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Abstract. Centrality has long been studied as a method of identifying
node importance in networks. In this paper we study a variant of several
walk-based centrality metrics based on the notion of a nonbacktracking
walk, where the pattern i → j → i is forbidden in the walk. Specifi-
cally, we focus our analysis on dynamic graphs, where the underlying
data stream the network is drawn from is constantly changing. Efficient
algorithms for calculating nonbactracking walk centrality scores in static
and dynamic graphs are provided and experiments on graphs with sev-
eral million vertices and edges are conducted. For the static algorithm,
comparisons to a traditional linear algebraic method of calculating scores
show that our algorithm produces scores of high accuracy within a the-
oretically guaranteed bound. Comparisons of our dynamic algorithm to
the static show speedups of several orders of magnitude as well as a
significant reduction in space required.

Keywords: Non-backtracking walks · Dynamic graphs · Centrality.

1 Introduction

Calculating node rankings is a commonly studied problem in graph analysis,
typically done to identify the “most important” vertices in a network. Several
centrality metrics are calculated by quantifying traversals around a network,
or by counting walks, where a walk in a graph is a sequence of vertices that
allows for both vertices and edges to repeat. More recently, several authors have
presented the notion that all walks are not created equally and more importance
ought to be given to walks that do not backtrack on themselves (walks that visit
a particular vertex i, visit its neighbor j, then immediately backtrack to vertex
i) [1]. In the case of networks modeling disease spread, a walk that backtracks
upon itself provides little to no useful information about the spread of disease.
Backtracking walks in information diffusion networks do not allow the user to
glean any new information. Furthermore, [2, 3] noted that localization effects can
be avoided by studying these nonbacktracking walks. In this paper, we study
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2 E. Nathan et al

nonbacktracking walks and the associated centrality scores and propose a new
algorithm for computing them. We additionally extend our analysis to dynamic
graphs, where data is allowed to change over time, creating new relationships
in the network. When studying analytics on dynamic graphs, it is important to
have measures that can update efficiently given just the changes made to the
graph from the previous timestep. This avoids a full recomputation every time
the underlying graph is changed and avoids unnecessary computation time. The
contributions of this paper can thus be summarized as:

– A new algorithm for approximating personalized nonbacktracking centrality
scores in static graphs

– Theoretical and empirical proof that our static algorithm produces approx-
imate values close to exact nonbacktracking centrality scores

– A new algorithm for approximating nonbacktracking centrality scores in dy-
namic graphs

– Evidence that our dynamic algorithm is more efficient than a static recom-
putation for real datasets

The rest of the paper is organized as follows. Section 2 presents the necessary
notation used to understand the problem and a brief overview of some related
work. Section 3 presents both the static and dynamic algorithms and Section 4
presents our results. In Section 5 we conclude.

2 Background

2.1 Terminology

Let G = (V,E) be a graph, where V is the set of n vertices and E the set of
m edges. A is the n × n adjacency matrix of a graph where Aij = 1 if there is
an edge between vertices i and j in the graph, and 0 otherwise. Although all
the work presented in this paper can be applied to both undirected and directed
graphs, here we focus on undirected graphs so ∀e = (i, j) ∈ E, Aij = Aji = 1.
Dynamic graphs represent data that is changing over time and can be modeled
as snapshots of the current state of the data at different points in time, or a
sequence of static graphs. Dynamic graphs can be thought of as graph data that
has timestamps associated with it. Denote the current snapshot at time t of the
dynamic graph G and its corresponding adjacency matrix A as Gt = (Vt, Et)
and At respectively. The difference in subsequent snapshots of the graph at
different points in time t and t + 1 can be written as ∆A = At+1 − At, where
∆A represents the change to the graph at time t. If an edge (i, j) is inserted into
the graph at time t, then ∆Aij = 1. A walk of length k in a graph is a series of
connected vertices v1, v2, · · · , vk, where vertices are allowed to repeat. Powers of
the adjacency matrix are used to count walks of different lengths where Akij is
the number of walks of length k from vertex i to j [4]. A nonbacktracking walk
(NBTW) is defined as a walk which does not backtrack upon itself, meaning it
contains no vertex sequences of the form i→ j → i. Let N(i) denote the set of
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neighbors of vertex i. For a particular NBTW w that ends with the sequence
of vertices · · · , j, i, let Ñj(i) = N(i)\j, meaning the set of neighbors of vertex i
without the vertex the NBTW w came from (vertex j).

