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Abstract. The accumulation of spatial data and development of com-
puter architectures and computational techniques raise expectations for
large-scale soil liquefaction simulations using highly detailed three-dimensional
(3D) soil-structure models; however, the associated large computational
cost remains the major obstacle to realizing this in practice. In this study,
we increased the speed of large-scale 3D soil liquefaction simulation on
computers with many-core wide SIMD architectures. A previous study
overcame the large computational cost by expanding a method for large-
scale seismic response analysis for application in soil liquefaction analy-
sis; however, that algorithm did not assume the heterogeneity of the soil
liquefaction problem, resulting in a load imbalance among CPU cores
in parallel computations and limiting performance. Here we proposed a
load-balancing method suitable for soil liquefaction analysis. We devel-
oped an efficient algorithm that considers the physical characteristics of
soil liquefaction phenomena in order to increase the speed of solving the
target linear system. The proposed method achieved a 26-fold increase
in speed over the previous study. Soil liquefaction simulations were per-
formed using large-scale 3D models with up to 3.5 billion degrees-of-
freedom on an Intel Xeon Phi (Knights Landing)-based supercomputer
system (Oakforest-PACS).

Keywords: soil liquefaction · fast and scalable solver · large-scale
analysis · finite-element method.

1 Introduction

Soil liquefaction induced by earthquakes has caused various kinds of damage,
including ground settlement, lateral flow, and tilting and destruction of build-
ings. When the Great East Japan Earthquake occurred in 2011, soil liquefaction
was induced in a large area ranging from Kanto to Tohoku and resulted in
sand boiling and the uplift of manholes among other damage [11, 13]. To re-
duce this type of damage, various methods for soil liquefaction analyses have
been developed. The recent accumulation of spatial data and development of
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computer architectures and computational techniques have enabled larger-scale
physical simulations, thereby raising the expectation for realization of large-scale
soil liquefaction simulations using highly detailed three-dimensional (3D) soil-
structure models. Such simulations will contribute to the mitigation of damage
by soil liquefaction, as well as soil liquefaction itself. However, these numerical
analyses using large-scale 3D models require huge computational requirements,
with most soil liquefaction analyses performed either on two-dimensional (2D)
models under plane-strain conditions or on small-scale 3D models. The aim of
this study was to increase the speed of large-scale 3D soil liquefaction simulation
on computers with many-core wide SIMD architectures, which represent a type
of architecture used for the recent development of exascale supercomputers.

For seismic wave-propagation simulations in urban areas not limited to soil
liquefaction analyses, parallel 3D finite-element solvers suitable for massively
parallel computers have been developed and used to analyze the actual damage.
A finalist for the Gordon Bell Prize in SC14 [5] (hereafter, referred to as the
SC14 solver) enabled a large-scale earthquake simulation by developing a fast
algorithm for solving the huge linear system obtained by discretizing the target
physical problem, with the solver algorithm designed based on analyzing the
characteristics of the discretized linear system of equations. Such an algorithm
can be effective for seismic soil liquefaction simulations. Our previous study [9]
expanded the algorithm used for the SC14 solver for use in soil liquefaction
simulation to enable large-scale 3D soil liquefaction analysis; however, although
the target problem of the SC14 solver was relatively homogeneous, soil liquefac-
tion analysis is a heterogeneous problem, where different physical problems are
solved in different soil layers [i.e., non-liquefiable (linear) layers and liquefiable
(nonlinear) layers]. Therefore, our previous solver [9], which used the algorithm
used for the SC14 solver, displayed low parallel efficiency at each parallelization
level of the SIMD lane, thread, and process when executed on a computer with
many-core wide SIMD architecture. In the present study, we developed methods
to improve the load balance in each parallelization level to overcome this inef-
ficiency and to potentially increase the speed of soil liquefaction analysis and
enable larger-scale simulations.

