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Abstract. We consider the problem of detecting a unique experimen-
tal signature in time-series data recorded in nuclear physics experiments
aimed at understanding the shape of atomic nuclei. The current method
involves fitting each sample in the dataset to a given parameterized model
function. However, this procedure is computationally expensive due to
the nature of the nonlinear curve fitting problem. Since data is skewed
towards non-unique signatures, we offer a way to filter out the majority
of the uninteresting samples from the dataset by using machine learning
methods. By doing so, we decrease the computational costs for detection
of the unique experimental signatures in the time-series data. Also, we
present a way to generate synthetic training data by estimating the dis-
tribution of the underlying parameters of the model function with Kernel
Density Estimation. The new workflow that leverages machine learned
classifiers trained on the synthetic data are shown to significantly out-
perform the current procedures used in actual datasets.
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1 Introduction

Although many people assume that the atomic nucleus adopts a spherical shape,
the actual nuclear shapes could vary [10]. Deformed nuclei are quite common at
certain regions of proton and neutron numbers. Further, some regions of proton
and neutron number are categorized as exhibiting signs of shape-coexistence phe-
nomena in which different nuclear states can be interpreted as having different
mean square charge radii. A key experimental indicator of the phenomena is the
presence of strong transitions between states with identical angular momentum
and parity. Such transitions between spin 0 states proceed through the emission
of an atomic electron and when the excited spin-0 state is at a low enough energy,
the state will live for a longer period of time before decaying. We describe the
workflow and associated challenges through a recent experiment to explore the
spin-0 to spin-0 transitions observed in the mass 32 region of the nuclear chart.
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The experiment starts with a beam of rare isotopes produced at the National
Superconducting Cyclotron Laboratory (NSCL), which in this case is a beam
containing 32 33Na isotopes and numerous neighboring mass nuclei. The 33 33Na
nuclei moving at relativistic speeds are brought to rest inside a large volume
active detector. Since the 33 33Na isotopes are radioactive, they will eventually
“beta decay” (a process which changes a neutron into a proton) into an isotope
of 32 33Mg. In rare cases, the decay will leave the resulting isotope with an ex-
cess of energy which it will shed within a few hundred nanoseconds through the
emission of an energetic atomic electron from the spin-0 to spin-0 transition.

The rare isotopes are brought to rest in a large volume, unsegmented CeBrj
detector. The unsegmented CeBrs scintillator is readout using a Hamamatsu
13700 position sensitive photomultiplier tube (PSPMT) which is segmented into
an array of 16 x 16 pixels for a total of 256 pixels. Each pixel and a signal
corresponding to the sum over the entire detector is connected to individual
digitizing electronics channels running between 250 and 500 MSPS. An onboard
firmware controls when data will be recorded to the onboard memory. For these
experiments, information related to the energy of the signal includes time, the
channel that recorded it, and a waveform which records the history of the de-
tector voltage as a function of time. An example of a recorded waveform (i.e.,
time-series data of detector voltage) from the detector is shown in Fig. 1. What
is sought is essentially a unique signature, i.e., double pulses (to the right of the
figure corresponding to the science case in which the first pulse represents the
beta-decay electron and the second pulse represents the transition of interest),
which are extremely rare in the presence of other “uninteresting” signal shapes,
i.e., single pulses (to the left).
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Fig. 1. Different pulses from the dataset.

Whenever a double pulse is detected, the amplitude of both pulses and the
time difference between them must be calculated for further physical analysis,
which is accomplished by fitting a known functional form to the observed sig-
nal, called 1mfit, as explained in further detail below. The 1lmfit procedure
is computationally demanding, and in the absence of a better alternative, it is
used for detecting the double pulses among the plethora of uninteresting signals.
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Consequently, the existing practice cannot enable real-time analysis of the vast
number of traces obtained during experiments. This is highly problematic be-
cause only a single experimental session can typically be secured at NSCL per
year, and during an experiment scientists need to be able to determine whether
they have been able to capture a sufficient number of the rare double pulse sig-
nals. It should be noted that since each signal is independent, their processing
can easily be parallelized across a number of processors which would potentially
ensure real-time processing guarantees with moderate resource investments, but
NSCL is soon to be upgraded to the Facility for Rare Isotope Beams (FRIB),
which will increase the data collection rates by two to three orders of magnitude.
As such, it is critical to have a highly accurate yet inexpensive computational
tool to detect double pulses, and this constitutes our main goal in this paper.