2.2 Related Work

Several walk-based centrality metrics are calculated as functions of the adjacency
matrix [5]. Katz Centrality, for example, weights walks starting at each vertex in
the graph of different lengths by increasing powers of some parameter α, where
longer walks are given less importance [6]. The parameter α must fall somewhere
in the range (0, 1/‖A‖2), where ‖A‖2 is the 2-norm of A. As α reaches its upper
limit, however, the centrality scores correspond to eigenvector centrality [7]. A
subset of these walk-based centrality metrics and their generalized equation is
given in Table 1.

Table 1: Several walk-based centralities as functions of the adjacency matrix
Centrality Metric Generalized Equation

Katz Centrality [6] ∑∞
k=0 α

kAk

PageRank [8]

Eigenvector centrality [7] Ax = λx

Exponential centrality [9] ∑∞
k=0

Ak

k!
Subgraph centrality [10]

Total communicability [11]

The similarity amongst all these walk-based centrality metrics stems from the
fact that they weight all walks of the same length equally. For example, a walk of
length 4 between vertices 0→ 1→ 0→ 1→ 0 is given the same weight as a walk
of length 4 between vertices 0 → 1 → 2 → 3 → 4. Therefore, a new measure
of centrality was proposed in [1], based on the concept of a nonbacktracking
walk. Nonbacktracking walk centrality scores are computed by counting NBTWs
in graphs and weighting longer ones by successive powers of some parameter
α ∈ (0, 1). In this paper we calculate personalized centrality scores (w.r.t. seed
vertices of interest) using NBTWs by counting NBTWs originating at some seed
vertex and ending at all other vertices in the graph.

When NBTW-centrality was first introduced in [1], the authors presented
a linear algebraic formulation for calculating the centrality scores based off of
a deformed graph Laplacian. This was later extended to analysis on directed
networks in [12] and in [2] a nonbacktracking variant of eigenvector centrality
was introduced. The infinite sum in Theorem 1 converges to the exact solution for
the scores x∗, and if the vector 1 is replaced with ei we obtain the personalized
scores w.r.t. a seed vertex i instead of the global scores. Here, D is the associated
diagonal degree matrix of the adjacency matrix A.

Theorem 1. For Pk = APk−1 + (I −D)Pk−2, where D is the diagonal degree
matrix of A, P0 = I, P1 = A, and P2 = A2 + (I −D), x∗ =

∑∞
k=1 α

kPk1 [1].

This sum converges to the linear system in Equation 1.

(I − αA+ α2(D − I))x∗ = (1− α2)ei (1)
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4 E. Nathan et al

However, for large graphs, this linear system is computationally intensive to
solve [13] and for personalized scores, the scores of vertices far away from the
seed are often negligible. Therefore, it is desirable to have an alternate method to
calculate these centrality scores and in this work we present one such alternate
algorithm by directly tabulating walks up to a certain length. Since walks (and
NBTWs) in graphs can be infinitely long, if we are counting walks manually
(without using linear algebra), we can approximate the corresponding centrality
metric by counting walks up to a certain length. We use the notation developed
in Theorem 1 as the foundation for our algorithm. Furthermore, for dynamic
updates, the linear algebraic approach of solving a linear system has several
disadvantages. The linear algebraic approach will take at least several matrix-
vector multiplications (on the order of O(m) to converge to a new solution
every time the graph is updated). If the update to the graph is only a few edge
insertions, this much computation is unnecessary and is avoided by our approach.
Therefore, temporal fidelity is limited.

