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Abstract. Cross-modal information retrieval aims to search for seman-
tically relevant data from various modalities when given a query from one
modality. For text-image retrieval, a common solution is to map texts
and images into a common semantic space and measure their similarity
directly. Both the positive and negative examples are used for common
semantic space learning. Existing work treats the positive/negative text-
image pairs as equally positive/negative. However, we observe that many
positive examples resemble the negative ones in some degrees and vice
versa. These “hard examples” are challenging for existing models. In this
paper, we aim to assign fine-grained labels for the examples to capture
the degrees of “hardness”, thus enhancing cross-modal correlation learn-
ing. Specifically, we propose a siamese network on both the positive and
negative examples to obtain their semantic similarities. For each posi-
tive/negative example, we use the text description of the image in the
example to calculate its similarity with the text in the example. Based
on these similarities, we assign fine-grained labels to both the positives
and negatives and introduce these labels to a pairwise similarity loss
function. The loss function benefits from the labels to increase the in-
fluence of hard examples on the similarity learning while maximizing
the similarity of relevant text-image pairs and minimizing the similar-
ity of irrelevant pairs. We conduct extensive experiments on the English
Wikipedia, Chinese Wikipedia, and TVGraz datasets. Compared with
state-of-the-art models, our model achieves significant improvement on
the retrieval performance by incorporating with fine-grained labels.

Keywords: Fine-grained labeling · siamese network · graph convolu-
tional network · hard examples · cross-modal information retrieval
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Fig. 1. Illustration of the examples of the positive/negative text-image pairs for cross-
modal correlation learning.They are not equally positive/negative.

1 Introduction

In recent decades, online heterogeneous data of different modalities, such as text,
image, video and audio, have been accumulated in huge quantity. There is a great
need to find semantically relevant information in various modalities. Traditional
single-modal search engines retrieve data of the same modality as the query, such
as text-based retrieval or content-based image retrieval. With the development
of natural language processing (NLP) and computer vision (CV), cross-modal
information retrieval (CMIR), which supports retrieval across multi-modal data,
brings increasing attention to break the boundary of natural language and vision.
The main challenge of CMIR is to bridge the “heterogenous gap” and measure
the semantic similarity between different modalities.

The typical solution for CMIR is to learn a common semantic space and
project the features of each modality to this space for similarity measurement.
The basic paradigm is based on statistical correlation analysis, which learns lin-
ear projection matrices by maximizing the statistical correlations of the positive
cross-modal pairs. With the advance of deep learning, deep neural network is
used for common space learning, which shows great ability of learning the non-
linear correlations across modalities. Typically, two subnetworks model positive
and negative text-image pairs simultaneously and optimize their common rep-
resentations by matched and unmatched constrains. Though the progress in
the cross-modal retrieval performance, most of existing algorithms treat posi-
tive/negative examples as equally positive/negative and ignore their difference
in the degrees of “positivity/negativity”.

In this paper, we focus on cross-modal information retrieval by exploring fine-
grained labels. We observe that many positive examples resemble the negative
ones in some degrees and vice versa. To exemplify the above issue, we give
an example using the text-image pairs about Sport in Figure 1. The positive
text-image pair in Figure 1(a), which contains an image and a text describing
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Fine-Grained Label Learning via Siamese Network for CMIR 3

football match, is quite clear to be positive. However, it is very difficult to judge
the example in Figure 1(b) as a positive one, since the gym in the image is not
definitely belonging to the category of Sport according to the visual features.
The similar observation exists in the negative examples. The example in Figure
1(c) consists a text about football match and an image of painting, which is quite
negative. In contrast, it’s hard to distinguish the negative example in Figure 1(d)
from the positive one in Figure 1(a), since they share many attributes in the
images, such as grasses, flags, and people, while having the same content in the
texts. As illustrated in Figure 1, the positive/negative examples are not always
equally positive/negative. Assigning examples with labels in different degrees,
named as fine-grained labels, will capture more informative characteristics for
cross-modal information retrieval.