In addition to the development of algorithms appropriate for the discretized
linear system, our research group proposed algorithms to reduce the compu-
tational cost by considering the characteristics of the target physical problem
underlying the linear system (a finalist for the Gordon Bell Prize in SC18 [6];
hereafter referred to as the SC18 solver). In this study, we applied this idea to
soil liquefaction analysis. Considering the locality of soil liquefaction phenom-
ena, we partially approximated the heavy computation in the nonlinear layer by
using light-weight computation, which is expected to reduce analysis cost and
time.

We compared the developed solver with our previous solver [9] and performed
large-scale soil liquefaction simulations using 3D ground models with up to 3.5
billion degrees-of-freedom (DOF) on an Intel Xeon Phi (Knights Landing)-based
supercomputer system (Oakforest-PACS [8]; OFP).
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2 Target Problem

Eq. (1) is the target linear system of soil liquefaction analysis under undrained
conditions. This equation is discretized spatially using the finite-element method
and temporally using the Newmark-β method (β = 0.25).

Aδu(n) = b, (1)

where

A =
4

dt2
M +

2

dt
C(n−1) +K(n−1),

b = f (n) − q(n−1) +C(n−1)v(n−1) +M

(
a(n−1) +

4

dt
v(n−1)

)
.

Here, M , C , and K are respectively the consistent mass, Rayleigh damping,
and stiffness matrices, f , q , δu, v , and a are the external force, inner force,
displacement increment, velocity, and acceleration vectors, respectively, dt is the
time increment, and ∗(n) is the variable ∗ at the n-th time step. To carry out
soil liquefaction analysis, we perform the following at each time step.

1. Read the external force f , and calculate the coefficient matrix A, and right-
hand side vector b.

2. Solve the linear system (1) and obtain the displacement increment δu .
3. Update the displacement u , velocity v , and acceleration a , using δu .
4. Update the stiffness K , and inner force q [Eq. (2) and (3)].

K(n) =
∑
e

∫
Ve

BT
(
D(n)

s +Df

)
B dV, (2)

q(n) =
∑
e

∫
Ve

BT
(
σ ′(n) − p(n)m

)
dV, (3)

where, B is the matrix used to convert the displacement into the strain, Ds

and Df are the elasto-plastic matrices of the soil and pore water, respectively,
σ ′ is the effective stress of the soil, p is the excess pore water pressure and
m = {1 1 1 0 0 0}T.

∫
e
∗dV is the volume integration of the variable ∗ in the

e-th finite element. Ds, Df , σ ′, and p are defined by the constitutive law[3].
For detailed information, consult [3] and a 2D constitutive law [4] which [3] is
based on.

3 Previous Method

Solving the linear system (1) and updating the stiffness K , and inner force q
occupy a considerable amount of the calculation time in liquefaction analysis.
Solving the linear system (1) requires a huge computational cost, especially in
large-scale 3D analysis, which has been the major obstacle to realizing large-scale
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3D soil liquefaction analysis. Our previous study [9] overcame the computational
cost by applying the algorithm of the SC14 solver for large-scale seismic response
analysis to large-scale soil liquefaction analysis. In this section, we explain the
algorithm associated with the SC14 solver and the problems in our previous
study [9] about implementing the algorithm of the SC14 solver to soil liquefaction
analysis.

3.1 Finite-element Solver

The SC14 solver is a fast and scalable method that uses unstructured tetrahedral
second-order elements developed for solving the target linear system involved in
seismic response analysis without soil liquefaction. It is based on the adaptive
conjugate gradient (CG) method [2] and uses hybrid parallelization with message
passing interface (MPI) and OpenMP.

The conventional preconditioned CG (PCG) method improves the conver-
gence characteristics by preconditioning z = M−1r, where M is a precon-
ditioning matrix that mimics the coefficient matrix A. Preconditioning in the
adaptive CG method [2] is to roughly solve Az = r instead of z = M−1r. The
preconditioning matrix M in this method is supposed to be M ≈ A, which
describes it as having high preconditioning performance. The PCG method with
the 3 × 3 block Jacobi preconditioner is used to solve Az = r as the precondi-
tioning in order to achieve parallel efficiency.