Apart from ranking, nonbacktracking walks have been studied in the context
of community detection as well. Community detection is the task of identify-
ing groups of vertices more closely related to each other than to the rest of the
network [14]. In [15], a nonbacktracking variant of spectral clustering was pro-
posed. By using the nonbacktracking matrix B, a 2m× 2m matrix with entries
B(u→v),(w→x) = 1 if v = w and u 6= x and 0 otherwise, the authors show that
performance of spectral algorithms in sparse networks fares better compared to
using other commonly used linear operators. They show that the spectrum of
this operator maintains a stronger separation between the eigenvalues relevant to
showing community structure and the rest of the eigenvalues than other matrices
that are more frequently used. Results are optimal for stochastic block model
graphs, synthetic networks that have associated ground truth for community
structure.

3 Algorithms

3.1 Approximation Theory

The logic behind our static algorithm is as follows: if we are interested in NBTW-
centrality scores w.r.t. seed vertex seed, we count all NBTWs originating from
seed up to some maximum walk length k. Tabulating walks in this manner
inherently introduces error into the final solution since we do not count walks up
to infinite lengths in the network. Let x∗ be the solution to the linear system (the
exact NBTW-centrality scores) and xk be the approximation from our algorithm
by counting up to length k NBTWs. We can bound the error between x∗ and
xk as in Theorem 2. Using the notation from Theorem 1, our approximation xk
can mathematically be written as xk =

∑k
r=1 α

rPr1.

Theorem 2. The error between the exact solution and the kth approximation

can be bounded by ‖x∗ − xk‖2 ≤ εk where εk = (αφ‖A‖)k+1

1−(αφ‖A‖) for (αφ‖A‖) < 1,

where φ = 1+
√
5

2 .
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Proof. We first bound the norm of Pk for any k:

– Let ρk = ‖Pk‖2
– Using the recursive formula for Pk from Theorem 1, we have ρk ≤ ‖A‖ρk−1+
‖I −D‖ρk−2

– This leads to a closed-form solution for ρk:
• Let ρk = ak where a is the root to characteristic polynomial a2−‖A‖a−
‖I −D‖ = 0

• a = 1
2 (‖A‖ ±

√
‖A‖2 + 4‖D − I‖ ≤ 1+

√
5

2 ‖A‖
⇒ ρk = (φ‖A‖)k

‖x∗ − xk‖2 = ‖
∞∑
r=1

αrPr −
k∑
r=1

αrPr‖2 = ‖
∞∑

r=k+1

αrPr‖2

≤
∞∑

r=k+1

αr‖Pr‖2 =

∞∑
r=k+1

αr(φ‖A‖)r =

∞∑
r=0

(αφ‖A‖)r+k+1

≤ (αφ‖A‖)k+1
∞∑
r=0

(αφ‖A‖)r =
(αφ‖A‖)k+1

1− (αφ‖A‖)
=: εk

Results shown in Section 4 demonstrate that our method produces centrality
scores at least within εk of the exact solution as we count up to length k NBTWs.

3.2 Static Algorithm

For a graph with n vertices, we maintain an n× k array walks where walks[i][j]
represents the number of nonbacktracking walks from seed to vertex i of length
j. The effect of a walk from seed to one of its direct neighbors can be propagated
throughout the network, where we only advance the walk to a vertex if we don’t
backtrack. Since walks are required to be nonbacktracking, at step r we need to
keep track of the vertex that was visited at step r − 1.

We use a priority queue [16] to keep track how many NBTWs of different
lengths exist in the network at any given point. The priority queue is filled with
4-tuple elements of the type (prev, curr, k, num walks), where an element u in
the priority queue means we are currently processing u.num walks of length
u.k ending at u.curr that came from u.prev. The queue is prioritized by k,
meaning elements with higher values of k are processed first, searching in a
manner consistent with depth-first search, starting from the seed set. If the queue
is not prioritized by k and the algorithm is allowed to search in a breadth-first
manner (starting from the seed, then adding all immediate neighbors of the seed,
then neighbors one step out), the size of the queue would grow exponentially and
become impractical to use for very large graphs memory-wise.

