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Abstract. Large-scale scientific code plays an important role in scien-
tific researches. In order to facilitate module and element evaluation in
scientific applications, we introduce a unit testing framework and de-
scribe the demand for module-based experiment customization. We then
develop a parallel version of the unit testing framework to handle long-
term simulations with a large amount of data. Specifically, we apply
message passing based parallelization and I/O behavior optimization to
improve the performance of the unit testing framework and use profiling
result to guide the parallel process implementation. Finally, we present a
case study on litter decomposition experiment using a standalone mod-
ule from a large-scale Earth System Model. This case study is also a
good demonstration on the scalability, portability, and high-efficiency of
the framework.
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1 Introduction

Scientific code that incorporates important domain knowledge plays an impor-
tant role in answering essential questions. In order to help researchers understand
and modify the scientific code using good approaches from best software devel-
opment practices[4, 7], we prefer a framework to visualize code architecture and
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individual modules, so that researchers can conveniently use modules to design
specific experiments and to optimize the code base. We hope the framework to
be highly portable and multi-platform compatible, therefore scientists can use
it on different platforms. At the same time, we would like the framework to
offer concurrent data analysis interface, which decouples the analysis from the
file-based I/O in order to facilitate the data analysis.

In the previous work [13], we introduced and designed a unit testing frame-
work that isolates specific functions from complex software base and offers an
in-situ data communication service [11]. This service runs by an analysis code
locating remotely as the original scientific code is running. The testing driver
can build a necessary environment which suits the needs of a typical experi-
ment. With the framework, the scientists can track and manipulate variables
between modules or inside modules to better meet their needs. However, the
above-mentioned framework is unable to meet the requirement of many scien-
tific applications that simulate large-scale phenomena with complex mathemat-
ical models on supercomputers. The examples of these scientific applications
include large-scale models to predict climate change, air traffic control, power
grids, and nuclear power plants. Therefore, improving the overall performance
of the functional-unit testing platform for scientific code is significant.

2 Related Works

Scientific software can be bulky and complicated, it is important to analyze the
crucial performance factor in order to optimize the code base. A diverse set
of tools and methodology were used to identify the performance and scaling
problems, including shell timers, library subroutines, profilers, and consisting
of tracing analysis tools and sophisticated full-featured toolsets. For example,
the shell timex reports system related information in a common format across
a variety of shells. Profiling measures the frequency and duration of functions
or memory and time complexity of a program through instrumenting program’s
source code or executable file. Unlike profiling, the tracing approach records
all events of an application run with precise time stamps and many event type
specific properties [2]. Performance analysis toolkits include three steps: instru-
mentation, measurement, and analysis. Among all popular toolkits, this paper
chooses Vampir to visualize the Fortran program behavior, recorded by Score-P
in open trace format.

There are some unit test frameworks available for Fortran: Fortran unit
test framework (FRUIT), pFUnit, ObjecxxFTK, and FLIBS. This paper takes
FRUIT as an example to describe the team’s work and weakness. The FRUIT
is written in FORTRAN 95, and it can test all FORTRAN features. FRUIT in-
cludes five features: assertions for different types of unit tests, function files used
to write tests, summary reports of the success or failure of tests, a basket module
to invoke set up and tear down functions, and driver generation. Set up and tear
down functions are used to perform initialization and finalization operations to
all tests within a module. However, all these tools never consider testing modules
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with groups of global variables. It is known that defining variables on the global
scope is a bad but common practice in scientific software development. Extensive
usage of global variables makes dependencies analysis difficult and complicates
module loading, which in turn cause complicated module interactions.

Paper [3] introduced a Python-based tool called KGEN that extracts a part
of Fortran code from an application. KGEN can extract specific statements into
stand-alone kernels from large applications including MPI application, it can also
provide a way to automatically generate a data stream to drive and verify the ex-
ecution of the extracted kernel. The tool can deal with global variables and have
parallel computation configuration, but it includes excessive time statistics and
built-in libraries for kernel generation, which decrease the overall performance.

Paper [13] developed a platform which first split data and library dependen-
cies over software modules and then drove the unit functions with the extracted
data stream from original scientific code. With the verified platform, the scien-
tific model builders can track interesting variables either in one single subroutine
or among different subroutines. However, the research did not deal well with the
performance issues related to long time scientific simulations.