Increases in speed are limited when merely solving Az = r during precondi-
tioning. The SC14 solver reduces the computational cost by using a first-order
tetrahedral-element model generated as the geometric multigrid of the second-
order tetrahedral-element model of the target problem. First, Aczc = rc is solved
on the first-order element model, which requires much less computational cost
than on the second-order element model. Using the solution of the first-order
element model as the initial solution, Az = r is then solved on the second-order
element model, thereby significantly reducing the amount of computation and
communication. The PCG method is used twice in preconditioning on the first-
and second-order element models. Hereafter, the former CG is referred to as an
inner coarse CG, and the latter is referred to as an inner fine CG. The main
CG that uses the two inner CGs for preconditioning is called the outer CG. To
further reduce the computational cost, the preconditioning step, which does not
require high computational accuracy, is computed in single precision, whereas
the other calculation is performed in double precision.

The SC14 solver uses the element-by-element (EBE) method [12] to effi-
ciently compute matrix-vector multiplication, which is the heaviest computation
in the CG method. In conventional matrix-vector multiplication calculations,
the global coefficient matrix, A =

∑
e Ae, is calculated, followed by multiplica-

tion of the matrix A by the vector x to obtain the matrix-vector multiplication
Ax. In the EBE method, the global matrix A is not calculated. The element-
wise matrix-vector multiplications Aexe are calculated on the fly and summed
to obtain the global matrix-vector multiplication Ax =

∑
e(Aexe), where x is

the component of x for the e-th element. This method reduces the cost to read
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and write the global coefficient matrix, as well as the memory usage necessary to
store it. Therefore matrix-vector multiplication using the EBE method requires
less memory access and communication, which shortens computation time.

3.2 Implementation of Our Previous Solver and Its Problems

Our previous study [9] overcame the huge computational cost involved with
solving the target linear system (1) in order to allow large-scale soil liquefac-
tion analysis using the method of the SC14 solver, which is explained in the
previous section. However, the heterogeneity of soil liquefaction analysis causes
load imbalance in parallel computation, which results in low parallel efficiency
and long computation times. This is because the target problem for the SC14
solver is seismic response analysis, which is relatively homogeneous; therefore,
the algorithm does not assume heterogeneity. The load imbalance occurs during
calculation of matrix-vector multiplication using the EBE method and update
of the stress and elasto-plastic matrix according to the constitutive law. These
two computations have the highest computational costs; therefore, the resulting
load imbalance potentially results in a worse time to solution.

The difference in the number of integration points in different elements
causes the load imbalance in the calculation of matrix-vector multiplication.
When calculating the element-wise coefficient matrix Ae during matrix-vector
multiplication using the EBE method, the element-wise stiffness matrix Ke =∫
Ve

BT(Ds +Df)BdV , is calculated on the fly. B is a linear function, and the
elasto-plastic matrix in the linear layer is constant, suggesting that the inte-
grand in a linear element is second order, and computing the volume integration
needs only four integration points. On the other hand, the elasto-plastic matrix
in the nonlinear layer spatially varies. Because soil liquefaction occurs locally,
the elasto-plastic matrix should be assumed to vary in an element to accurately
analyze the phenomenon. Therefore, the integrand in a nonlinear element is
more than third order, and more than four integration points are needed. In this
study, five integration points were used, enabling calculation of the integration
of up to a third-order function.

The difference in the constitutive law at different layers causes load imbal-
ance in the calculation of the effective stress σ ′, and the elasto-plastic matrix
Ds, of soil. In the linear layer, Ds is constant and unnecessary to update, and
σ ′ is calculated with very low computational cost, as σ ′ = Dsε. Therefore, it
is not explicitly calculated and, thus, computed on the fly when q is computed
using Eq. (3). In the nonlinear elements, σ ′ and Ds are updated at every time
step in the five integration points per element. This requires considerable com-
putation, because calculations for 300 one-dimensional springs are required at
each integration point for the implementation in the present study.

