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Abstract. It is well-known that the existing theoretical models for out-
lier detection make assumptions that may not reflect the true nature of
outliers in every real application. With that in mind, this paper describes
an empirical study performed on unsupervised outlier detection us-
ing 8 algorithms from the state-of-the-art and 8 datasets that refer to
a variety of real-world tasks of high impact, like spotting cyberattacks,
clinical pathologies and abnormalities in nature. We present the lowdown
on the results obtained, pointing out to the strengths and weaknesses of
each technique from the application specialist’s point of view, which
is a shift from the designer-based point of view that is commonly consid-
ered. Interestingly, many of the techniques had unfeasibly high runtime
requirements or failed to spot what the specialists consider as outliers in
their own data. To tackle this issue, we propose MetricABOD: a novel
angle-based outlier detection algorithm that makes the analysis up to
thousands of times faster, still being in average 26% more accu-
rate than the most accurate related work. This improvement is essential
to enable outlier detection in many real-world applications for which the
existing methods lead to unexpected results or unfeasible runtime re-
quirements. Finally, we studied two real collections of text data to show
that our MetricABOD works also for adimensional, purely metric data.

Keywords: Applied Computational Sciences · Complex Data · Data
Mining · Unsupervised Outlier Detection · Metric Access Methods

1 Introduction

An important task with high-impact real-world consequences is the forecasting
and detection of extreme events and exception cases, like frauds in the finan-
cial sector, cyberattacks, clinical pathologies and abnormalities in nature. Such
phenomena are known as outliers. The volume of data being collected by en-
terprises from a variety of scientific areas is increasing exponentially over time,
thus forcing analysts to use automatic procedures to detect outliers [6, 8].

Unfortunately, the present literature lacks ample and thoughtful comparison
between the many existing outlier detection methods. One recent work [5] suc-
ceeded to reduce this gap, but, according to its authors, it is a “meta-analysis”.
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That is, their work aims to be as generalist as possible and, as such, it does
not focus on any application nor domain and does not discuss accuracy in real
applications from the point of view of the specialist users, i.e., “what the appli-
cation specialists expect from the data”. The major merit of their work lies in
that it presents useful and very needed pointers to guide further investigation
over a diversity of application domains. However, it is still unclear how accurate
most of the existing methods are when spotting what the specialists consider
as outliers in datasets of distinct natures, such as those collected in the many
real-world applications that can benefit from the detection of outliers.

It is well-known in the literature that the existing theoretical models for
unsupervised outlier detection make certain assumptions that may not reflect
the true nature of specific outliers in every single application [1, 5]. With that
in mind, we performed an empirical study to evaluate 8 state-of-the-art outlier
detection algorithms using 8 datasets from a variety of real-world applications
with ground truth data manually created by specialist users; we were focused
on verifying whether or not the algorithms are able to spot in an automatic
and timely manner what the specialists selected as outliers. Interestingly, many
of the algorithms had unfeasibly high runtime requirements or failed to return
what the specialists expect from their data. This paper’s main contributions are:

1. Empirical evaluation: we evaluated 8 state-of-the-art outlier detection
methods from the application specialist’s point of view, and report
results focused on quantifying how useful they can be for a variety of real
world tasks of high impact, such as spotting breast cancer, heart and thyroid
anomalies, detecting cyberattacks, and detecting musk species;

2. MetricABOD: we carefully designed a new angle-based algorithm that
makes the analysis up to thousands of times faster, still being in average
26% more accurate than the most accurate related work. The main inno-
vation is a new usage for tree-based data structures known as Metric Access
Methods (MAM) [17], which were originally designed to index complex data,
such as images, audio, large graphs and fingerprints. This improvement was
essential to enable outlier detection in many of the datasets that we studied,
for which the existing methods lead to unexpected results or unfeasible run-
time requirements. Finally, we studied real collections of text data to show
that our MetricABOD works also for adimensional, purely metric data.

The rest of this paper is organized as follows: background concepts (Sec-
tion 2), related works (Section 3), empirical evaluation (Section 4), proposed
algorithm (Section 5) and conclusions (Section 6).

