Function and pattern extrapolation with product-unit
networks

Babette Dellen!, Uwe Jaekel!, and Marcell Wolnitza®:2

! Department of Mathematics and Technology - RheinAhrCampus Remagen, University of
Applied Sciences Koblenz, Joseph-Rovan-Allee 2, 53424 Remagen, Germany
2 Third Institute of Physics - Biophysics, Georg-August-University Géttingen,
Friedrich-Hund-Platz 1, 37077 Géttingen, Germany
{dellen, jaekel,wolnitza}@hs-koblenz.de

Abstract. Neural networks are a popular method for function approximation and
data classification and have recently drawn much attention because of the success
of deep-learning strategies. Artificial neural networks are built from elementary
units that generate a piecewise, often almost linear approximation of the func-
tion or pattern. To improve the extrapolation of nonlinear functions and patterns
beyond the training domain, we propose to augment the fundamental algebraic
structure of neural networks by a product unit that computes the product of its
inputs raised to the power of their weights. Linearly combining their outputs in
a weighted sum allows representing most nonlinear functions known in calcu-
lus, including roots, fractions and approximations of power series. We train the
network using stochastic gradient descent. The enhanced extrapolation capabili-
ties of the network are demonstrated by comparing the results for a function and
pattern extrapolation task with those obtained using the nonlinear support vec-
tor machine (SVM) and a standard neural network (standard NN). Convergence
behavior of stochastic gradient descent is discussed and the feasibility of the ap-
proach is demonstrated in a real-world application in image segmentation.

Keywords: Product units - Neural network - Function extrapolation

1 Introduction

Complex machine learning problems that have been intractable in the past are now be-
ing solved using deep neural networks performing fast computations on parallel hard-
ware [20, 11,9, 10, 15]. Standard neural networks eventually perform a piecewise, al-
most linear approximation of the function or pattern that is to be learned [18, 19, 13,
8, 16, 14,21]. This limits extrapolation of nonlinear relationships into areas of the fea-
ture space that are not covered by the training data. However, in many applications,
extrapolating and making predictions from data is exactly what is required. In the past,
solutions of this problem have been sought by nonlinearily transforming the data im-
plicitly or explicitly into a higher dimensional space [5, 17] or by adding nonlinear units
to the network representing terms of higher-order polynomials [4]. The disadvantage is
that either the basis of this nonlinear space or a nonlinear kernel has to be provided

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

2 Babette Dellen, Uwe Jaekel, and Marcell Wolnitza

beforehand. Alternatively, it would have to be adapted to the problem at hand by con-
sidering an exponentially increasing repertoire of combinatorial combinations of them,
leading quickly to a computationally intractable situation.

In this paper, we follow a different approach: We expand the algebraic capabili-
ties of the neural network by integrating input multiplication at the operational level
through product units [6, 12], representing a computational multiplicatory analogon to
the classical summation unit, the McCulloch Pitts neuron (McP) [13] (see Fig. 1a-b).
We combine the output of several product units by means of a classical summation unit
into a generalized algebraic operations network (GAON) (see Fig. 1c), which then can
be used to build larger networks (see Fig. 1d).

Product units have been first introduced in the past to learn the higher-order input
combinations of nonlinear problems such as the parity problem [6, 12]. However, for
the rather simple networks investigated in these studies, difficulties were arising when
using backpropagation to train those networks. For example, it was reported that the
parity-8 problem could not be trained using backpropagation [12]. In that particular
case, the neural network consisted of a single product unit. It was assumed that the
solution space for product units is too convoluted, giving rise to many local minima.
Weight initialization turned out to be especially difficult for product-unit networks. This
discouraging result probably explains why the idea of product-unit neural networks was
not taken much further in the following years.