Our main contribution is to propose a Fine-Grained Label learning approach
(FGLab for short) for cross-modal information retrieval. Our approach first
leverage the text description of the image in each text-image example to repre-
sent the semantics of the image. Then we propose a siamese network on both
the positive and negative examples to obtain their semantic similarities and as-
sign the fine-grained labels accordingly. Finally, we incorporate these labels to a
pairwise similarity loss function, which enables the model to pay more attention
on the hard examples while maximizing the similarity of positive examples and
minimizing the similarity of negative examples. Our proposed approach could
be easily applied to other existing models and provide more informative cues for
cross-modal correlation learning.

2 Related Work

Cross-modal information retrieval. The mainstream solution for CMIR is
to project data from different modalities into a common semantic space where
the similarity of different modalities data can be measured directly. Traditional
statistical correlation analysis methods like Canonical correlation analysis(CCA)
[4, 5] learn a common semantic space to maximize the pairwise correlation be-
tween two sets of heterogeneous data. With the development of deep learning,
the DNN-based CMIR methods have attracted much attention due to its strong
learning ability. This method usually constructs two subnets to extract the fea-
tures of different modal data, and the inputs of different media types learn the
common semantic space through the shared layer [12, 19, 23]. In this work, we
follow this two-path deep model to learn the common semantic space of the text
and image.

Study on hard expamples. Hard examples analysis can help classification
tasks and retrieval tasks obtain better results [1, 3, 11, 24]. Dalal et al. [1] con-
struct a fixed set of an initial negative set, train the preliminary detector by
using the original dataset, then use the preliminary detector to search the hard
examples in the initial negative set. After that, add the hard examples to the
original dataset, which was used to re-train the detector. Although the Dalal et
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al. method improves the accuracy of the detector, the expanded data set cre-
ates more memory and time overhead, which makes the training efficiency of the
model declining. In order to solve this problem, Felzenszwalb et al. [3] proposed
a method of deleting simple examples with high classification accuracy while
adding hard examples, and effectively controlling the size of the data set while
further improving the accuracy. However, both of the above methods require re-
peated training of the entire data set to update the model. In order to improve
this method, Shrivastava et al. [17] proposed an online hard examples mining
method. In the training, the negative examples in each batch are sorted, and the
k hardest examples are selected for the back propagation to update the model.
The above works focus on the mining of hard negative examples. On this basis,
Jin et al. [6] proposed the view of hard positive, and mining the hard negative
and hard positive examples in the video target detection task, which further
improved the training efficiency.

These methods focus on updating the model with hard examples, which ef-
fectively improves the accuracy of the model. However, different hard examples
are not equally “hard”, in order to capture more informative cues from the hard
examples, Ma et al. [10] assign fine-grained labels to hard negative videos based
on the hard degree of negative examples, and obtain better detection results in
the complex event detection task in the video. Recently, hard examples have be-
gun to receive attention in cross-modal information retrieval. Faghri et al. [2] use
the hard negative examples in cross-modal information retrieval to converge the
model to better results, which significantly improves the retrieval performance.
Different for their work, in this paper, we extend the idea of hard negatives to
positive examples and assign fine-grained labels to the different degree of hard
examples. For text-image pairs in cross-modal information retrieval, we extract
the original text information of the image to calculate the similarity between the
original text and the text in the examples. Then we assign fine-grained labels to
the examples. We modify the loss function of the distance metric learning and
add the fine-tuning effect of the fine-grained label, which increases the influence
of the hard positive and negative examples.

3 Methodology

Our model consists of two stages, as shown in Figure 2. The first stage is a
fine-grained scoring model based on the similarity degree of text, and the second
stage is a cross-modal information retrieval model. In the first stage, the main
objective is measuring the correlation between the text in text-image pairs and
the text description of images. Compared with the image, the text description
often contains richer and more specific information. Therefore, we select the cor-
responding text description of the image in the example. We use three different
feature extraction methods to modeling text, including GCN, Multi-head atten-
tion, and Text-CNN and assigning a fine-grained label to the example according
to the similarity degree. In the second stage, we use the fine-grained label to
adjust the cross-modal information retrieval model.
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Fig. 2. The proposed model overview is divided into two parts. The top part is the fine-
grained label learning based on text similarity evaluation, which includes text feature
extraction (red box) and fine-grained labels assign (yellow box). The bottom part is
the cross-modal information retrieval model, fine-grained labels play an important role
in the model update.