2 Background

There are many definitions for outliers in the literature. The distance-based
one [10] is very commonly used: “An object P in a dataset T is a DB(f, ξ)-outlier
if at least one fraction f of the objects in T have a distance to P that is greater
than ξ.” Here, term DB(f, ξ)-outlier is a shorthand notation for a Distance-
Based outlier with supporting parameters f and ξ. This definition is independent
of the data distribution and it is also intuitive, simple and practical. Due to such
qualities, it serves as a basis for several outlier detection algorithms [4, 3].
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In spite of that, there is not a single, universally accepted definition for what
an outlier is, neither an unanimous way to compute outlierness scores. Outliers
matter to statisticians since long ago. Research works in the domain of Statistics
routinely assume a parametric distribution for the data, following a fixed set of
parameters. However, it is not safe to assume, a priori, any parametric distri-
bution for a dataset in most real-world scenarios. And even if the distribution
is assumed as non-parametric, the existing unsupervised outlier detection algo-
rithms must also assume a specific definition of outliers within the distribution
to create a model, and then use the model to search for data objects that fit
this definition. Obviously, different algorithms employ distinct models, thus they
may obtain different results. Since there is no consensus, it is not unusual that
two given algorithms’ results clash [12].

Let us highlight that the application specialist user expects results of his/her
true interest, despite the model and algorithm at hand. At this point, we make a
shift from the designer-based point of view that is routinely seen in the literature,
to the user-based one. Even elaborate and theoretically sound techniques may not
translate to acceptable results for the end user. Also, many real-world datasets
from which spotting outliers is desirable have millions of objects and hundreds
of attributes. Outlier detection in these data is a demanding task [6]. In fact,
it is truly an unfeasible task in most cases. The main challenges are: (a) very
large runtime requirements, even for approximate methods; (b) low availability
of ground truth to assess a method’s accuracy; (c) data of high dimensionality
and its unwanted effects, and; (d) sensitivity to input parameter values.

The next subsections discuss the main undesirable effects of dealing with data
of high dimensionality; we also present the basics of Metric Access Methods.

2.1 Curse of high dimensionality

As the number of dimensions of a dataset increases, the variance of distances
between any two data objects tends to zero [1]. Figure 1 illustrates this fact by
presenting dissimilarity matrices for two toy datasets with 10 objects each. The
objects were randomly picked from a multivariate normal distribution. Figures 1a
and 1b respectively refer to data of low and high dimensionality, i.e., 5 and
100 dimensions. Darker colors represent smaller distances; lighter colors refer to
larger distances. As it can be seen, it is much harder to discriminate the distinct
dissimilarities in the high-dimensional scenario than it is in the low-dimensional
one. This simple example illustrates the evanescence of the variance of pairwise
dissimilarities between objects, as the dimensionality increases.

In this fashion, according to the distance-based outlier definition, and also
to most of the other existing definitions, all objects in a dataset of high dimen-
sionality are potential outliers. To tackle this problem with subspace selection
or dimensionality reduction is not obvious. According to [1], the main difficulties
are: (a) circular references between neighborhoods and subspaces; (b) noise with
its masking and dilution effects, and; (c) rarity-based subspace outliers. State-of-
the-art solutions to the problem perform angle-based analysis, rather than the
traditional distance-based one, as we discuss later in the paper.
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Fig. 1: Dissimilarity matrix for two toy
datasets with 10 random objects each.
a) 5 attributes; b) 100 attributes.

Fig. 2: 2-dimensional objects at: a) level
h of a tree-based MAM structure;
b) level h− 1 of the same structure.

2.2 Metric Access Methods

Metric Access Methods (MAM) [17] allow efficient queries upon datasets em-
bedded in a metric space. A metric space is formally defined by a data domain
X and a distance function d : X ×X → R, such that the rules as follows apply:

i) Positivity: for all x, y ∈ X, 0 ≤ d(x, y) <∞
ii) Non-degenerated: for all x, y ∈ X, d(x, y) = 0↔ x = y
iii) Symmetry: for all x, y ∈ X, d(x, y) = d(y, x)
iv) Triangle inequality: for all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y)
A metric space may not allow sorting objects. Thus, MAM structures must

use distances only; nothing else. State-of-the-art MAMs are tree-based. Every
tree node stores a subset of objects. One of them is selected to be the node’s
representative, which is also known as the pivot. The representative is usually
the object with the shortest average distance to all others. The node’s region
of representation is a hyper-sphere centered at the representative object with a
radius that is greater than or equal to the distance from it to any other object
in the same node. Figure 2 illustrates a tree-based MAM upon objects in a
two-dimensional space. We assume that each node stores up to 4 objects. In
Figure 2a, four nodes with representatives A, B, C and D are defined out of
all objects at the lowest level h. At level h − 1, only these representatives are
considered; as it can be seen in Figure 2b, object D is selected to represent the
previous level’s representatives into a single root node. When using a MAM, the
triangle inequality property and the representatives serve as a basis to prune
unnecessary distance calculations, thus leading to efficient data manipulation.