Figure 1 gives an example of our static algorithm on a toy network. The
example graph is shown in Figure 1a with a seed vertex 0 outlined in green.
Figure 1c shows the progression of the priority queue as we process elements.
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6 E. Nathan et al

Walks that are terminated (either due to reaching the maximum length or to
the lack of neighbors) are depicted by an ‘X.’ Since the seed vertex 0 has three
distinct neighbors (vertices 1, 2, and 3) we initialize the priority queue with
their respective elements (the three elements under the k=1 heading). Each of
the elements is processed: since vertex 1 has no neighbors that don’t involve
backtracking, the element (0,1,1,1) is removed from the priority queue and no
new elements are added (depicted in row A). The element (0,2,1,1) at the start
of row B indicates we have 1 NBTW from vertex 0 to 2. We follow the pro-
gression of this NBTW through the priority queue shown by the blue elements.
The corresponding NBTW counts is also shown in blue in Figure 1b. A similar
progression is shown for the walk starting from vertex 0 to 3 in the red elements
(starting at row C in the priority queue). Note that elements are processed in
priority order according to the value of k, to ensure a depth first traversal (row
A first, then row B, then row C).

0 1

2

3

4

5

(a) Static graph with seed vertex 0 in
green outline.

k=1 k=2 k=3 k=4
0 II
1 I
2 I I
3 I I
4 II
5 II

(b) Walks array.

(0,1,1,1) X

(0,2,1,1)

(0,3,1,1)

(2,4,2,1) (4,3,3,1) (3,0,4,1)

(4,5,3,1) X

(3,4,2,1) (4,5,3,1)

(4,2,3,1) (2,0,4,1)

X

k=1 k=2 k=3 k=4

A

B

C

(c) Priority queue.

Fig. 1: Example of Static NBTW. Propagation of different walks is shown in
different colors. For a seed vertex of 0, we propagate walks from neighbors vertex
1, 2, and 3 throughout the network.

Algorithm 1 gives the overall static algorithm for counting all the NBTWs up
to length k max in the network originating at the seed vertex. By the definition
of a NBTW, the only vertices that will have a NBTW of length 1 from seed
are the its direct neighbors. Line 2 initializes the priority queue with the seed’s
neighbors obtained in Line 3. For each of the seed’s neighbors nbr, there is one
NBTW of length 1 from the seed to nbr (Lines 4-6). For each of these NBTWs,
their effect is then propagated throughout the rest of the network. A new element
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is created to be inserted into the priority queue in Line 7, indicating that we
have one walk of length 1 from seed to nbr.

Algorithm 1 Count NBTWs up to length k max from a seed vertex seed in a
static graph.

1: procedure Static NBTW(seed, k max)
2: PriorityQueue ∗pq = new PriorityQueue
3: Nbrs = N(seed)
4: for nbr in Nbrs do
5: num walks = 1
6: walks[nbr][1] = num walks
7: new elt = (seed, nbr, 1, num walks)
8: pq→insert(new elt)

9: walks = Evaluate Priority Queue(pq,kmax)
10: return walks

The main computation occurs in Algorithm 2, where we iterate through the
priority queue processing each element and counting NBTWs. For each element
in the priority queue (Line 2), we update the number of NBTWs possible (Line
4). If we have not reached the maximum length of NBTWs we are counting (Line
5), we examine the set of neighbors (Line 6) of the current vertex associated with
the element elt of the priority queue we are processing. For each vertex nbr in
this neighbor set we add a new element to the priority queue indicating we
have elt.num walks new NBTWs of length (elt.k + 1) ending in the sequence
· · · , elt.prev, elt.curr, nbr (Line 8).

Algorithm 2 Process every element in the priority queue.