In what follows, we first briefly describe the time-series dataset from nu-
clear physics experiments in Section 2. The proposed machine learning based
framework is presented in Section 3 which explains how realistic-looking data
is generated synthetically, preprocessing of the data and classification methods
used to detect unique signatures. Finally, the framework is evaluated according
to its recall, precision and speedup rates for different scenarios in Section 4, and
we review the related work in Section 5.

2 Dataset

The dataset used in this study includes 14,985,016 samples. The snapshots
recorded by the data acquisition system consist of 250 2-byte unsigned integers,
denoting the energy intensities captured by the detector. With the exception of
any noise (which can cause significant distortions), pulses are expected to exhibit
patterns given by the following equations:

Aleikl (:Dle)

G(x) = 1 _|_e—k2(;c—T1)

+ 0, (1)

Ale—kl(w—Tl) AZe—kg(I—Tz)
= 1 + efk‘Q(CE*Tl) + 1 + efk4(sz2)

F(z) +0, (2)

where G and F serve as models for the single pulse and double pulse data,
respectively. Effectively, F' replicates the pulse term in G, albeit with a different
set of parameters. Parameters involved in these models are explained in Table 1.
In case of a double pulse, rise rates (K7, K3) and amplitudes (A;, As) of both
signals can be significantly different from each other, whereas decay rates (Ko,
K,) are almost identical across all samples because decay rate is a property of
the detector itself. The time difference between the two signals (T — T7) has
a distribution which favors short time differences, meaning the two signals are
more likely to overlap with each other rather than being two separate pulses. As
the time difference decreases, or the relative amplitudes between the two signal
heights become significantly different, it becomes increasingly difficult to decide
if a trace is a single pulse or a double pulse trace, underlining the main challenge
faced by nuclear physicists.
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Currently used lmfit software uses non-linear least-squares curve fitting
method with the Levenberg-Maequardt algorithm [16] implemented in the GSL
(GNU Scientific Library). The target is to minimize the summation of the resid-
uals by adjusting the parameters of the model:

N
B = argming Y (yi — f(xi, 8))° (3)
=1

The Levenberg-Maequardt algorithm is an iterative procedure and works by
calculating the Jacobian matrix for each step which increases the computational
complexity of the algorithm.

Table 1. Parameters

’ ‘ Parameter Definition ‘ ‘
(0] Offset
Ty Starting position of the first pulse
K, Rise rate of the first pulse
Aq Amplitude of the first pulse
K> Decay rate of the first pulse
T Starting position of the second pulse
Ks Rise rate of the second pulse
Ao Amplitude of the second pulse
Ky Decay rate of the second pulse

As noted earlier, single pulses always constitute the majority of the captured
snapshots in all experiments. Detailed information about the specific data set
that we are working with is given in Table 2.

Table 2. Dataset

H Type ‘ Count ‘Percentage”

Single Pulse |14968801| 99.9%
Double Pulse| 16215 0.1%

3 Realtime Beta Decay Detection Framework

To enable real time processing of traces obtained in beta decay experiments, we
propose a novel framework based on machine learning techniques. Since there is
no need for single pulse data to be analyzed using 1mfit, our proposed framework
acts as an inexpensive filter whose main duty is to reduce the number of traces
to be analyzed by 1mfit as much as possible without missing any of the rare
beta decay events.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_16 |