3 Related Works

To evaluate the distances from objects to their k-th nearest neighbors is one
of the simplest approach to spot outliers. The KNN-Outlier method ranks the
objects’ respective distances to their k-th nearest neighbors, or KNN distances,
from longest to shortest, and gives higher outlierness scores to objects with
higher KNN distances. It is the basis for many other works, like Orca [3] and
RBRP (Recursive Bin Partitioning and Re-projection) [7].

LOF (Local Outlier Factor) [4] is another well-known outlier detection
method. It introduced the concepts of core distance and reachability distance,
inspiring many posterior works, such as LOCI (Local Correlation Integral) [15],
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aLOCI (Approximated Local Correlation Integral) [15] and ABOD (Angle-
Based Outlier Detection) [11]. According to LOF, a core object is an object
that has at least a certain number of neighbours in its ξ-neighborhood. An ob-
ject x is density-reachable from object y if there is a chain of objects p1, p2, ...pq,
where p1 = y and pq = x, such that pi+1 is in the ξ-neighborhood of pi for
i ∈ {1, 2, ... q − 1}. The core-distance of an object x is the smallest distance ξ
that makes it a core object. The reachability-distance of x is the smallest dis-
tance ξ that puts it in the ξ-neighbourhood of a core object y. LOF employs
these concepts to calculate outlierness scores for all data objects according to
their ξ-neighbourhoods’ density of objects in the feature space.

From here on, we briefly describe methods that were developed having in
mind the problems inherent to high dimensional data. Two basic approaches
have been explored in the literature: subspace analysis and angle-based analysis.
A subspace is a representation of the original space that excludes some of the
dimensions/attributes present in the latter. Since a proper subspace has lower
dimensionality than that of the original space, the data projection can alleviate
the dilution and noise effects present in higher dimensional spaces and may also
improve the contrast for outlier detection methods that use distances as a basis.

Unfortunately, the number of distinct subspaces to analyze grows exponen-
tially with regard to the number of attributes of a dataset. Therefore, extensive
subspace search is not feasible. Aggarwal and Yu [2] faced this issue using an
evolutionary algorithm. Their method works by iteratively improving candidate
sets of subspaces until a final set of feasible subspace candidates is generated.
OUTRES [14] works by performing statistical tests upon subspace projections
of dataset objects, starting from 1-dimensional projections and adding new di-
mensions one-by-one. Only subspace projections that pass their statistical test
are considered. OUTRANK (Outlier Ranking) [13] enumerates as outliers the
objects that overlap less, considering their presence or absence inside clusters
found in distinct subspaces. HiCS (High Contrast Subspaces) [9] selects feasible
subspaces by performing a statistical test upon each candidate subspace. HiCS
itself does not measure the outlierness of objects; it merely retrieves and aggre-
gates the results obtained by a coupled outlier detection method, such as LOF.
Thus, HiCS is described by its authors as a “meta” outlier detection method.
Finally, note that all of the aforementioned methods allow to set thresholds in
an attempt to prune uninteresting subspaces.

ABOD (Angle-Based Outlier Detection) [11] uses a different approach. It
was inspired by previous research works in the domain of text comparison that
had verified that angles are more resilient than distances to the “curse of high
dimensionality”. The authors of ABOD noted that this fact remains true also
when detecting outliers from high-dimensional data in a general context, and
not only for text. For each object P , ABOD calculates the angles between every
possible pair of objects (x, y) using P as the pivot, such that x 6= y 6= P . The
variance of angles is then attributed to P as its outlierness score. Small variances
of angles indicate outliers; larger variances refer to inliers. The intuition here is
that outliers tend to be in the borders of the feature space, so they have neighbors
concentrated in one specific direction, while the inliers’ neighbours are spread
all over the space. Figure 3 illustrates this idea considering an inlier (Figure 3a)
and an outlier (Figure 3b). In both cases, colored semi-circles represent some of
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the angles associated to pairs of objects when taking the object of interest P
as the pivot. Figure 4 complements this example by plotting the corresponding
angle values and variances.