3.1 Fine-Grained Label Learning

In the first stage, the main objective is to measure the difficulty degree of the
text-image pairs and generate fine-grained labels for them. We evaluate the dif-
ficulty degree of text-image pairs by the similarity degree of text-image pairs.
For positive examples, the smaller the similarity score of text-image pairs, the
greater the difficulty degree. For negative examples, the greater the similarity
score of text-image pairs, the greater the difficulty degree. Compared with the
image, the text usually contains richer and more specific information. Therefore,
we calculate the similarity of text-image pairs by selecting the original text de-
scription of the image and the text in the example. We use three different feature
extraction methods to modeling text and assigning a fine-grained label to the
example.

We design a dual-path neural network to extract the text features and text
features and learn the potential common semantic space. Define the original
dataset as D = {(TD

i , I
D
i )}Ni=1, which contains of C classes. Where TD

i represents
the ith text in the original dataset, IDi represents the ith image, and (TD

i , I
D
i )

represents the ith text-image pair in the original dataset D. TD
i is the original

text description of the image IDi , which have the same semantic and belong to
the same class.

Follow the previous work [25], we construct a positive examples dataset P =
{(TP

j , I
P
j )}Mj=1 and a negative examples E = {(TE

k , I
E
k )}Kk=1 dataset based on the

original training data D. Specifically, we randomly select TD
i and IDj of the same

class from D to constitute the positive examples dataset P , where M represents
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the number of text-image pairs in P . Similarly, for E, we randomly select TD
x

and IDk which do not belong to the same class from D, where K represents the
number of text-image pairs in N . To ensure the same number of positive and
negative examples for the model training, we set M = K.

We focus on the learning difficulty of different text-image pairs. For positive
examples, the closer the semantics of text and image, the lower the learning
difficulty, and the larger the semantic difference, the higher the learning difficulty.
For negative examples, the closer the semantics of text and image, the higher the
learning difficulty, and the larger the semantic difference, the lower the learning
difficulty. Compared with the image, the original text description contains richer
and more specific information, which can express high-level semantics so that we
will learn the difficulty of positive and negative examples through the semantic
similarity between texts. Specifically, for all image IPj or IEk , we extract the

original text descriptions TD
j or TD

k corresponding to the image in D, forming a

positive text-text pair (TP
j , T

D
i ) or the negative text-text pairs (TE

k , T
D
i ). We use

an end-to-end dual-path neural network to learn the similarity between the texts.
The output of the network is text-text similarity score S, where SPos(TP

j , T
D
j )

indicates the similarity score of the positive example, SNeg(TE
k , T

D
k ) indicates

the similarity score of the negative example. The loss function is formal as:

Loss = (σ2+
T−T + σ2−

T−T ) + λmax(0,m− (µ+
T−T − µ

−
T−T )) (1)

Where µ+
T−T and σ2+

T−T as the mean and variance of the associated text pairs ,

and µ−T−T and σ2−
T−T denote the mean and variance of the unrelated text pairs.

Given positive examples dataset P = {(TP
j , I

P
j )}Mj=1, we can obtain the pos-

itive examples similarity score dataset CPos. Similarly, given negative examples
dataset E = {(TE

k , I
E
k )}Kk=1, we can obtain the negative examples similarity

score dataset CNeg. We assign fine-grained labels L for positive examples and
negative examples. The fine-grained labels are allocated from 0 and 1. Given a
text-text similarity score Si, the fine-grained label Li is defined as follows:

LPos
i (TP

i , I
P
i ) = 1−

Si(T
P
i , T

D
j )− SPos

min

SPos
max − SPos

min

(2)

LNeg
i (TE

i , I
E
i ) =

Si(T
E
i , T

D
j )− SNeg

min

SNeg
max − SNeg

min

(3)

where Li denotes the fine-grained label of ith text-image pair, SPos
max and SPos

min

denotes the maximum and the minimum similarity score in positive examples
similarity score dataset CPos, SNeg

max and SNeg
min denotes the maximum and the

minimum similarity score in CNeg.

3.2 Cross-Modal Information Retrieval Model

In this stage, we build a dual-path neural network to extract text and image
features and learn the potential common semantic space. Then we attain the
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similarity of text and image by metric learning. Fine-grained labels are used in
the model training process to update the similarity score and to further adjust
the loss function. Our model makes hard examples have a greater impact in the
model training.