Our work differs from those approaches in several ways: (i) We only use positive
inputs to avoid difficulties otherwise arising for exponents representing roots. This is
achieved by taking the absolute value of the input before feeding it into the product unit.
For problems containing negative values, we first feed the input to a standard summation
layer (which is trained together with the nonlinear network) to transform the input data
into the positive domain. (ii) When solving classification problems, the exponents (or
weights) of the product unit can only take positive values. This avoids exploding terms
for small input data, but does not limit the applicability of the approach (see Discussion)
(iii) We consider only networks consisting of substructures of several product units, i.e.,
the GAON (see Fig. 1c). This property allows a larger range of functions to be described
by the network. (iv) For the parity-8 problem and a real-world labeling problem with
mutliple classes we choose a network in which the output of several GAONS is fed into
a standard summation layer with softmax activation. Decision hypersurfaces emerge
as intersections of GAON functions in the data space. Different from standard neural
networks, those hypersurfaces can be highly nonlinear. (v) We explore especifically the
extrapolation capabilities of product-unit networks and compare them to the ones of
standard neural networks [8, 16, 14, 13,21] and the nonlinear support-vector machine
[5,17].

For the problems and the network architectures that we studied for this work, we
did not encounter problems with convergence. This is not in contradiction with the
studies described before [6, 12]. Our network is larger and employs the product units in
a different way.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

Function and pattern extrapolation with product-unit networks 3

2 Methods

In this work, we propose to augment the algebraic structure of neural networks by al-
lowing generalized multiplicatory operations to take place at the level of their basic
computional units. Artificial neural networks consist of simple computational units that
receive inputs from many other units of the same kind (see Fig.1a) [13, 8, 18] and form
a weighted sum of these inputs that is passed through a threshold or other rectifying
function to still other units of the same kind, which process their inputs in like manner.
This elementary unit is known as the McCulloch Pitts neuron (McP) [13]. In the stan-
dard neural network, these units are arranged in layers, and information is flowing only
in a single direction through the layers [19]. Learning is usually performed by adjusting
the weights through error backpropagation after definition of a suitable loss (or cost)
function [21]. Let x = (1, ..., ;) be a n-dimensional input vector that is supplied to
an McP unit; then the net output of this unit (prior to any rectification step) is defined by
Osum(X) = >, w;x;, where the w;, ¢ = 1,..., n are the weights of the connections
(see Fig. 1a). Solutions can be thought of as a division of the data space by a hyper-
plane [18], with class regions corresponding to the resulting half spaces. If one seeks
to separate regions that are defined by highly nonlinear boundaries, many hyperplanes
are needed to carve the hypervolume corresponding to the class-defining region. This
can be achieved by arranging many McP neurons in a layer and combining their out-
puts again using an McP unit, representing the output unit of the resulting multilayer
perceptron [19].

In contrast to the classical approach, we aim at separating the class-defining regions
by nonlinear hypersurfaces. To achieve this, we use product units [6, 12], similar to the
MCcP unit, that perform algebraic multiplication instead of summation (see Fig. 1b, left
panel), yielding the output omu(x) = [];—; ;’*, where the w;, i = 1,...,n are real
numbers, representing the weights of the connections.

From a computational point of view, the operation performed by the multiplication
unit can be implemented through an equivalent network consisting of a balanced ar-
rangement of McP units with log and exp activation functions (see Fig. 1b, right panel).
Switching from summation to multiplication can be achieved by taking the logarithmic
values of the inputs, i.e., logxy,...,logx,, and applying the exponential function to
the net output, yielding

Omult(x) = exp (Z w; 10g l‘i>

=1
n
j— w‘l,
SIEe
=1

To approximate nonlinear functions of the type

m n
Wi
(21, ey) = E wy, Hml ,
k=1 i=1

we arrange m or more multiplication units in a layer (the hidden layer) and connect
it to an McP neuron, i.e., a summation unit (see Fig. 1¢). This arrangement defines the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

4 Babette Dellen, Uwe Jaekel, and Marcell Wolnitza

a) Algebraic Summation C) Generalized Algebraic Operations Network

(GAON)