Fig. 3: ABOD’s angle-based analysis
for an inlier (left) and an outlier (right).
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Fig. 4: Angle values and their variances
(outlierness scores) for data in Figure 3.

ABOD may not be limited in practice by data dimensionality. However, due
to scalability issues, its use is clearly impractical for data of high cardinality. It
computes angles for every possible triple of objects, so ABOD is O(n3) where
n is the number of objects. LB-ABOD(Lower Bound-based ABOD) [11], FastA-
BOD [11] and FastVOA (Fast Variance Of Angles) [16] improve upon ABOD
focused on tackling its scalability issues. Unfortunately, they either obtain only
minor speedup or degrade accuracy considerably.

4 Unsupervised outlier detection at work

Many of the state-of-the-art methods in outlier detection validate their results
only on synthetic data of low cardinality. Some methods are also tested for one
or two real applications using data with up to a few thousand objects, but not for
a broad range of applications in which diversity takes place, nor using datasets
that are as large as the ones required for commercial use. Therefore, it is still
unclear how efficient and effective these methods are to be used in the real world.

In this section, we shrink this limitation considering a variety of real-world
tasks of high impact, like spotting cyberattacks, clinical pathologies and abnor-
malities in nature. We studied the behaviour of 8 state-of-the-art algorithms face
to 8 datasets of distinct natures, that is, data from diverse real applications with
varying cardinality and dimensionality. To make it possible, we assume that the
ground truth created by specialist users is correct, and verify whether or not the
algorithms are able to obtain similar results in an automatic and timely manner.
The main motivation here is that outlier detection must be useful in practice, not
only in academia. Specifically, we focus on answering the questions as follows:

1. How effective and efficient are the state-of-the-art algorithms to be used in
diverse real world applications?

2. What are the best applications for each algorithm?
3. Is there any algorithm with remarkably high accuracy in a general context?

4.1 System configuration

The algorithms studied are: KNN-Outlier, LOF, ABOD, FastABOD, LB-ABOD,
FastVOA, aLOCI and HiCS. We used the Elki (https://elki-project.github.io)
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implementation for all algorithms, except for FastVOA that was evaluated with
an implementation of our own. The algorithms were tested in a Xeon E5-2640v3
machine with 16 GB of RAM, running Debian 9 64-bit. The number of samples
k was set to 100 in both FastABOD and LB-ABOD. For LB-ABOD, we also set
parameter l as two times the number of outliers known to exist in the ground
truth. The same selection was used for parameter k in KNN-Outlier, LOF and
HiCS. Finally, FastVOA was tuned with t=100, s1=1,600 and s2=10, following
its authors recommendation.

The evaluation was performed by asking each algorithm for the o objects
with the highest outlierness scores, where o is the number of outliers present in
the ground truth. Considering correctly detected outliers as true positives (tp),
the accuracy of each algorithm was calculated as tp

o . Every experiment was ran
5 times. We report average accuracy and average runtime.

4.2 Datasets

Table 1 summarizes the datasets studied. They are available at the ODDS repos-
itory (http://odds.cs.stonybrook.edu/). All datasets come from real-world appli-
cations and include ground truth created by specialist users. For brevity, they
are described in the following with focus on the practical benefits of spotting
outliers in each case. Detailed descriptions are found in the data source website.

– BreastW and Mammography: two datasets with features from medical
exams of breast cancer suspicious cases. They were collected in separate from
two distinct locations. Spotting outliers here means detecting severe health
problems, that is, distinguishing between the benign and the malignant cases.

– Cardio: features extracted from Fetal Heart Rate (FHR) and Uterine Con-
traction (UC) of cardiotocograms classified by expert obstetricians. To spot
outliers in this scenario is important to prevent and treat heart malfunctions.

– Annthyroid: features from medical thyroid exams. Here, to detect outliers
refers to the identification of the hypothyroid disease in human patients.

– Satimage-2: features from satellite imagery. Here, to spot outliers means
uncovering abnormal and unexpected patterns of topography, land use, etc.

– Shuttle: features collected from the use of a space shuttle. Identifying out-
liers here means spotting potentially dangerous in-flight abnormalities.

– Http (KDDCUP99): log files of network communication. To spot outliers
here means distinguishing between cyber attacks and regular transactions.

– Musk: features extracted from molecules classified as musk or non-musk by
human experts in chemistry. Spotting outliers in such kind of data helps dis-
covering new material that may be valuable to pharmaceutical corporations.