Text and Image Feature Extraction. The GCN model has a strong ability
to learn the local and fixed features of the graph and has been successfully used
for text classification [9]. In recent research [25], GCN has shown to have a strong
capability for text semantic modeling and text categorization. In our model, the
text GCN contains two convolution layers each followed by a ReLU. Then, we
set up a fully connected layer to map the text features to the common latent
semantic space. Given a text T , the text feature vT can be extracted by the text
GCN model HT (·), which is defined as: vT = HT (T ).

For image modeling, we use the pre-trained VGG-19 [18] as the basic model
to obtain image features. Given a 224 × 224 image, a 4096-dimensional feature
vector is generated from the FC7 layer, which is the penultimate fully connected
layer in VGG-19. Next, a fully connected layer map the image to the common
semantic space. Given a image I, image vector vI is extracted by the VGG-19
model HI(·), which is defined as: vI = HI(I).

Object Function. In our model, we set up two paths to obtain the text features
vT and images features vI . Then we use element-wise product to attain the cor-
relation between the text features and the image features, and a fully connected
layer is followed to obtain the similarity score. We use the same loss function
with sections 3.1, which aims to reduce the proportion of false positives and false
negatives, as shown in Figure 3(a). The left curve represents the distribution of
the matched text-image pairs where µ+ denotes the mean and σ2+ demotes the
variance. The right curve represents the distribution of non-matching text-image
pairs where µ− denotes the mean and σ2− demotes the variance. The objective
function is to maximize µ+ and minimize µ−, σ2+ and σ2−. In our work, our
goal is further reducing the proportion of false positives and false negatives by
enhancing the impact of the hard examples in the shadows to make the model
converge to better results, which is shown in Figure 3(b).

In the training process, the distribution of a few of false positives and false
negatives in the shaded portion is updated to a more erroneous degree by the
fine-grained label, so that the influence of these hard examples is increased,
and the model obtains a better descending gradient. Given text features vT and
images features vI , the similarity of the matched and non-matched text-image
pairs is defined as Y (T, I), we use fine-grained labels to update the similarity
score of text-image pairs, which is formulated as follow:

Ỹ Pos(TP , IP ) = Y (TP , IP )− βLPos(TP , IP ) (4)

Ỹ Neg(TE , IE) = Y (TE , IE) + βLNeg(TE , IE) (5)
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Fig. 3. (a) The original loss function and (b) the upgraded loss function by our fine-
grained labels.

Where Ỹ Pos and Ỹ Neg represents the similarity score after the fine-grained label
update for positive and negative examples. β is a hyperparameter that adjusts
the effect of fine-grained labels on similarity scores. The value of β is related to
the range of Y . The loss function is defined as follows:

Loss = (σ2+
T−I + σ2−

T−I) + λmax(0,m− (µ+
T−I − µ

−
T−I)) (6)

µ+
T−I =

Q1∑
n=1

Ỹ Pos

Q1
, σ2+

T−I =

Q1∑
n=1

Ỹ Pos − µ+
T−I

Q1

µ−T−I =

Q2∑
n=1

Ỹ Neg

Q2
, σ2−

T−I =

Q2∑
n=1

Ỹ Neg − µ−T−I
Q2

Where µ+
T−I and σ2+

T−I denote the mean and variance of the matched text and

image, and µ−T−I and σ2−
T−I are the mean and variance of the non-matched text

and image. λ can adjust the ratio of the mean, and m controls the upper limit
between the average of the matching and non-matching similarities.

4 Experiments

4.1 Datasets and Evaluation

We accomplish the general cross-modal information retrieval tasks: image-query-
texts and text-query-images. We evaluate our model on three benchmark datasets,
i.e. English Wikipedia, TVGraz, and Chinese Wikipedia. Each dataset contains
a set of text-image pairs, where the texts are long descriptions with rich content
instead of tags or captions.

English Wikipedia The English Wikipedia dataset was divided into 10
categories, containing 2866 image-text pairs. We selected 2173 pairs for training
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and 693 pairs for testing. Each text was represented by a graph containing 10055
vertices and each image by a 4096-dimensional vector representation of the last
layer of the fully connected layer of the VGG-19 model [18].