1: procedure Evaluate Priority Queue(pq, kmax)
2: while !pq→is empty() do
3: elt = pq→pop()
4: walks[elt.curr][elt.k]+ = elt.num walks
5: if elt.k + 1 < kmax then
6: S = N(elt.curr)\elt.prev
7: for nbr ∈ Nbrs do
8: new elt = (elt.curr, nbr, elt.k + 1, elt.num walks)
9: pq→insert(new elt)

return walks

3.3 Dynamic Algorithm

For dynamic graphs, a naive implementation to obtain updated NBTW counts
after changes to the graph occur would recompute from scratch the number
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8 E. Nathan et al

of NBTWs from seed. However, as the graph grows larger, this naive static
recomputation becomes increasingly computationally intensive. By exploiting
the locality of edge insertions we can develop a more efficient dynamic algorithm
that only updates NBTW counts relevant to new edges inserted into the graph.
We consider the case of inserting a single edge e = (src, dest).

Figure 2 gives an example of our dynamic algorithm using the same toy
network as earlier. Consider the effect of adding a single edge e = (2, 5) (shown
in red in Figure 2a). Here we do not show the priority queue at each stage, but
rather the effect of updating NBTW counts in the walks array. Figure 2b gives
the initial NBTW counts for the network before adding edge e. After inserting
the edge between vertices 2 and 5, there are three NBTWs and their counts to
update: 1) the NBTW of length 1 starting at vertex 2, 2) the NBTW of length 3
starting at vertex 2, and 3) two NBTWs of length 3 starting at vertex 5. These
edge propagations are given in Figures 2c, 2d, and 2e respectively.

0 1

2

3

4

5

(a) Graph with seed vertex 0 and newly
added edge e = (2, 5) in red.

k=1 k=2 k=3 k=4
0 II
1 I
2 I I
3 I I
4 II
5 II

(b) Initial walks array before adding edge
e.

k=1 k=2 k=3 k=4
0 II
1 I
2 I I I
3 I I I
4 II I
5 I II

(c) Walks array after
propagating NBTW of
length k=1 ending at
vertex 2.

k=1 k=2 k=3 k=4
0 II
1 I
2 I I I
3 I I I
4 II I
5 I II I

(d) Walks array after
propagating NBTW of
length k=3 ending at
vertex 2.

k=1 k=2 k=3 k=4
0 II
1 I
2 I I III
3 I I I
4 II I
5 I II I

(e) Walks array after
propagating NBTWs
of length k=3 ending
at vertex 5.

Fig. 2: Example of Dynamic NBTW. After adding edge e between vertices 2
and 5 we show the steps of the dynamic algorithm to update NBTW counts
taking into consideration the new edge.

Our dynamic algorithm is given in Dynamic NBTW in Algorithm 3. All
current NBTWs ending in src need to be updated since we can now visit dest
from src by traversing the newly added edge. To identify which NBTWs need
to be examined, we first find all the values of k where walks[src][k] is nonzero in
Line 3 (obtained in the array k src). If walks[src][k] > 0, then there are a nonzero
number of NBTWs of length k that end in src and we need to propagate these
using the newly added edge e. The corresponding element is added to the priority
queue in Line 6. This same procedure is repeated for the dest vertex in Lines
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7-10. Lines 11-14 take care of the edge case when either src or dest is the seed
vertex. In this case we need to perform a full propagation from the start similar
to the static algorithm. Since we are not recalculating all the counts of NBTWs
for all the vertices from seed, and are only examining the effect of a single edge,
we only add elements to the priority queue corresponding to walks that use the
newly added edge. Therefore, this dynamic approach will be significantly faster
than a naive static recomputation every time the graph is changed and we see
this in Section 4.

Algorithm 3 Dynamic algorithm for calculating NBTW centrality scores.

1: procedure Dynamic NBTW(e = (src, dest))
2: PriorityQueue ∗pq = new PriorityQueue
3: k src = walks[src].nonzero
4: for k in k src do
5: num walks = walks[src][k]
6: pq→insert((src, dest, k + 1, num walks))

7: k dest = walks[dest].nonzero
8: for k in k dest do
9: num walks = walks[dest][k]

10: pq→insert((dest, src, k + 1, num walks))

11: if seed is src then
12: pq→insert((src, dest, 1, 1))

13: if seed is dest then
14: pq→insert((dest, src, 1, 1))

15: walks = Evaluate Priority Queue(pq,kmax)
16: return walks

Both Static NBTW and Dynamic NBTW return an n × k array walks
that can then be used to calculate the centrality scores. This procedure is given
in Algorithm 4 where we obtain the centrality value for vertex i by weighting
NBTWs of different lengths by successive powers of some user-chosen parameter
α ∈ (0, 1).