4.3 Results

Table 2 reports accuracy and runtime results for the algorithms and datasets that
we studied1. Runtime results are in minutes. As it was expected, some of the

1 For brevity, the last column of Table 2 reports the results obtained with our proposed
MetricABOD algorithm. They will be discussed latter in the paper; see Section 5.1.
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Table 1: Summary of datasets.

Dataset # Axes # Objects # Outliers Dataset # Axes # Objects # Outliers

BreastW 9 683 239 Mammography 6 11, 183 260

Cardio 21 1, 831 176 Annthyroid 6 7, 200 534

Satimage-2 36 5, 803 71 Shuttle 9 49, 097 3, 511

Http (KDDCUP99) 3 567, 479 2, 211 Musk 166 3, 062 97

algorithms had unfeasibly high runtime requirements for our largest datasets
Shuttle and Http (KDDCUP99), with ∼ 50k and ∼ 500k objects respectively.
Therefore, we represent with “N/A” the cases that exceeded a timeout limit of
24 hours. With regard to accuracy, note that many of the state-of-the-art tech-
niques failed to return what the application specialists expect from their own
data. LOF, HiCS, FastABOD and FastVOA had the lowest average accuracies,
overall. On the other hand, aLOCI, ABOD, LB-ABOD and KNN-Outlier per-
formed considerably better, being the most accurate methods in average. Let us
highlight that the original ABOD method obtained the the second best accuracy,
but its use is unfortunately prohibitive due to scalability issues. In fact, ABOD
is the worst methods in terms of runtime. The variation LB-ABOD is slightly
faster without losing much in accuracy, although its runtime requirements are
still far from being acceptable for most real-world uses. Finally, FastABOD is
tens of times faster than ABOD and LB-ABOD in average, but its accuracy
degrades considerably, that is, it spots correct outliers in only 34% of the times.

It is important to note that bad results over specifc datasets occurred for all
methods, even for KNN-Outlier and ABOD that are overall the most accurate
ones. Remarkable examples are: KNN-Outlier with the Http network logs and
ABOD with the Musk chemical data. This scenario was already expected; it
simply corroborates the fact that the theoretical outlier detection models make
assumptions that may not reflect the true nature of outliers in every application.

Table 2: Accuracy/runtime (in minutes) results.

Dataset ABOD LABOD FABOD LOF KNN aLOCI HiCS FVOA MABOD

BreastW 0.95/0.04 0.95/0.04 0.94/0.00 0.32/0.00 0.94/0.00 0.62/0.00 0.22/1.16 0.47/0.16 0.95/0.00

Cardio 0.52/1.23 0.52/1.25 0.36/0.01 0.23/0.00 0.51/0.00 0.04/0.00 0.32/10.0 0.19/0.46 0.61/0.00

Sat-2 0.88/58.9 0.88/61.9 0.29/0.06 0.07/0.02 0.91/0.02 0.00/0.00 0.11/36.5 0.11/1.59 0.90/0.01

Shuttle N/A N/A 0.31/9.24∗ 0.19/0.70 0.34/0.68 0.88/9.28 N/A 0.44/20.8 0.58/0.09

Annth 0.25/123 0.24/81.8 0.26/0.09 0.32/0.02 0.24/0.01 0.10/0.00 0.15/28.7 0.15/2.06 0.24/0.01

Mammo 0.28/253∗ 0.11/223∗ 0.26/0.28 0.23/0.02 0.27/0.04 0.08/0.03 0.21/60.9 0.17/3.42 0.26/0.03

Http N/A N/A N/A 0.04/24.0 0.03/58.7 0.98/0.24 0.05/194 0.00/272∗ 0.98/2.98

Musk 0.07/7.50 0.07/7.33 0.02/0.03 0.00/0.03 1.00/0.03 0.98/0.00 0.95/8.89 0.05/0.80 0.77/0.01

Average 0.49/73.9 0.46/62.5 0.34/1.38 0.17/3.09 0.53/7.43 0.46/1.19 0.28/48.5 0.19/37.6 0.66/0.39

∗ result obtained on one AMD EPYC 7571 machine with 128GB RAM, due to main memory exceed.
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5 MetricABOD

The results reported so far indicate that ABOD is one of the most accurate out-
lier detectors in a general context. Unfortunately, ABOD’s cubic time complexity
on the number of objects makes its use impractical for most real-world scenarios.
Data dimensionality does not really play a factor in ABOD’s runtime, even less
with precomputation of inner products to make angle calculations faster. Thus,
one must reduce the number of calculations per object to speed-up ABOD.