3 System Design

In previous research, we focus on how to design a framework to generate unit
testing and how to drive the unit testing and validate the correctness of the
infrastructure. The framework adapts a serial computational model and does not
consider the performance issues associated with a long period of time simulation,
such as a 10-year period simulation at a half-hour timestep. Therefore, in this
study, in order to make our kernel generation infrastructure more reliable and
practical, we improve our design to embrace parallel computing methods.

First, we create an experiment with user-required subroutines. We extract
specific unit modules with built-in logic based on user requirements. Then, we
apply our sequential unit testing framework to isolate the user required modules
and then validate the correctness of the framework.

Second, we design an efficient model to support large data transfer between
different modules and continuous step-wise simulations. In our previous work,
we divided data based on data access method into three groups: write only,
read only and the modify [13]. In the parallel version, since disk I/O operation
was time-costly, we switched the file-based I/O operations to memory read/write
to improve the overall performance. In this paper, we used the code analyzer to
analyze data flow based on module relevance. Then, we divided the variables into
three groups (In-Module group, Out-Module group, and Constant group) by the
function relevance to make sure the parallel CPU cores run during multiple time
step simulation. In-Module variables are the variables modified by a specific
module and can be directly retrieved from the end of the module. These vari-
ables appeared in the outStream data flow of the module to drive the subsequent
module. Constant variables are the environmental setting variables whose values
are fixed at the beginning of the model running; hence, they only need to be ini-
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tialized at the very first time step in a multi-time step simulation. Out-Module
variables are the input variables whose values are modified by other modules. As
such, we need to retrieve them from other modules during the original scientific
code running and then provide them at each time step in the unit test platform.
By analyzing how these variables were used, we further tagged them with two
tags: disk variables and memory variables. The Constant variables refer to vari-
ables whose values keep constant during the experiment process, we tag them as
disk variables and only read them once. The Out-Module variables refer to the
ones whose values are received from outside of the target modules; we tagged
them as disk variables and read them at each time step. Since the In-Module
variables refer to variables whose values are changed during the experimental
process, we tagged them as memory variables and transfer them to the next
time step.

Third, we designed a loop-parallel algorithm for an an n-case computation
illustrated in Figure 1. First, the retrieved Constant variables were used to set
up the experiment environment. Then, n cases were initialized with a customized
requirement and MPI execution environment. Inside each case, there were rank-
size processes. Every process i read data from two storage media (except the
first timestep process loads all variables from disk). One storage media was disk,
which was a file written with Out-Module variables from the original scientific
code. The other storage media was MPI message buffer, which received updated
In-Module data from the processes at the previous timestep. The process simu-
lated the status of timestep T ranging from 1 to user-defined F and constantly
sent data to the next timestep computation on the No. (i+1) mod ranksize pro-
cess.

4 Implementation

The development platform used in the study is a multi-programmatic heteroge-
neous federated cluster with the Red Hat Enterprise Linux (RHEL) operating
system. The production unit testing platform runs on Titan which contains
18,688 physical compute nodes, each with a processor, physical memory, and
a connection to the Cray custom high-speed interconnect. Each compute node
houses one 16-core 2.2GHz AMD OpteronTM 6274 (Interlagos) processor and
32 GB of RAM. The working procedure of the parallel unit testing framework
(PUTF, as shown in Figure 2) has five stages: user specification, dataflow genera-
tion, customized experiment generation, experiment verification, and experiment
execution.

User Specification: The first step is to define which module to isolate. Gener-
ally, in the model build step, the PUTF claims which modules to extract based
on user requirments; the researchers customize their experiment by designing
the necessary duration of the experiment simulation period and providing initial
parameters. Dataflow Generation: PUTF uses a dataflow analyzer to split data
dependency between modules. The analyzer first collects constant variables, in-
module variables, and out-Module variables inside the code, and then inserts all
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Fig. 1: Loop Parallel method

Fig. 2: Overview of the Improved Parallel Infrastructure
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these variables declarations to the corresponding modules in the original code
as an ”inspector”. After re-compiling and re-running the scientific code, we can
extracted all required input data stream files and starting timestep output data
stream file. The starting timestep output data stream file is used to verify the
logic of the PUTF. A data generation script scans all user-specified modules
using the dataflow analyzer, then collect, divide, and extracts data stream for
module-based simulations.