Algorithm 4 Calculate NBTW-centrality scores from walk counts.

1: procedure Calculate Scores(walks, α)
2: x = n× 1 array initialized to 0
3: for i = 1 : n do
4: for j = 1 : k do
5: x[i] += αj · walks[i][k]

return x
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4 Results

We evaluate Static NBTW and Dynamic NBTW on five real-world graphs
drawn from the KONECT collection [17]. Graph information is given in Table
2. For all results, five vertices from each graph are chosen randomly as seed
vertices and results shown are averaged over these five seeds. For the dynamic
experiments, we use temporal datasets to simulate dynamic graphs, meaning
the edges already have associated timestamps. For our dynamic algorithm, we
initialize the graph with half the edges and then insert the remaining edges in
different batch sizes in timestamped order. We test batch sizes of 1, 10, 100,
and 1000. A batch size of b means at each time point we insert b edges and run
both the dynamic and static algorithms for comparison purposes. As previously
discussed, many real graphs are small-world networks [18], meaning the graph
diameter is on the order of O(log(n)). We set k = dlog(n)e, so by counting walks
up to length ≈ log(n), we can reach most vertices in the graph. The code was
implemented in C++.

Table 2: Real graphs used in experiments.
Graph |V | |E| Graph |V | |E|
karate 34 78 digg 279,630 1,731,653
lesmis 77 254 wiki-french 1,420,367 4,641,928

copperfield 112 425 wiki-english 2,987,535 24,981,163
slashdot 50,835 140,451 youtube 3,223,585 9,375,374

4.1 Static Algorithm Results

For our static algorithm we present comparisons to a conventional linear alge-
braic method of solving the system in Equation 1 discussed in Section 2. The
goal here is to ensure our algorithm returns similar quality scores to a tradi-
tional linear algebraic computation of centrality scores. We measure error as the
2-norm difference between the two vectors as error = ‖x∗ − xk‖2. Results are
shown for the three smallest graphs (copperfield, karate, lesmis) to ensure
we can solve the linear system accurately to present accurate comparisons.

Figure 3 plots the error (on the y-axis) for different values of k (on the x-axis)
for the three smallest graphs. Each color corresponds to a specific graph and the
dotted lines indicate the theoretically guaranteed error εk from Theorem 2 and
the solid lines with square markers plot the obtained error from our approxi-
mation algorithm. The first trend to note is the most intuitive: as we include
counts of longer NBTWs in the calculations of the scores, the error between our
approximation and the exact scores decreases. Furthermore, our actual obtained
error is always below that of the theoretically guaranteed error (usually by sev-
eral orders of magnitude), showing that our approximation algorithm produces
good quality scores compared to the exact linear algebraic scores.
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Fig. 3: Theoretical and actual error between exact NBTW-centrality scores x∗

and our approximation xk.

4.2 Dynamic Algorithm Results

Our dynamic algorithm produces the same NBTW counts as our static algo-
rithm (and therefore, the same scores), so we only examine the performance of
our dynamic algorithm w.r.t. speedup in execution time compared to the static
algorithm. Let TS be the time taken by our static algorithm to compute the
NBTW-based centrality scores for a particular graph and TD be the time taken
by our dynamic algorithm. We calculate the speedup in time as speedup = TS

TD
.

Higher values of the speedup indicate our dynamic algorithm has significant
performance improvement compared to our static.

100 101 102 103

Batch size

100

101

102

103

104
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ee
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slashdot
digg

wiki-french
wiki-english

youtube

Fig. 4: Speedup versus batch size for real graphs.