As it was discussed before, ABOD uses every data object P as the pivot for
O(n2) angle calculations, where n is the total number of objects. Specifically, the
outlierness score of an object P is the variance of angles between every possible
pair of objects (x, y) where P is the pivot. Obviously, x, y and P must be distinct
objects. Figures 3 and 4 from the previous Section 3 illustrate this process.

To calculate angles only for pairs (x, y) taken from a sample dataset is
one clever way to achieve better scalability, still obtaining an outlierness score
for every data object. It turns the original O(n3) complexity into O(n.m2)
with n � m, where n and m are the full dataset cardinality and the sample
size respectively. Obviously, the use of samples leads to approximate outlierness
scores that may negatively impact the accuracy of results. So, the question is:

– How to select appropriate objects to be in the sample?

Random sampling is a quick and unburdensome way to answer this question.
In fact, it has already been evaluated in one of the existing ABOD sequels, the
FastABOD algorithm. However, in high-dimensional spaces, random sampling
sports unbearably magnified sampling errors, thus leading to skewed variances
of angles. Due to this fact, FastABOD’s authors suggest the use of one distinct
sample for each data object: its own k nearest neighbours. In other words, FastA-
BOD computes approximate outlierness scores for each object P by using P as
the pivot for angle calculations among its own k-nearest neighbours. Unfortu-
nately, k-nn sampling considerably degrades accuracy, as it could be observed in
the results of the previous section.

This section presents a novel sampling strategy to improve ABOD by taking
advantage of tree-based Metric Access Methods (MAM). As it was described in
Section 2.2, tree-based MAMs have nodes that follow an hierarchical organiza-
tion. Each node stores a set of objects; one of them is selected to be the node’s
representative, which is usually the object with the shortest average distance
to the others. The leaf nodes store all dataset objects; their representatives are
stored redundantly in nodes of the immediate higher tree level, from which rep-
resentatives are also selected. This organization continues recursively up to the
root of the tree; see Figure 2 for an illustrative example.

The nodes of a tree-based MAM are built in a bottom-up fashion, like in a B-
tree, so to minimize the number of levels, the number of nodes per level and the
overlap among the nodes’ hyper-spheres of representation in the feature space.
This fact is essential to our proposal: it means that the representatives of nodes
in any tree level preserve key characteristics of the full dataset, with more or less
details according to the level. The highest degree of detail is in the leaf nodes’
representatives. Since the representative is the object with the shortest average
distance to the others, it is akin to the first moment or center of mass of the
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node’s hyper-sphere. So, it is similar to the median for the node’s objects. In fact,
as it happens with random sampling, there is a strong correspondence between
the representatives’ statistical moments and those of the full dataset. Note, how-
ever, that low density regions in the feature space end up underrepresented with
random sampling, while it never happens with MAM representatives. The rep-
resentatives also compare favorably with FastABOD’s k-nn sampling. Although
the k nearest neighbours of an object account for most of its variance of angles,
to use them as references does not necessarily discriminate outliers correctly, as
it was shown in the previous section. For example, FastABOD fails for the case
of an outlier object whose k nearest neighbours spread in many directions, while
the rest of the dataset, i.e., the vast majority of it, concentrates in a single di-
rection. Note that this case would not be a problem with MAM representatives;
most of them would also concentrate in one direction, just like in the full data.

With that in mind, we propose to use the leaf nodes’ representatives from
any tree-based MAM as samples to speed-up ABOD. Algorithm 1 gives the full
pseudo-code; let us call it the MetricABOD algorithm. We argue that the
leaf node’s representatives lead to a reasonable estimate for the exact variances
of angles, and report latter in the paper experimental results that support our
claim. In fact, the representatives even improved accuracy for the datasets that
we studied; see details at Section 5.1. Figure 5 illustrates how our MetricABOD
works. To easy comprehension, the same toy data of our running example from
Figure 2 is reused here. There are n = 15 objects with two attributes each.
At first, a tree-based MAM is created. Four circles in the 2-dimensional space
illustrate its leaf nodes. The representative objects are A, B, C and D. In this
setting, the approximate outlierness score for an object of interest P is computed
per P as the pivot for angle calculations among pairs of objects (x, y), such that
x, y ∈ {A,B,C,D} and x 6= y 6= P . Colored semi-circles illustrate some of the
angles to be computed. Specifically, only C4

2 = 4!
2!.(4−2)! = 6 angle calculations are

performed to process P . Note that the original ABOD algorithm would require
Cn−1

2 = 14!
2!.(14−2)! = 91 calculations for the same case.

