For this application example, the target frequency is as much as 2.5 Hz and we
set the period of each analysis to 2.56 seconds. Considering these settings, we
set (fc, tc) = (0.8, 1.2). Time increment of the analysis must be small enough
to converge the results in the time integration. We set it to 0.01 second, which
is the same as the setting in [6]; thus each wave propagation analysis requires
computation for 256 times steps. We set two cases for observation points. In
case 1, we allocate 35 observation points defined as (x, y) = (50i, 50j) (i=1-5,
j=1-7) and in case 2, observation points are (x, y) = (−50 + 100i,−50 + 100j)
(i=1-3, j=1-4) and the number of points is 12. We use an error function as fol-

lows; Error = 1
np

∑np
i=1

∑3
j=1

∫ fmax

0
|F [vij ] − F [v̄ij ]|df , where np is the number

of observation points, v is the velocity of the observation data, and fmax is the
maximum targeting frequency, which is 2.5 Hz in our paper. v is the time history
of x, y, and z components of velocity on each observation point. Values with a
over-line corresponds to the observation data. In addition, F [ ] corresponds to
the discrete Fourier transformation. In other words, this error function is the to-
tal sum of absolute values of difference for frequency components on observation
points. These settings mentioned above are the same as settings in [6].
In our proposed method, we generate finite element models for the next trial and
conduct wave propagation analysis at the same time. In simulated annealing, we
generate next trial parameters after current trial parameters are adopted or re-
jected. It is desirable that we generate two models in cases that trial parameters
are adopted and rejected while we are conducting wave propagation analysis;
however, generation of finite element model twice takes more time than the
computation in our finite element solver. Parameters in these problem settings
are thought to be rejected with high probability. Thus, we generate a finite el-
ement model with prediction that trial parameters will be rejected. When trial
parameters are adopted, we regenerate next finite element models for updated
parameters. This regeneration has a small effect on the whole computation time.
The breakdown of computation costs in our optimizer is described later in the
performance evaluation part. The number of control points in very fast simulated
annealing D = 6. Also, we set the number of trials kf = 1500 and c = 4.2975.
This c satisfies that parameters which increase the value of the error function
by ∆E are adopted with the probability of 80% at the initial temperature and
parameters which increase the value of the error function by ∆E × 10−5 are
adopted with the probability of 0.1% at the lowest temperature, where ∆E is
the value of error function obtained in the initial model. The history of error
function is described in Figure 4 and parameters are estimated as Table 3.
Optimization of both case 1 and 2 adopted trial parameters 51 times in 1,500
trials. Trial parameters are rejected with the probability of more than 90% and
we find that the generation of finite element model is mostly overlapped by the
computation in the solver. Compared to case 2, case 1 with more observation
points estimated the soil structure more accurately. Our previous study [6] used
a multigrid stochastic search algorithm and optimized the same parameters in
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Fig. 4: Time history of error function. Each value is normalized by the error of the
initial model.

Table 3: Parameters obtained by the optimizer for each case. The units of α are
meters. RSS is the residual sum of squares based on the reference model
and defined as

∑
ij(αij/ᾱij − 1)2, where ᾱij are parameters of the reference

model.

α11 α21 α12 α22 α13 α23 RSS

reference -28.030 -16.260 -25.550 -21.140 -12.790 -11.090 -
case 1 -28.007 -16.290 -25.611 -21.092 -12.770 -11.100 1.6×10−5

case 2 -28.119 -16.133 -25.484 -21.182 -12.849 -11.086 1.2×10−4

(a) initial model (c) optimized model(b) reference model

0.0

1.9

Fig. 5: Norm distribution of displacement (m) on the ground surface at t = 2.20s in
the linear ground shaking analysis.

meters. The numbers of iteration were 3,000 in case 1 and 1,300 in case 2; thereby
we found that parameters were efficiently optimized with higher accuracy as the
number of trials by the very fast simulated annealing was 1,500. For confirmation
of the optimized model, we conduct wave propagation analysis with parameters
obtained in case 1. Figure 5 is the distribution of the displacement on the ground
surface at time t = 2.20 s and Fig. 6 is the time history of the velocity on point
(x, y, z) = (150, 200, 0). Judging from these figures, we can confirm that the
results by optimized model and reference model are consistent.
Here we evaluate the performance of the computation in our optimization. The
elapsed time for our solver part is about 18 s per trial. In [6], wave propagation
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Fig. 6: x component of the velocity at (x, y) = (150, 200) on the ground surface in the
linear ground shaking analysis.