Figure 4 plots the speedups for the five largest real graphs (on the y-axis)
versus the batch size (on the x-axis). In all cases even the minimum speedup
obtained is above 1×. We see the greatest speedup for smaller batch sizes of 1
and 10, indicating that our method is most beneficial for low latency applications
with small number of data changes. The average speedup obtained decreases for
larger batch sizes. This is due to the fact that as the batch size grows larger, the
amount of time needed to process the updates grows because all endpoints of all
newly added edges must be taken into account. Essentially, new NBTWs must

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_20

https://dx.doi.org/10.1007/978-3-030-22741-8_20


12 E. Nathan et al

10 4

10 2

100

102

104

Ti
m

e 
(s

)

b=1

dynamic
static

10 4

10 2

100

102

104
b=10

0 1 2 3 4
Edge id 1e6

10 4

10 2

100

102

104

Ti
m

e 
(s

)

b=100

0 1 2 3 4
Edge id 1e6

10 4

10 2

100

102

104
b=1000

Fig. 5: Speedup aggregated over time for slashdot graph.

be propagated from all the endpoints of the newly added edges. However, our
dynamic algorithm still on average is able to obtain several orders of magnitude
in speedup over the static recomputation. In very large graphs of millions of
vertices where a static recomputation is computationally infeasible given edge
updates to a graph, our dynamic algorithm offers significant savings because it
just targets a localized portion of the graph where the edge has been added. Ad-
ditionally, in applications where the entire graph is not able to fit in memory, our
dynamic algorithm only needs to access portions of the graph directly affected
by edge updates. However, since the overall trend shows decreasing speedup as
the batch size is increased, this tells us that there is a batch size large enough at
which it is computationally more efficient to recompute from scratch using the
static algorithm.

Figure 5 plots the speedup over time for the wiki-french graph. As edges
are inserted into the graph and both algorithms are run, we plot the aggregated
time taken in seconds for the dynamic (solid blue line) and the static (dotted
orange line) algorithms. The y-value plotted at any given edge id m is the time
taken by either the static or dynamic to process all edges up to and including
edge m. Note that the y-axis is on a log scale. For this experiment, instead of
starting with half the number of edges in the graph, we start with an empty
graph for both the static and dynamic algorithms. Although the times taken
by both algorithm are initially the same, over time we see that the time taken
by our dynamic algorithm is several orders of magniture lower than the time
taken by our static algorithm. While there is a spike in the time taken both
algorithms initially, the aggregated times for the dynamic algorithm increase
linearly (indicating processing each batch of edges at each time point takes more
or less the same time), unlike those from the static algorithm. This indicates that
our method of only examining places in the graph that are directly affected by
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the edge updates results in a highly efficient computation of the NBTW-based
centrality scores.
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Fig. 6: Size of priority queue for static and dynamic algorithms for the slashdot
graph for a batch size of 100.

Finally, Figure 6 plots the sizes of the priority queues in both algorithms for
the slashdot graph. We sample at 100 evenly spaced time points throughout
the duration of both algorithms and plot the size of the priority queue at that
time point for the dynamic (solid orange line) and static (dotted blue line)
algorithms. The size of the priority queue in the dynamic algorithm consistently
remains orders of magnitude lower than the size of the priority queue in the
static algorithm. The periodic spikes in the size of the priority queue in the
static algorithm can be attributed to the periods after processing an element
where we add all the neighbors of the currently processed vertex to the priority
queue.

5 Conclusions

This paper presented a new algorithm for computing the values of personalized
nonbacktracking walk-based centrality scores of the vertices in both static and
dynamic graphs. The algorithm returns approximations of scores by counting
NBTWs up to a certain length starting at a given seed vertex. In past literature,
these centrality values have been computed using a linear algebraic formulation
and only on static graphs. Our algorithm agglomeratively counts NBTWs in
graphs to obtain the corresponding centrality scores and for static graphs the
results presented indicate that our method obtains good quality approximations
of the scores compared to a linear algebraic computation. For dynamic graphs,
our algorithm is able to avoid a full static recomputation and efficiently com-
putes updated scores, given edge updates to the graph. Our dynamic algorithm
returns exactly the same scores as the static algorithm, meaning we have no
approximation error. Furthermore, our dynamic algorithm is several orders of
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magnitude faster than the static algorithm, indicating our approach has large
performance benefits.
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