TVGraz The TVGraz dataset contained 10 categories from the Caltech-
256 [13] dataset, stored in an URL format. We selected more than 10 words of
text from 2592 web pages, which comprised 2360 image-text pairs; they were
randomly divided into 1885 for training and 475 pairs for testing. Each text
was represented by a graph containing 8172 vertices, and each image by a 4096-
dimensional VGG-19 feature.

Chinese Wikipedia Chinese Wikipedia dataset (Ch-Wiki for short) The
Chinese Wikipedia dataset [14] was divided into 9 categories, containing 3103
image-text pairs. We randomly selected 2482 pairs for training and 621 pairs
for testing. Each text was represented by a graph with 9613 vertices, and each
image by a 4096-dimensional VGG-19 feature.

Mean Average Precision (MAP) is used to evaluate our model. MAP is the
mean of average precision (AP) for all queries. AP is defined as:

AP =
1

R

n∑
k=1

Rk

k
× relk (7)

where R represents the number of relevant retrieved results. Rk represents the
top k results. n represents the number of all the retrieved results. relk = 1
indicates that the kth result is related, and otherwise 0.

4.2 Implementation Details

Our model consists of two stages, i.e. fine-grained labeling model and cross-modal
information retrieval model. We follow the strategy in [25] to randomly select
40,000 positive examples and 40,000 negative examples from the training set
in all the datasets. We set the learning rate 0.001 with an Adam optimization,
and 50 epochs for training. The regularization is 0.005. m and λ in the loss
function are set as 0.8 and 0.35, respectively. In the fine-grained labeling model,
the dimension of text features from the two paths is reduced to 1024 after the
fully connected layer. Similarly, in the cross-modal information retrieval model,
the dimension of both image features and the text features are reduced to 1024
before feeding to the feature fusion module.

4.3 Comparison with State-of-the-Art Methods

We compare the performance of our proposed FGLab with state-of-the-art mod-
els, including CCA [16], LCFS [22], ml-CCA [15], LGCFL [7], AUSL [26], JF-
SSL [21], GIN [25], TTI [14], CM [13], SM [13], SCM, TCM, w-TCM, c-TCM.
All the models are well cited in the literature. GIN also serves as the baseline
model, which has the same architecture as our cross-modal retrieval model with-
out fine-grained labels in the loss function. We compare the MAP scores with
their publicly reported results in Table 1.
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Table 1. MAP score comparison of text-image retrieval on three datasets.

Dataset Model
Retrieval Performance

Text query Image query Average

Eng-Wiki

CCA 0.187 0.216 0.201
ml-CCA 0.287 0.352 0.312
LCFS 0.231 0.297 0.264

LGCFL 0.316 0.377 0.312
AUSL 0.332 0.396 0.364
JFSSL 0.410 0.467 0.438
GIN 0.767 0.452 0.609

FGLab(ours) 0.837 0.457 0.647

TVGraz

TTI 0.153 0.216 0.184
CM 0.450 0.460 0.4550
SM 0.585 0.619 0.602

SCM 0.696 0.693 0.694
TCM 0.706 0.694 0.695
GIN 0.719 0.818 0.769

FGLab(ours) 0.763 0.833 0.798

Ch-Wiki

w-TCM 0.298 0.241 0.269
c-TCM 0.317 0.310 0.313

GIN 0.384 0.334 0.359
FGLab(ours) 0.517 0.390 0.457

From the performance in Table 1, we observe that our model is superior to all
the other models for the text queries on the three datasets. Compared with the
second best method GIN (baseline), the performance of our method in MAP is
increased by about 7%, 5%, and 13% on the Eng-Wiki, TVGraz, and Ch-Wiki,
respectively. For the image query, FGLab outperforms state-of-the-art models
by 1.5% and 5.6% on the TVGraz and Ch-Wiki, respectively. The results on the
Eng-Wiki dataset is slightly inferior to the second best model JFSSL. Compare
with the image query, the improvement on the text query is more remarkable.
It’s because that when the fine-grained labels enable the model to pay more
attention on the “hard” examples, the parameter tuning of the model has bias
on the text modeling path. Specifically, the parameters in the text modeling
path are tuned more greater than these parameters in the image modeling path,
which enhances the generalization ability of the text representations obviously
compared to the image. For the average performance, our model is superior to
all the other models. Compared with GIN, the MAP scores is increased by about
4%, 3%, and 10% on the Eng-Wiki, TVGraz, and Ch-Wiki, respectively. It proves
that, by incorporated with the “hardness” information of the training examples
by fine-grained labels, existing model (GIN) can achieve great improvements on
the cross-modal retrieval performance. Meanwhile, the remarkable improvements
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Table 2. MAP score comparison of FGLab models with different kinds of fine-grained
labels on the Eng-wiki dataset.