The SC14 solver achieves load balance by distributing the same number of
elements to each CPU core and by assuming that the computation amount in
each element is highly similar. However, for soil liquefaction analysis, the compu-
tation amount in each element differs; therefore, load imbalance among processes
and threads occurred in our previous solver [9], which used the original version
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As is Reordering
do ie = 1, ne

if(ie-th element is linear element)
[calc. for a linear element]

else #nonlinear
[calc. for a nonlinear element]

endif
end do

[Reordering of the elements]
do ie = 1, ne_linear

[calc. for a linear element]
enddo
do ie = ne_linear+1, ne

[calc. for a nonlinear element]
end do

Fig. 1: Element reordering to improve thread load balance and exploit automatic
vectorization by the compiler.

of the algorithm of the SC14 solver. Another problem in speeding up on our
target architecture of many-core wide SIMD is that it is diffcult to exploit a
wide SIMD in heterogeneous calculations.

4 Developed Method

In this section, we propose methods for improving the load balance among SIMD
lanes, among OpenMP threads, and among MPI processes in order to overcome
the problem of load imbalance experienced in our previous study [9]. Addition-
ally, we developed a physics-aware algorithm to solve the target linear system
(1) in order to achieve a further increase in speed.

4.1 Improving Load Balance

First, we reordered the elements to improve load balance among OpenMP threads
in each process and to exploit efficient use of wide SIMD arithmetic units. In a
conventional implementation, variables for both linear and nonlinear elements
are stored in arrays in mixed order. We implemented element reordering to en-
able storing variables for linear elements in the first part of arrays and variables
for nonlinear elements in the remainder of the arrays. In this implementation,
the computation for the linear and nonlinear elements is separated (Fig. 1) and
OpenMP parallelized independently, thereby improving thread load balance.
Additionally, separating the computation of the linear and nonlinear elements
is suitable for automatic vectorization by the compiler, which will increase the
speed of simulation, especially on our target computers of manycore architecture
with wide SIMD.

Second, we revised the model-partitioning method in order to improve load
balance among MPI processes. The conventional method partitions the model so
that the number of elements assigned to each process is almost the same. This
causes process load imbalance because the ratio of the number of linear and
nonlinear elements could be different. We propose that the linear and nonlinear
layers be independently partitioned into the number of MPI processes and that
each process be assigned to a domain comprising one partition of the linear layer
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Target domain

process #0

process #1

process #2

Proposed partitioning

(1) Partition linear and nonlinear 

layers independently

(2) Each process is assigned to domain consisting of one 

partition of linear layer and one partition of nonlinear layer

nonlinear layer 

linear layer 
As isprocess #0

process #1

process #2

Fig. 2: Overview of the proposed partitioning of the simulation domain.

and one partition of the nonlinear layer (Fig. 2). This method improves load
balance among the processes because each process works on the same number
of linear and nonlinear elements.

4.2 Physics-aware Preconditioner

We developed a preconditioner that considers the physical characteristics of soil
liquefaction based on the preconditioner of the SC14 solver in order to achieve
additional increases in speed. The SC18 solver was developed based on the SC14
solver and used the preconditioner based on the physical characteristics of the
target problem. The target problem of the SC18 solver includes a domain in-
volving a high degree of stiffness, such as concrete structures. The convergence
characteristics of the CG method are extremely poor around these structures.
Another inner CG was added between the inner coarse and fine CGs for pre-
conditioning. The only domain having poor convergence characteristics, which
is detected by an AI before the analysis, is solved in the additional inner CG,
which efficiently improved the convergence characteristics. The physics-aware
preconditioner introduced in the present study uses the same concept involving
the addition of another inner CG (called the inner middle CG) between the inner
coarse and fine CGs. Note that the inner middle CG in this study exploits the
locality of soil liquefaction phenomena and differs from the additional inner CG
in the SC18 solver.