In a general scenario, our MetricABOD avoids computing Cn−1
2 − Cm−1

2

angles per object, with n� m, where n and m are respectively the full dataset
cardinality and the number of leaf nodes, i.e., the sample cardinality. So, it turns
ABOD’s O(n3) overall complexity into O(n.m2). Note that the time complexities
to build and traverse a tree-based MAM are respectively O(n log n) and O(n) for
the most typical scenarios, so the additional tree-related cost does not modify the
aforementioned overall complexity of MetricABOD. Finally, it is worth noting
that the sample size m is linearly correlated with the degree of the tree, i.e., the
maximum capacity of a node, so m can be easily tuned for any case of use.

5.1 Results: comparison with related works

This section describes the experiments performed to evaluate our proposed
MetricABOD algorithm. The state-of-the-art Slim-tree [17] MAM was used as
the supporting tree structure in all experiments. MetricABOD was validated on
the same 8 real world datasets of the previous Section 4 using the same method-
ology and system configuration. For a fair comparison with the related works,
the tree degree was tuned to generate nearly m = 100 leaf nodes’ representatives
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Algorithm 1 The MetricABOD algorithm

Require: Data – input dataset;
Ensure: Result – pairs (P,Score) with the objects of Data sorted as per their corre-

sponding outlierness scores;
1: Build a tree-based MAM for dataset Data. Let it be Tree;
2: Sample = ∅;
3: for each leaf node n of Tree do
4: Let r be the representative object of n;
5: Sample = Sample ∪ {r};
6: end for
7: Result = ∅;
8: for each object P in set Data do
9: Angles = ∅;

10: for each object x 6= P in set Sample do
11: for each object y 6= x 6= P in set Sample do
12: Angle(x,y) = the angle θ−→

Px
−→
Py

between the difference vectors
−→
Px and

−→
Py;

13: Angles = Angles ∪ {Angle(x,y)};
14: end for
15: end for
16: Score = the variance of angles in Angles;
17: Result = Result ∪ {(P,Score)};
18: end for
19: Sort Result in descending order with regard to the Score values.

Fig. 5: Our proposed angle-based analysis for an object P . Circles in the 2-dimensional
space illustrate the leaf nodes of any tree-based MAM. The new MetricABOD algorithm
uses only the representatives A, B, C and D to compute the outlierness score of P .

X

Y
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B

D

P

C

in every experiment; note that it is the same value used for the related works’
similar parameter k. As it was done for the other algorithms, we were particu-
larly interested in evaluating MetricABOD’s ability to spot what the application
specialists expect from their data in an automatic and timely manner.

The last column of Table 2 reports the results obtained with MetricABOD.
Note that the tree-related costs are included in the runtime results. As it was
expected, MetricABOD coped with low-to-high dimensional data being consid-
erably faster than the original ABOD method; surprisingly, it even improved
ABOD’s accuracy for the datasets that we studied. In fact, our proposed algo-
rithm made the analysis up to thousands of times faster when compared with
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the 8 related works evaluated, still being in average 26% more accurate than
the most accurate related work, i.e., KNN-outlier. These results indicate that
our MetricABOD is the best option, among those, which were considered, for
use with a broad range of applications in which diversity takes place, especially
when considering datasets that are as large as those required for commercial use.

To beter understand why MetricABOD outperformed ABOD in accuracy,
we investigated the case with the highest discrepancy; that is, the analysis of
the Musk dataset. Ground truth shows that there are 97 outliers in this data.
ABOD and MetricABOD respectively identified 7% and 77% of them. There
are 29 common objects among the 97 most outlying objects indicated by each
technique, and only 7 of them are true outliers. Interestingly, the common objects
are among ABOD’s most outlying objects, while they figure among the least
outlying ones for MetricABOD, thus further corroborating the superiority of
our proposal’s results for this dataset. Let us highlight that Musk has the largest
dimensionality among all datasets studied, with 166 attributes. Due to this fact,
we conjecture that the dimensionality was high enough to affect ABOD’s results,
even with its angle-based analysis that is less susceptible than distances to the
curse of the high dimensionality. On the other hand, there are evidences in the
literature [18] indicating that to spot appropriate representatives for a dataset
is somehow similar to reducing its dimensionality. Thus, we believe that the
tree nodes’ representatives obtained from Musk reduced the effects of the high
dimensionality, thus enabling the angle-based analysis to obtain better results.