Customized experiment generation: In this stage, it is necessary to isolate
modules to be independent of other unnecessary libraries, such as the parallel
IO library (PIO) and Networked Common Data Format (netCDF), which is
complicated with platform incompatibly problems. Second, these libraries were
replaced with easily implemented functions without dependent libraries, making
the kernel more portable. Finally, a driver is configured with initial global param-
eters and constant variables. At last, the PUTF prepares the required modules
and loads required data from different storage media based on the recursive
analysis mentioned in the previous step.

Experiment Verification: in order to verify that each module works correctly
on our platform with the previous setting, we compare results from the unit
testing platform with results from the scientific code. At this step, the environ-
mental setting and parameter initialization are the same as the original scientific
code. This step is tested quickly using one timestep running.

Fig. 3: Overview of MPI Unit platform

Experiment Execution: Once the infrastructure settings are verified, we run
the experiment in parallel. Figure 3 shows how the parallel framework works.
At the beginning of the experiment, we apply n*m processes for n instances.
Inside every instance, a process first loaded Out-Module variables from a disk
file and then checked whether it is the first time step. If the process is not the
first timestep verification, it waits In-Module data package through MPI RECV
method from the previous timestep. Otherwise, the process read disk file for
initialization. A very short time later, the process finishes the computation and
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checks if the process is at the last timestep, so that it can record the experiment
result and exit; otherwise, it sends the In-Module data package to process at the
next timestep through MPI SEND and begins to deal with calulations at the
No. i+m timestep. Different instances shares the same disk files but conducts
different computation.

5 Case Study

5.1 Scientific Code and Module-based Experiments

The ”Accelerated Climate Model for Energy (ACME)” a fully-coupled Earth
system model development and simulation project to investigate energy-relevant
science using code optimized for advanced computers. Inside ACME system, the
ACME Land model (ALM) is designed to understand how natural and human
changes in terrestrial land surfaces will affect the climate [5]. The ALM model
consists of submodels related to land biogeophysics, the hydrologic cycle, bio-
geochemistry, human dimensions, and ecosystem dynamics. Due to internal bio-
geophysics and geochemical connections, ALM simulations have to be executed
with other earth system components within ACME, such as atmosphere, ocean,
ice, and glaciers etc. [8].

The objective of this case study was to compare the performance of the de-
composition reaction network within the ALM using data collected from the
long-term intersite decomposition experiment team (LIDET). However, with
more than 1800 source files and over 350,000 lines of source code, the software
complexity of ALM became a barrier to rapid model improvements and valida-
tion [9] [10], also it is very inconvenient to track specific modules and capture
the impact of specific factors on the overall model performance.

At the center of ALM decomposition submodel is the Convergent Trophic
Cascade (CTC) method. We would like to evaluate CTC using LIDET data. In
a previous study [1], CTC was investigate in standalone mode without considera-
tion of temporal variations in environmental and nutrient conditions that would
occur in the full model. If we want to perform the LIDET study in ALM model di-
rectly, that may introduce unrealistic feedbacks between the simulated litter bags
and vegetation growth. Therefore, we develop a model within our PUTF frame-
work which allows the CTC submodel to operate independently while retaining
the temporally varying environmental drivers calculated by ALM. Particularly,
we are interested in (1) the influence of litter decomposition base rate parame-
ters, and (2) the influence of nitrogen limitation, and the temporal variability of
this limitation, on litter decomposition.

5.2 Experiment setups

In the experiments, six types of leaf litter were placed in fine mesh bags at 21
sites representing a range of biomes. The mass of remaining carbon and nitro-
gen in this litter was measured annually over a 10-year period. To simulate the
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experimental conditions in the model, we first spined up the carbon and nitro-
gen pools using an accelerated decomposition phase for 500 years, followed by a
return to normal decomposition rate for 500 years [6]. In these simulations, we
used a repeating cycle of the CRU-NCEP meteorology over the years 1901-1920.
Then we performed a transient simulation from the years January 1st, 1850 - Oc-
tober 1st, 1990, which was forced by changing atmospheric CO2 concentrations,
nitrogen and aerosol deposition and land use. Globally gridded meteorological
and land-surface data were used for these simulations except for plant functional
type, which was replaced using site information. The model state on October
1st, 1990 represents the simulated conditions at the beginning of the experiment.