The target problem of the SC14 solver has a relatively small spatial vari-
ation in soil-physical properties. The soil elasto-plastic matrix Ds, is assumed
to be constant not only in a linear element but also in a nonlinear element.
On the other hand, for soil liquefaction analysis implemented in this study, the
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volume integration in nonlinear elements is calculated using Ds at the five in-
tegration points, which increases memory access during computation of matrix-
vector multiplication via the EBE method. We added the inner middle CG to
reduce the data necessary for preconditioning. The computation in the inner
middle CG is similar to that in the inner fine CG, except that it uses a matrix
Am, instead of the coefficient matrix A. Here, Am = 4

dt2M + 2
dtCm + Km,

Km =
∑

e

∫
Ve

BTDmB dV , and Dm is constant in an element:

Dm =


d1 d2 d2
d2 d1 d2 0
d2 d2 d1

d3
0 d4

d5

 . (4)

di (i = 1, · · · , 5) are calculated as the average of the D = Ds +Df at the five
integration points3:

d1 =
1

15

5∑
j=1

(
Dj

11 +Dj
22 +Dj

33

)
, d2 =

1

15

5∑
j=1

(
Dj

12 +Dj
23 +Dj

31

)
,

d3 =
1

5

5∑
j=1

Dj
44, d4 =

1

5

5∑
j=1

Dj
55, d5 =

1

5

5∑
j=1

Dj
66, (5)

where Dj is the elasto-plastic matrix at the j-th integration point. This reduces
the memory access necessary during the computation. Additionally, the integra-
tion in the calculation of Km uses only four integration points, because Dm is
constant, and requires a smaller amount of computation than that in the inner
fine CG, which uses five integration points.

Because soil liquefaction occurs locally, there are only a few elements in which
the physical property varies greatly and in the most elements, Dj ≈ Dm (j =
1, · · · , 5). Therefore, the computation using the inner fine CG can be partially
replaced by the computation using the inner middle CG, which has a lower
computational cost.
3 There are several ways to average D , with the optimal method depending upon

the problem. Non-zero components of Df are only present in the upper-left 3 × 3
components and correspond to the bulk modulus of pore water, which is constant
and 10-fold greater than that of soil. Therefore, the upper-left 3 × 3 components
of D are only slightly influenced by soil heterogeneity and are supposed to be ap-
proximated using two parameters: d1 and d2. On the other hand, a shear wave has
a dominant influence on seismic response analysis, and the soil is supposed to show
its heterogeneity, such that only shear stiffness in the vibration direction is reduced.
Therefore, the lower-right diagonal three components, which correspond to the shear
stiffness in different directions are approximated using different parameters: d3, d4,
and d5. The zero components of Dm could be non-zero in D but are sufficiently
small as compared with di (i = 1, · · · , 5). Approximating these small components
by zero efficiently reduces the amount of data in Dm.
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algorithm A: The outline of the proposed method. ∗̄ indicates that the variable ∗ is
in single precision. ∗c indicates that the variable ∗ is associated with the first-order
model. P̄ is the mapping matrix from a variable for the first-order model to the
equivalent variable for the second-order model. nt is the number of time steps.
1 [Model partitioning]
2 [Element reordering]
3 Calculate the initial values of u , q , K by self-weight analysis.
4 v ,a ⇐ 0
5 do it = 1, nt
6 Read the external force f .
7 b ⇐ f − q +Cv +M

(
a + 4

dt
v
)

8 A ⇐ 4
dt2

M + 2
dt
C +K

9 Set the initial values of δu and other variables for the CG method.
10 r ⇐ b −Aδu
11 (Outer CG starts: solve Aδu = b)
12 while not converged do
13 (Preconditioning starts)
14 r̄ ⇐ r

15 r̄c ⇐ P̄
T
r̄

16 solve Ācz̄c = r̄c by PCG method (inner coarse CG)
on first-order-element mesh.

17 z̄0 ⇐ P̄ z̄c

18 solve Āmz̄ = r̄ by PCG method (inner middle CG)
with initial solution z̄0,
on second-order-element mesh.

19 z̄0 ⇐ z̄
20 solve Āz̄ = r̄ by PCG method (inner fine CG)

with initial solution z̄0,
on second-order-element mesh.