https://dx.doi.org/10.1007/978-3-030-22741-8_16

Data Analysis for Atomic Shapes in Nuclear Science 5

Arguably, an important precedent to a good machine learning algorithm is a
high quality training dataset. The fact that our dataset is highly skewed towards
single pulse data presents a challenge at this point. There are different ways to
handle skewed distribution of the classes. Weights corresponding to classes could
be adjusted [19] or data could be resampled to have a fair balance of the classes
[4]. For this problem, since we have a good analytical model for the different
trace types, we choose to estimate the underlying parameter distributions of the
double/single pulses and generate synthetic pulses. Models in Eq.1 and 2 are
used to capture the underlying parameters with high fidelity and generate syn-
thetic data by feeding these parameters back into the equations. To obtain higher
quality synthetic data, we use Kernel Density Estimation (KDE) techniques.

A shortcoming in using the analytical models for pulse generation is that
we only can produce clean traces without any noise. Since the synthetic dataset
should be representative of the real dataset to have better generalization per-
formance, noise must be modeled too. By adding the modeled noise into the
generated traces, one can obtain more realistic synthetic data for training.

Figure 2 gives a visual overview of this framework. The first step is determin-
ing distribution of parameters in Eq.2 using 1lmfit on a small sample dataset
which indeed can be obtained by scientists during their preparatory phase before
the actual experiments begin. These distributions are then fed into our analytical
models in conjunction with the noise model and synthetic traces are generated.
Synthetic data are used to enhance the small real dataset obtained during prepa-
rations, and machine learned classifiers are training using the enhanced dataset.
These classifiers are then used the filter out the uninteresting samples from the
dataset, significantly accelerating the overall procedure. We note that classifiers
may emit false positives, which can then be eliminated by lmfit in the final
analysis stage.

Kernel Density
Estimation
Input
_ Parameters i
(from a Fitting (small subset) Synthetic Data
detector)
Noise
Estimation
Feature extraction
and training
i Classification
Fitting Detected
Parameters  «— "| Double Pulses Classifier
Full Dataset Fine Tuning

Fig. 2. Proposed method.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_16 |



https://dx.doi.org/10.1007/978-3-030-22741-8_16

6 M. Kaymak et al.

3.1 Synthetic Data Generation

Generating synthetic data to train a classifier is used in many domains including
computer vision [18] and speech recognition [12]. We have chosen this approach
due to the skewed distribution of classes in actual datasets. Note that there is
no need for generating single pulse signals as the majority of traces collected are
already traces with a single pulse. Consequently, we draw the single pulse data
from the actual dataset itself, and synthetically generate the double pulse traces
by approximating the underlying parameter distribution of this rare event.

Kernel Density Estimation (KDE) Histograms of individual parameters de-
scribing traces with double pulses are given in Fig. 3. As can be seen, it is hard to
describe these distributions analytically. Also, due to the nature of the detectors
and experiments, distributions are expected to change. Therefore, we use non-
parametric kernel density estimation methods, as they work without requiring a
parametric representation and can adapt to different distributions well without
making any assumptions. With KDE, the formula for a set of observations X at
a point z is given by:

) = nlh;K (=55). (@

where n is the sample size, K is the kernel function (smoothing function) and
h is the window size or bandwidth. By changing the bandwidth h or the kernel
function, smoothness of the estimated probability distribution function f can be
adjusted.
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Fig. 3. Histograms of the selected parameters. The top row for the parameters corre-
sponding to the first pulse of double pulse samples and the bottom row for the second
pulse of double pulse samples

Since our aim is to use the synthetic data to train classifiers, we select the
kernel and the bandwidth based on a grid search using a validation set created
from real data samples. Other widely used methods for bandwidth selection are
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Scott estimate [21] and Silverman estimate [22]. Based on earlier experiments,
we have concluded that selecting the parameters based on the performance on
the validation set yields better performance.