Model Text feature Text query Image query Average
FGLab (main model) GCN 0.837 0.457 0.647

FGLab-Att Multi-head attention 0.806 0.438 0.622
FGLab-CNN Text-CNN 0.7501 0.437 0.5931

indicate that our proposed FGLab is able to capture the informative clues of fine-
grained labels and effectively affect the cross-modal correlation learning to focus
on “hard” examples.

4.4 The Influence of Text Features on Fine-grained Labeling

Besides our proposed fine-grained labeling model based on GCN, we also imple-
ment another two baseline models based on different text features to evaluate
their influence on the fine-grained labeling as well as the cross-modal retrieval
performance. The other two models are respectively utilize the multi-head at-
tention [20] (i.e. the encoder in transformer) and Text-CNN [8] instead of GCN
in the fine-grained labeling model, with other structures unchanged. The two
models are respectively named as FGLab-Att and FGLab-CNN for short.

Figure. 4 shows the samples of the fine-grained labels obtained by the three
models on the Eng-Wiki dataset. The bar graphs on the top or bottom of each
image show the fine-grained labels of the three models using different text fea-
tures for each positive or negative example. The text is identical for all the
examples while the images are different. Because of the space limitation, we
only show a part of the whole text, which introduces a war happened on the sea.
For clear semantic comparisons, we show the corresponding image of the text on
the middle left. For the three positive examples, the images in the text-image
pairs from left to right contains map, bird′s-eye view of ships, and the close
shot of a warship, respectively. Intuitively, the semantic correspondence of the
three images with the text increases from left to right while the “hardness” of the
three positive examples decrease accordingly. The fine-grained labels obtained
by GCN features are identical to human judgement. The results of multi-head
attention and Text-CNN are not satisfied to some extent. Similar observations
exist for the negative examples and other examples not shown in the paper.
Therefore, from the qualitative analysis of the fine-grained labels, the labeling
model based on GCN could obtain more accurate labels by human evaluation.

To further prove the effect of fine-grained labels by different text features, we
train the retrieval models based on the aforementioned three kinds of labels on
the Eng-Wiki dataset. The retrieval results is given in Table 2. It’s obvious that
FGLab with GCN achieves the highest MAP scores compared the other two
models. The performance of FGLab-Att is slightly lower than that of FGLab
while FGLab-CNN has the worst performance. The retrieval results of the three
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Fig. 4. Samples of the fine-grained labels obtained by three models on the Eng-Wiki
dataset. For easy evaluation of the label quality, we show the positive examples and
negative examples containing the same text (middle) but different images (top and
down, respectively). For clear semantic comparisons, we show the corresponding image
of the text on the middle left. The bar graphs on the top/bottom of each image show
the fine-grained labels of the three models using different text features.

models are identical with their performance in fine-grained labeling. Both Multi-
head attention approach and Text-CNN approach obtains some unreasonable
labels, which degrades the retrieval performance.

5 Conclusion

In the paper, we propose a Fine-Grained Label learning approach for cross-
modal information retrieval. We design a siamese network to learn fine-grained
labels for both the positive and negative examples to capture the degrees of
hardness, thus enhancing cross-modal correlation learning. We introduce these
labels to a rank-based pairwise similarity loss function. The loss function bene-
fits from the labels to increase the influence of hard examples on the similarity
learning while maximizing the similarity of relevant text-image pairs and mini-

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_22

https://dx.doi.org/10.1007/978-3-030-22741-8_22


Fine-Grained Label Learning via Siamese Network for CMIR 13

mizing the similarity of irrelevant pairs. The experimental results on three widely
used datasets indicate that, comparing with state-of-the-art models, our model
achieves significant improvements on the retrieval performance by incorporating
with fine-grained labels.
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