analysis was computed in 263 s for a finite element model with 274,041 degrees
of freedom using Intel Xeon E5-4667 v3 CPU.If this CPU-based solver is used
for the analysis in this paper and we assume that computation cost increases in
proportion to the number of degrees of the freedoms, estimated elapsed time will
be 3,000,000/274,041=10.94 times longer and 263 s × 10.94 = 2,879 s. Therefore,
our GPU-based solver has achieved about 160-fold speeding up per problem size,
although it is difficult to compare the performance on different systems. Here
we use peak memory bandwidth to evaluate the speeding up ratio, as general
finite element analyses are memory bandwidth bound computations. Intel Xeon
E5-4667 v3 CPU has 68 GB/s and four NVIDIA V100 GPUs have 900 GB/s × 4
= 3,600 GB/s of memory bandwidth. We attained higher speeding up ratio than
the ratio of peak memory bandwidth; this indicates that we efficiently computed
on GPUs. The optimization in case 1 was computed in 13 h 32 min. The elapsed
time per trial in simulated annealing was 32 s. The breakdown of computation
cost was as follows: The computation part of our solver took 18 s, other part of
our solver such as I/O and data transfer from CPU to GPU before computation
took 7 s, model decomposition for MPI parallelization using METIS took 3 s,
postprocessing to obtain the response on the ground surface took 2 s, and other
computations including Fourier transformation took 2 s. Besides, it took about
10 s for the generation of each model, which is overlapped with the computation
in the solver; thus, the whole elapsed time would be 13 h 32 min + 10 s × 1500
= 17 h 42 min and increase by 30% if model generation and finite element solver
were computed sequentially. Thereby we confirmed that efficient allocation of
computer resources is important for this optimization. Considering our previous
method took 9.4 days for parameter optimization in meters using finite element
model with 1/10 of degrees of freedoms, our proposed method has achieved great
reduction in computational cost.
Finally, we conduct a non-linear ground shaking analysis using the optimized
model. The methods are the same as [5]. We input wave observed in the 1995
Kobe Earthquake at the Kobe Local Meteorological Office and its time incre-
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Fig. 7: Maximum distribution of axial strain along a buried pipeline for each model in
the non-linear ground shaking analysis. The buried pipeline is located between
point A (x, y, z) = (30, 40,−1.2) and point B (x, y, z) = (270, 360,−1.2).

ment is 0.005 s and the number of time steps is 16,384. We used the modified
Ramberg-Osgood model and Masing Rule for non-linear constitutive models. We
assume that a gas pipeline is buried as shown in Fig. 7 (a). Figure 7 (b) shows
the maximum axial strain of the pipeline. We can confirm that the strain dis-
tributions obtained by our optimized model and initial model, which is derived
from boring survey, are completely different. This analysis is used for screening
of underground structures which will be damaged and its result shows that this
optimization is important to assure the reliability of the result.

4 Conclusion

To increase the reliability of numerical simulations, it is essential to use more
reliable models. Our proposed optimizer searches for a finite element model that
can reproduce observation data by combining very fast simulated annealing and
finite element analyses. As an application example, we estimated soil structure
using observation data with 1,500 wave propagation analyses with a finite ele-
ment model with 3,000,000 degrees of freedom. The finite element solver, which
accounted for the large proportion of the whole computation time, was acceler-
ated by utilizing the GPU computation. Compared to the previous study, the
elapsed time per problem size was decreased by 1/160. Generation of a finite
element model was difficult to computed on GPUs. We designed our algorithm
so that the computation in model generation on CPUs was overlapped by the
computation in the solver on GPUs and enhanced the effect of GPU acceleration.
For future prospects, more trials will be required for larger problem size or pa-
rameter searching in higher resolution, as the convergence of simulated annealing
gets worse. To reduce the computation time, we must attain more speedup ratio
for the solver or design a faster algorithm of our optimizer.
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