Using the KDE technique described above, new samples are generated to
create a more balanced training dataset for which we generate 50,000 samples
for the double pulse class. However, parameters require strict bounding. Posi-
tion variable of the pulses should be in the [0, 250] range. Also, decay time and
steepness cannot be less than 0. To impose these boundary conditions, samples
drawn from the KDE are checked for these conditions and the ones which violate
any of the conditions are redrawn till all the conditions are met.

Noise Estimation Noise is a significant component of the traces obtained
from the detectors. Depending on the detector, noise levels can actually be high
compared to the pulse(s). To create a high quality synthetic dataset, we modeled
the noise as well. While it is hard to separate the noise from the signals, we
observe that the part of the trace before the rise of the first peak gives a good
representation of the noise in the rest of the signal. Since this initial part of
the trace before the pulse is expected to be flat, it is straightforward to detect
the noise there. For the intensity values in this initial segment, we calculate the
differences from the mean value in that range; create a histogram by aggregating
the differences across all traces in the training data. As seen in Figure4, for the
particular dataset that we work with, the noise could be modeled as an additive
Gaussian distribution:

Z;i ~ N(0,0?) )
Yi=Xi+ 2,
Where le is t},le Output’ XZ accumulation of the differences
15 the underlylng true Value 0121 Fitted Gaussian Distribution
defined by Eq. (2) and Z; is : == Histogram of the Noise

o
N
o

drawn from the given distri-
bution. The assumptions here
are that Z; is independent
and identically distributed,
and Z; is not correlated with
X;. Basically, Eq. (5) implies
that the detector adds some
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tribution to the true values Fig. 4. Noise estimated for the experimental data
coming from the event.

Based on the analysis via the given method, we found out that the noise for
the particular experiment could be modeled as N'(0,11.34). We note that in cases
where the noise does not fit into a simple analytical form such as the Gaussian
distribution, one can use the KDE technique described above for accurately
modeling the noise as well.
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3.2 Preprocessing of the Data

Normalization Since the offset O and amplitude variables A; and As cause
variations between traces that are otherwise structurally similar, data needs to
be normalized to minimize the effects of these variations. By doing so, classifiers
are expected to become less susceptible to non-structural variations. We have
chosen to use the L2-norm normalization for this purpose.

Dimensionality Reduction In the dataset, each sample consists of 250 points.
As can be seen in Figurel, majority of these points do not present any in-
formation about the class which the sample belongs to. Including unnecessary
points increase the complexity of the classification process. We investigated the
use of Principal Component Analysis (PCA) which is useful to represent the
d-dimensional data in a lower dimensional space while keeping the maximum
amount of variance. PCA is defined as an orthogonal linear transformation. By
lowering the dimensionality, our expectation is that the classification process
would get faster and it would require less space. To not have data leakage, we
calculated the covariance matrix required for PCA by only using the training
data. As will be discussed below, for the classifiers that use synthetic data, the
covariance matrix is calculated on synthetic data only.

3.3 Classification Methods

Recently, neural network methods such as Convolutional Neural Networks (CNN)
or different variations of Recurrent Neural Networks (RNN) have gained immense
popularity for classification tasks. They are both proven to be successful on tasks
related to time series analysis such as speech recognition ([17], [8]), and human
activity recognition ([25]). However, they are computationally expensive since
they operate on raw data and require high number of layers for accuracy.

As discussed before, speed is crucial for our purposes due to the high data ac-
quisition rate and high number of signals that need to be classified and analyzed.
Also, the system could tolerate a reasonable number of false positives because
the Imfit method will be used to further clean unwanted traces and analyze all
traces that are detected to have double pulses. Under these circumstances, we
decided to test Random Forest (RF) [14], Support Vector Machines (SVM) [23]
and Gradient Boosted Classifiers (GBC) [5]. For the RF, Classification and Re-
gression Tree (CART) algorithm is used. It basically splits the nodes based on
Gini index which is a way to calculate impurity [3]. Since a single decision tree
may not be robust to outliers and noise, we trained a Random Forest classi-
fier which is an ensemble learning method. Multiple decision trees are grown
together and after the training, the classification is done by voting between the
trained trees. GBC is another ensamble learning method. For GBC, Friedman
Mean Squared Error is used as the splitting criteria [6]. The training procedure
for GBC is sequential unlike RF where the trees could be grown in parallel. Each
newly added tree is generated to correct the errors caused by the previous one.
SVM tries to separate the dataset in order to classify the data into two groups
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by passing a linearly separable hyper-plane through the data space. However,
most of the datasets are complex and not easily separable by a hyperplane. To
solve that kernel trick could be used. The idea is that data could become lin-
early separable after projecting the input vectors to a higher dimensional feature
space. Finally, all classifiers (RF, GBC and SVM) are tuned with grid search
and the tuning is done based on precision and recall scores for double pulses.