At this point, the UTF framework is used to execute a 10-year simulation.
For a control simulation in which no litter is added, we run the full scientific
model and save all model state variables at every timestep. These model states
were then used as boundary conditions for our decomposition unit, for which
only the decomposition subroutines and relevant updating codes are active. For
each site, we added litter inputs to the first soil layer using the appropriate mass,
quality, and C:N ratios for each of the six litter types. The decomposition unit
is driven by soil moisture, temperature, and the nutrient limitation factor for
decomposition from the full model. Unlike in the full version of the scientific
code, there was no feedback between decomposition and the ecosystem.

5.3 Results and Analysis

In this section, we used a dynamic performance analysis measurement tool to
help to improve the framework.

Fig. 4: Timeline chart

5.3.1 Parallel I/O In this experiment, if we applied up to 2114 processes
and 133 computing nodes in Titan, the total execution time for one site and one
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leaf liter’s type in 4-month’s simulation was 13s, the best performance among
configurations. In Figure 4, we applied 16 processes and 1 node to simulate one
site and one type’s 10 years’s simulation. The red bar signifies the MPI functions,
which include MPI Init, MPI Recv, MPI Send and MPI Finalize. The green bar
between red ones represents CPU computation, the green bars after MPI Send
and before MPI Receive are disk I/O read. Messages exchanged between different
processes are depicted as black lines. Within the case, since every time step needs
previous time step’s data as input, the function computation is sequential, while
the I/O operation is parallel. The MPI Recv bar is long over time because every
process is waiting for previous results.

Fig. 5: Profiling Info for improved PUTF

5.3.2 MPI with Parallel I/O In Figure 5 and Figure 6, we applied 600
processes and 40 nodes to parallel one site and 6 types 10-years simulation
experiment. The red box stands for the MPI functions, and the green boxes
consist of function computation and I/O operation. The black line represents
the paralleled CPU and how the MPI message goes. In this case, every type
in the same site shared the same input data but computed in different ways.
Therefore the function execution and the I/O operation were both parallel which
improved the overall performance that can be seen from the counter in Figure 5
and Figure 6.
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Fig. 6: Improved Time dissection of CPU and I/O

5.4 Experiment Results

We compare the full version of ALM with ALM UTF for conifer and tropical
forests against LIDET observations, representing 5 and 4 of the 21 sites respec-
tively. Figure 7 shows the remaining mass of carbon as a function of time over
the 10-year experiment for the two model versions and observations, averaged
over all 6 litter types. A best fit to observations is performed by fitting an ex-
ponential function y = a*exp(-bx) + c. In both conifer and tropical forests,
the carbon mass remaining declines more rapidly in ALM UTF than in the full
ALM, which is more consistent with the best fit to observations. The ALM UTF
model is more consistent with the actual experimental conditions, because in the
experiment the small amount of litter in the litter bag added to each plot is not
large enough to induce ecosystem-scale feedbacks. However in the full ALM, the
added litter effectively covers the entire land surface, causing feedbacks to vege-
tation growth. The additional litter unrealistically stimulates vegetation growth
in the full ALM, causing more carbon fixation and increased litterfall, effectively
increasing the carbon mass remaining. In both the full ALM and in the ALM
UTF, the carbon mass remaining is significantly higher than that estimated
by [1] when comparing the CTC submodel in ALM to the DAYCENT soil de-
composition model. That analysis, while also using a functional unit approach,
did not use the full model for boundary conditions and thus neglected to con-
sider changing nutrient limitation and environmental conditions. The approach
taken in ALM UTF is a useful way to perform such model-experiment intercom-
parisons in a consistent way while avoiding unrealistic feedback in small-scale
experiments.
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Fig. 7: Comparison among full version of ALM, ALM UTF and LIDET obser-
vations. Average carbon mass remaining in relation to time for leaf litter de-
composed at two sites. Data are averaged across six leaf litter types for sites
classified as conifer forest and tropical forest

6 Conclusions

Large-scale scientific code is important for scientific research. However, because
of the complexity of models, it is very time-consuming to modify scientific code
and to validate individual modules inside a complex modeling system. To fa-
cilitate module evaluation and validation within scientific applications, we first
introduce a unit testing framework. Since scientific experiment analysis gener-
ally requires a long-term simulation with large-amount of data, we apply message
passing based parallelization and I/O behavior optimization to improve the per-
formance of the unit testing framework on parallel computing infrastructure. We
also used profiling result to guide the parallel process implementation. Finally,
we use a standalone moduled-based simulation, extract from a large-scale Earth
System Model, to demonstrates the scalability, portability, and high-efficiency
of the parallel functional unit testing framework.
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