21 z ⇐ z̄
22 (Preconditioning ends)
23 Update δu and r(= b −Aδu), using z
24 end while
25 (Outer CG ends: displacement increment δu is obtained.)
26 Update u , v and a by Newmark-β Method, using δu .
27 Update σ ′ and p by constitutive law, using u and δu

28 Q ⇐
∑

e

∫
Ve

BT
(
σ ′(n) − pm

)
dV

29 Update Ds by constitutive law, using u and δu
30 K ⇐

∑
e

∫
Ve

BT (Ds +Df)B dV

31 end do

Algorithm A summarizes the proposed method.

5 Performance Measurement

We performed large-scale soil liquefaction simulations using 3D ground models
that mimic actual ground structures in order to demonstrate the effectiveness
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y

x

z

200m
200m

52m

(a) Model overview

x

z

200m

nonlinear

linear

bedrock

(b) Cross-section view of B

Fig. 3: Model configuration

Table 1: Soil profile properties. ρ: density, Vp, Vs: velocity of primary and sec-
ondary wave, h: damping ratio.

ρ[kg/m3] Vp[m/s] Vs[m/s] h constitutive law
Layer1 1500 — — 5% nonlinear
Layer2 1800 1380 255 5% linear

Bedrock 1900 1770 490 0.5% linear

of the proposed method. The models used in the simulations were generated by
replicating the model shown in Fig. 3 in the x and y directions. Table 1 shows
the physical properties of the soil. The parameters for soil liquefaction were the
same as those used previously [9]. The groundwater level was assumed to be
2-m below the surface of the model. We used the seismic wave observed during
the Hyogo-ken Nambu earthquake in 1995 [7], which induced soil liquefaction in
large areas, including reclaimed land along the coast, causing significant damage
to buildings [1, 10]. The resolution of the models was decided based on a previous
study [9], where the maximum element size was 2 m in the nonlinear layer, 20 m
in the linear layer, and 40 m in the bedrock, and the time increment was 0.001
s.

All performance measurements were undertaken on Oakforest-PACS [8] (OFP),
a computer with many-core wide SIMD architecture. The OFP is a supercom-
puter introduced by the Joint Center for Advanced High Performance Comput-
ing, Japan. It has 8,208 compute nodes, each of which comprises a 68-core Intel
Xeon Phi processor 7250 (Knights Landing) CPU, 16GB-MCDRAM memory,
and six 16GB-DDR4-2400 memory chips. The network between compute nodes
is interconnected by an Intel Omni-Path architecture, and each core has two
512-bit vector units and supports AVX-512 SIMD instructions.

5.1 Time to Solution

First, time to solution was compared with our previous study [9]. Table 2 shows
the simulation cases. Asis is the implementation in our previous study [9]. Asis is
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Table 2: Simulation cases: OMP(constitutive law) describes OpenMP paralleliza-
tion in the calculation of the constitutive law; Thread load balance/SIMD de-
scribes load balancing among OpenMP threads in an MPI process and SIMD
vectorization by reordering elements; Process load balance describes load balanc-
ing among MPI processes by independently partitioning the linear and nonlinear
domains; and Physics-aware preconditioner describes preconditioning using the
inner coarse, middle, and fine CGs. ”+” indicates that the feature is imple-
mented, and ”−” indicates that it is not implemented.

asis asisOMP case1 case2 case3
OMP(constitutive law) - + + + +
Thread load balance/SIMD - - + + +
Process load balance - - - + +
Physics-aware preconditioner - - - - +