4 Evaluation of the Proposed Framework

We present results from different classifiers tested in our proposed framework.
We basically test three different scenarios to show how the framework performs
under different conditions. In all scenarios, it is assumed that experimental non-
unique signatures (single pulses) are available. For the first two cases, we assume
that we have double pulse samples available as well, but in different quantities.
For the last case, only single pulses and their parameter distributions are used
to explore the scenario where there is no double pulse data available. We used
two different splits for our evaluations for the first two scenarios. The first one
inspects cases where there is a limited amount of real data for training purposes,
such as during the brief preparation period leading up to the actual experiments,
and the second one inspects cases with abundant real data, for instance, while
repeating an experiment or on-the-fly tuning of ML models during the experi-
ment which typically takes a week or so. For the first split, 10% of the available
dataset is used for training (or generating synthetic data), another 10% is used
for validation (tuning the parameters) and the remaining is used for testing.
For the second split, these percentages are 60-20-20, respectively. In the third
case where there is no experimental double pulse data available beforehand,
synthetic double pulses are generated for training purposes by drawing the pa-
rameters from various uniform distributions. Since T, K1,K5,K3 and K4 depend
on the properties of the detector but not the actual experiment, the parameter
distributions of the single pulses for 77, K; and K» (1) are used to model the
listed parameters. Ty, Ay and A, are drawn from the uniform distributions of
unif(77, 250), unif(50, 16383) and unif(50, 16383), respectively, as determined by
the experimental setup (16383 is the largest possible amplitude value that the
detector could record). Using uniform distributions allows us to avoid any bias
in the models when we assume there is no actual double pulse data available.
For each split, two different evaluations are performed. The first evaluation
finds parameters of the double pulses in the training data, then estimates the
distribution of the parameters and the noise. Then new parameters are drawn
from the fitted distribution and synthetic data is generated by feeding the pa-
rameter to the functional for the double pulse traces. For the second evaluation,
the training data is used directly without adding any synthetic data. Note that
for the synthetic data based evaluation, only double pulse samples are generated
with the described method since it is easy to acquire single pulse samples and
using actual single pulses yield better results than synthetically generated ones.
For the third case, as we assume there is no experimental data available for the
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double pulses, only single pulse parameters from Eq. (1) are used to model the
detector dependent parameters and the rest are drawn from uniform distribu-
tions.

All computations have been performed on Laconia, a cluster with over 400
compute nodes at Michigan State University’s High Performance Computing
Center. Each of the base compute nodes on Laconia has 28 cores, located on
two fourteen-core Intel Xeon E5-2680v4 Broadwell 2.4 GHz processors, and has
128 GB DDR3 2133 MHz ECC memory. Each core possesses a 64 KB L1 cache
(32 KB instruction, 32 KB data), a 256 KB L2 cache. Between fourteen cores
of a single “Broadwell” processor, a 35 MB L3 cache is shared. At the time
of the experiments, the Laconia nodes ran CentOS version 6.8 distribution of
GNU/linux for x86_64 architectures, kernel version 2.6.32-696.20.1, and glibc
version 2.12-1.192. The software was built using the GNU Compiler Collection
version 6.2 with the -03 flag. For all experiments, we restricted our computations
to a single CPU core on a Laconia node. For the lmfit, GSL library is used and
for the classification procedures sklearn package is used. Since both inference and
Imfit steps are highly parallelizable due to the independence of the samples,
single core speed is a good indicator for performance.