5.2 Results: spotting outliers in adimensional data

This section describes additional experiments performed with two real collections
of text data. We aim at showing that the new MetricABOD algorithm works
also for adimensional, purely metric data. As we discussed before, MetricABOD
must compute angles among pairs of objects (x, y) using other object P as the
pivot. But, how to compute angles in an adimensional data space? To tackle the
problem, we used a simple angle estimation strategy based on distances only:
given x, y and P , the corresponding angle was computed from a triangle in the
2-dimensional space, whose side sizes are distances d(x, y), d(x, P ) and d(y, P ).

The datasets studied are:

– NSF abstracts: the NSF Research Award Abstracts 1990-2003 from the
UCI repository (archive.ics.uci.edu/ml/datasets/). It has 129, 000 abstracts
describing awards granted by the National Science Foundation for basic re-
search from 1990 to 2003. The abstracts were represented as sets of steamed
words, and compared using the Jaccard distance function;

– Brazilian names: a set of 2, 755 first names used in Brazil. It is avail-
able at: https://gabrielrb.net/2011/10/18/dados-prontos-em-formato-sql-e-
csv/. The L-Edit distance function was applied to compare the names.

We ran MetricABOD in both datasets, thus obtaining the corresponding
outlierness scores. Since there is no ground truth for these data, accuracy was
empirically evaluated by verifying whether or not the highest scores are in objects
far away from the others. Figure 6 ranks the Brazilian names according to their
average distances, on metric space, to all other names. Figure 7 ranks the NSF

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_14

https://dx.doi.org/10.1007/978-3-030-22741-8_14


Fast and Scalable Outlier Detection with Metric Access Methods 13

abstracts in a similar way. In each illustration, orange vertical lines indicate the
top-20 outliers. Five of these lines report the actual names or abstracts’ NSF
identifiers; they are the top-5 outliers. Let us emphasize that in most cases the
outliers are far away from any other object; note the log scale in the horizontal
axes. Finally, as Brazilian citizens, we also argue that the most outlying names
are indeed very distinct from names of people that are regularly used in Brazil.
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Fig. 6: Rank of Brazilian names as per
their average L-Edit distances to all
others. Orange lines are the top-20 out-
liers; lines with text are the top-5 ones.
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their average Jaccard distances to all
others. Orange lines are the top-20 out-
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6 Conclusion

This paper described an empirical study performed on unsupervised outlier de-
tection using 8 datasets that refer to a variety of real-world tasks of high impact,
like spotting cyberattacks, clinical pathologies and abnormalities in nature, and
8 algorithms from the state-of-the-art. We presented the lowdown on the re-
sults obtained, pointing out to the strengths and weaknesses of each technique
from the application specialist’s point of view, which is a shift from the
designer-based point of view that is commonly considered. Interestingly, many
of the techniques had unfeasibly high runtime requirements or failed to spot
what the specialists consider as outliers in their own data. To tackle this issue,
we carefully designed MetricABOD: a novel ABOD-based algorithm that made
the analysis up to thousands of times faster, still being in average 26% more
accurate than the most accurate related work. The main innovation is a new
usage for tree-based Metric Access Methods that were originally designed to in-
dex complex data. This improvement is essential to enable outlier detection in
many real-world applications for which the existing methods lead to unexpected
results or unfeasible runtime requirements. Additionally, we studied two real col-
lections of text data to show that our MetricABOD works also for adimensional,
purely metric data.

Finally, we must highlight that all theoretical models existing for unsuper-
vised outlier detection make assumptions that may not reflect the true nature of
outliers in every single application [5, 1]. The results reported in our work cor-
roborate this fact; they demonstrate how a given method can be very accurate
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in specific cases and still fail in others, in the sense of returning or not what the
application specialist expects from his/her data. Here, one must remember that
specific data mining tasks all have biases that are not well-understood; they may
be hindering some of the techniques that we studied. Due to this fact, super-
vised outlier detection can be handy in tasks where unsupervised methods do not
perform acceptably. Further discussion can also be conducted as to the validity
of the ground truth used and their representativeness as outliers. Nevertheless,
a few exceptions apart, it is always desirable that outlier detection techniques
return what the application specialists understand as outliers in their own data.
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