an incomplete implementation that does not implement OpenMP parallelization
in the calculation of the constitutive law. In the present study, asisOMP, which
implements OpenMP parallelization for calculation of the constitutive law, was
used to measure the reference performance. Case1 implements element reorder-
ing in order to improve the thread load balance and exploit the wide SIMD.
Case2 implements revised model partitioning to improve the process load bal-
ance in addition to case1 implementation. Case3 implements the physics-aware
preconditioner to increase the speed of solving the linear system (1) in addi-
tion to case2 implementation. We used a 54,725,427-DOF model generated by
replicating the model shown in Fig. 3 in the x and y directions. Soil liquefaction
analysis for 7,500 time steps was performed with 512 MPI processes × eight
OpenMP threads per one MPI process = 4,096 CPU cores (64 OFP nodes). Fig.
4a shows the time to solution. Case1 compared with asisOMP achieved a 2.03-
fold increase in speed in solving the linear system and a 6.78-fold increase in the
speed of calculating the constitutive law. This result showed that thread load
balancing and SIMD vectorization successfully reduced the computation time.
Specifically, calculation of the constitutive law exploited the wide SIMD based
on the SIMD width of the OFP at eight. Case2 compared with case1 achieved a
1.12-fold increase in speed in solving the linear system and a 1.89-fold increase in
the speed of calculating the constitutive law, with calculation of the constitutive
law showing greater performance improvement, because the difference in compu-
tational cost between the linear and nonlinear layer was larger. Case3 compared
with case2 achieved a 13% increase in the speed of solving the linear system.
Fig. 4b shows the total number of iterations in the outer and inner CGs and
the analysis times for case2 and case3. The number of iterations in the inner
fine CG in case2 and the summation of the number of iterations in the inner
middle and fine CGs in case3 were similar. Case3 reduced computation time by
using the inner middle CG accompanied by a lower computational cost. Case3
achieved a 26-fold increase in speed over asis and a 4.85-fold increase in speed
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Fig. 4: Measurement of the performance of the proposed method.

Table 3: Weak-scale configuration.
# of OFP nodes # of MPI procs. DOF DOF per process # of elements

64 512 109,425,213 213,721 26,810,034
128 1,024 218,798,889 213,671 53,620,068
256 2,048 437,546,541 213,646 107,240,212
512 4,096 874,990,053 213,621 214,480,424

1,024 8,192 1,749,877,677 213,608 428,961,000
2,046 16,368 3,499,549,341 213,804 857,922,000

over asisOMP, thereby demonstrating the effectiveness of the proposed method.

5.2 Scalability

We then measured the weak scalabilities of case3 and asisOMP. The model shown
in Fig. 3 was replicated in the x and y directions in order to generate models, and
Table 3 shows the model configuration. 100 time steps of soil liquefaction analyses
were performed using 512 to 16,368 MPI processes while maintaining a constant
DOF per MPI process. The number of OpenMP threads per MPI process was
eight. In the analysis using 16,368 MPI processes, up to 29.2 GiB per OFP node
was used out of 16GB-MCDRAM memory and 96GB-DDR memory. Results are
shown in Fig. 5.

For all problem sizes, case3 showed an about 5-fold increase in speed relative
to asisOMP. The largest-scale problem used 2,046 of the 8,208 OFP compute
nodes, indicating that the proposed solver showed a high level of performance
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using 25% of the OFP. The weak scalability of case3 from 512 MPI processes
to 16,368 MPI processes was 75 %. This can be considered a high level of per-
formance based on the complexities of the target problem. The finite-element
method using unstructured elements is complicated, making it difficult to achieve
a high degree of scalability. Soil liquefaction analysis involves additional com-
plexities in regard to load balancing, and the high memory usage for calculating
the constitutive law limits the problem scale per MPI process, resulting in a
relatively larger percentage of communications.

6 Conclusion

In this study, we developed an efficient algorithm for soil liquefaction analysis
based on that reported previously [9]. Additionally, we developed a precondi-
tioner that reduced the amount of computation and memory access by consider-
ing the locality of soil liquefaction phenomena. The proposed method achieved a
26-fold increase in speed as compared with that demonstrated previously [9]. We
performed soil liquefaction simulations using large-scale 3D models with up to
3.5 billion DOFs, which is 1,000-fold larger than the 3.4-million-DOF model com-
puted in the previous study [9]. These results demonstrated that the proposed
method is fast and scalable.

The load-balancing method proposed in this study can be applied not only to
soil liquefaction analysis but also to other heterogeneous problems, such as other
multi-physics coupled analyses. The physics-aware preconditioner developed in
this study achieved increases in speed by considering the physical characteristics
of soil liquefaction phenomena, implying that smarter algorithms for solving
mathematical problems can be developed by considering the characteristics of
the underlying physical phenomenon, which the SC18 solver [6] demonstrated
for a different physical problem.
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