4.1 Classification Results

As mentioned above, two important metrics for our purposes are recall rate and
speedup on the real data compared to the baseline 1mfit method. Since our
main goal is to create a filtering mechanism for the real data, we present results
for the testing dataset coming from the real data. As the data is extremely
skewed, we cannot use accuracy as a comparison metric. If we use a classifier
which classifies everything as a single pulse, based on Table 2, the accuracy would
be around 99.999% without doing any meaningful work. Therefore, we choose
to compare the classifiers based on recall rates which shows how accurately a
classifier detects double pulse traces. We present results from SVM, Random
Forest and Gradient Boosting Classifier based classifiers trained on real data
and synthetic data created with Kernel Density Estimation. The parameters
of the KDE was selected based on the performance of the classifiers trained
with it. When only 10% of the data (limited data) is used to generate synthetic
data, 0.1 and Gaussian are chosen as KDE bandwidth and kernel respectively.
When 40% of the data (abundant data) is used to generate synthetic data,
the chosen parameters are 0.001 and Gaussian kernel. Also, the paremeters of
the classifiers and number of components for PCA are chosen based on the
performance in the validation set. For cases where there is experimental data
available for double pulses, projecting the data onto the space created with 15
principal components yields better performance for the majority classifiers. As
such, we fixed the corresponding parameter to 15 to limit the search space for
PCA. On the other hand, for the last case, since the overall variance is high in
the training data due to the uniform distributions, the first 50 components are
used. Other hyperparameters required for the classifier and KDE have chosen
based on their performance on the validation set.
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Results for different datasets are reported in Table 3. Speedups with respect
to the baseline 1mfit method are calculated according to the following formula:

specdup = 7+ 7« (Paguie/ PR.) (6)

c LMFit
where T, and is the throughput of the classifier, T4t is the throughput for
the Imfit method, Pj,upe is the percantage of the double pulses in the dataset
and PR, is the precision rate of the classifier. Note that this speedup formula
accounts for the cost of eliminating the false positives produced by our proposed

classifiers using the lmfit method at the end.

Table 3. Classification Results

H Training Data ‘Model‘ Recall ‘Precision‘SpeedupH

RF [0.9406| 0.4315 37.8
SVM [0.8448| 0.6970 52.2
GBC [0.9174| 0.4944 44.0
RF (0.9993| 0.4566 40.0
SVM |0.9914| 0.1156 10.2
GBC [0.9945| 0.4667 41.5
RF (0.9995| 0.4514 39.5
SVM [0.9935| 0.1012 8.9
GBC [0.9951| 0.5019 44.6
RF (0.9843| 0.1266 11.3
Limited data SVM [0.9476| 0.0323 2.9
GBC |0.9741| 0.0992 8.9
RF [0.9995| 0.3266 28.8
Abundant data SVM |0.9943| 0.0917 8.1
GBC [0.9989| 0.3708 33.0

Synthetic data
with uniformly distributed T, A1 & Az

Synthetic data
generated from limited data

Synthetic data
generated from abundant data

As seen in these results, Random Forest method performs better in terms
of recall rate and gives a reasonable speedup. Even though Gradient Boosting
Classifier is a lot faster than Random Forest for inference, their speedups are
relatively close. The reason is that GBC has lower precision than Random Forest
and triggers the 1mfit method more often to eliminate false positives. SVM has
the lowest precision and the lowest throughput compared to the other methods.
Based on these results, Random Forest method is a reasonable candidate to use
for classification part of the proposed framework. The random forest models
trained on abundant data synthetic data generated from abundant data have
the highest recall rate which is 0.9995%.

When we further examine the results, it can be seen that in the absence of
sufficient data, generating synthetic data for training purposes helps classifiers
to learn more about the unique signature. When 60% of the data is used for
the training, it results in better or comparable recall rate for the classifiers.
For precision, classifiers trained on real data still lack behind the ones trained
on synthetic data. One reason might be that in the 60% of the data, there
are less than 10,000 double pulse samples. However, for the synthetic data, we
are generating 50,000 double pulse samples, which is more than the number of
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double pulses in the whole dataset. When there is no double pulse available for
the training and the given uniform distributions are used to generate double
pulse samples, the recall rate of the classifiers are relatively lower unsurprisingly
but the precision rates are high potentially related to the low recall rates. This
causes the speedups to be high since precison and speedup are correlated based
on Eq.6. Also, since the actual data is skewed towards single pulses and the
hyperparameters are chosen to maximize the recall rate as the classifiers primary
purpose is to filter out non-unique signatures while keeping almost all of the
double pulses, the precision rates vary a lot. This situation renders majority of
the SVM models useless as low precision rates decrease their speedups.

5 Related Work

Different pulse shape classification (PSD) and discrimination methods using ma-
chine learning based approaches have been proposed in the literature [20, 1, 11].
More broadly, in nuclear physics use of machine learning techniques have been
explored for other problems such as track classification [13] and jet classifica-
tion [9]. In [20], it is shown that the support vector machine (SVM) method
yields better results than the charge-integration PSD method that originated in
analog systems. However, in our dataset, as shown above SVM performs worse
compared to the ensemble tree based methods in terms of recall rate. In [11],
a neural network architecture called auto-encoders is used to learn how to rep-
resent a given trace in a smaller space. Finally, another network is trained to
classify transformed traces. We note that we also experimented with neural net-
works in this study and although neural networks were highly accurate in the
classification task, they were significantly slower than the methods we presented
above.

To be able to deploy a supervised machine learning method, sufficient amount
of training data should be available beforehand. To overcome that issue, sim-
ulated data is used for track classification in [13] where the authors show that
even though simulated data help training supervised classifiers, results are more
promising when experimental data is used. Our results support the same con-
clusion and we offer a novel way to increase performance when simulated data
is used for training.

Finally, we note that unlike the typical classification tasks, it is not practical
to compare the performance of the classifiers reported in this study to others,
because the detector, its setup and the way experiments are conducted render a
classifier developed for a given context ineffective for another context.

6 Conclusion

We proposed a novel framework to enable realtime analysis of data from beta
decay experiments performed at MSU’s National Superconducting Cyclotron
Laboratory. The framework uses computationally inexpensive machine learning
techniques to accelerate the classification bottlenecks with use of the existing
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Imfit method. We also developed a synthetic training set generation tool to
address the issue of limited (or non-existent) double pulse samples observed in
actual training datasets beforehand. In conclusion, we observe that generating
synthetic data significantly improves the recall rates for the classifiers used, if
the real dataset is limited in size and/or the unique signature we are looking for
is extremely rare in the dataset. By modeling the distribution of the underlying
parameters via KDE and generating new samples by feeding parameters drawn
from KDE to the functional form of the wanted pattern, we have been able
to develop a high-performance filtering mechanism to speedup the overall data
analysis process. For the classification schemes with highest recall rates, i.e.,
RF and GBC, we observe speedups up to 44x compared to the current method.
Coupled with use of parallelism on a server with moderate computing power,
the proposed framework can easily provide real-time analysis guarantees.

As future work, in terms of data generation, a Generative Adversarial Net-
work [7] could be used. It could generate more realistic samples without even
providing a functional form for the signature pattern and estimating the dis-
tribution of its parameters. In terms of further performance improvements, to
ensure real-time analysis with the rate of data collection that will be possible
at the upcoming Facility for Rare Isotope Beams, an $850M facility funded by
the US Department of Energy, our proposed framework can be ported to FP-
GAs and GPUs. There are several examples in the literature which demonstrate
significant performance boosts by the use of these accelerators, see for instance
[24], [15] and [2].
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