X, e X, ey

WXy WX; W, Xn
f n
f
b) Algebraic Multiplication Surrogate Network
X % X, |1 |J)l(n
Wy w w
X | Xj | X N Iog wg Iog
B w, log(x,) wlog(x w,log(x,)
+

£
|

d) Feedforward network with GAON-units

Inputs

Dense layer (summation)
with identity activation

Dense layer (GAON)
with identity activation

Dense layer (summation)
with softmax activation

[Softmax]| [Softmax| [Softmax]
Outputs

Fig. 1. a) Algebraic summation by the classical McCulloch-Pitts (McP) unit. b) Left panel: Al-
gebraic multiplication unit: Inputs are raised to the power of their weights and then multiplied,
followed by an activation f* [6, 12]. Right panel: Algebraic multiplication (gray broken line)
can be implemented by a surrogate network with alternating log and exp activation functions.
Here, the absolute values of the inputs are taken and a small shift is added to avoid zero values
in the input. c¢) Generalized algebraic operations network (GAON) built from elementary sum-
mation and multiplication units. d) Larger network including a hidden layer of GAONSs. The first
dense layer allows transforming the input data into a suitable domain. Several parallel GAONs
implement nonlinear input-output relations and their output is passed on a dense summation layer
performing softmax activiation for classification purposes.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

Function and pattern extrapolation with product-unit networks 5

generalized algebraic operations network (GAON). We choose the identity as activation
function f* for the hidden multiplication units of the GAON. Then, the net output of
the hidden layer of the GAON is given by

m n

wk,v

ocaon(x) = Y _wy, | [=™
k=1 i=1

where the wy, ; are weights from the input units to the hidden units of the GAON, and
the wy, are the weights from the hidden units to the output node of the GAON. The final
output of the GAON is then § := f (0gaon(X)), Where f is the activation function of the
output unit. For function approximation tasks, we choose f to be the identity. For classi-
fication tasks, we choose the activation function to be f(b) = 1/(1+e~?). This form of
network not only allows representation of any polynomial of n-input variables, but also
fractions and roots. Functions that can be described by power series (such as cosine and
sine) could potentially be approximated by the network if a large enough number of hid-
den multiplication units is used. Training is performed using error backpropagation [21,
19]. The loss functions and further details are provided in the appendix. Furthermore,

Function Regression
Relative log. Loss

&

—
©

Rel. log. Loss

. = .
S

14 I Extrapolation Region

—~, 12 0 2000 4000 6000
Epoch

Interpolation Region

PO N A O ©

Fig. 2. Surface plot of the function y = z1,/72 + 2. Blue colors indicate the data used for
training of the methods, the red colors represent the test data used for evaluation. Inset: The
relative logarithmic values of the loss function for the regression task during training are plotted
for the standard NN and the GAON.

we integrate GAON-units into larger networks (see Fig. 1d). First, the input is fed into a
dense layer of summation units with identity activation. A bias input is included. Then,
the output of the dense layer is processed by a dense layer of parallel GAON-units. The
GAON:-layer output provides input to the a another dense layer of summation units with
softmax activation. We use this network to solve multi-label classification tasks.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOIJ 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

6 Babette Dellen, Uwe Jaekel, and Marcell Wolnitza

3 Results

3.1 Function regression

We first test the network of Fig. 1c having m = 2 hidden units on a function-regression
task. For this purpose, we generate a data set consisting of feature vectors (z1, z2) and
output values y = z1,/T2 + x1-8. This function is plotted in Fig. 2. The input values
of the training data are in the range of x1, z2 € [0, 2], while those of the test data cover
the larger ranges x1, 22 € [0,4] . The respective areas of the function are plotted in
blue (training) and red (testing) color. In this way we can evaluate the extrapolation
capacity of the method. Using stochastic gradient descent, the algorithm converges to
a stable solution after less than 100 epochs, as seen in the inset of Fig. 2, where the
relative logarithmic loss is plotted as a function of the training epochs. We observed
similar convergence behavior for other choices of the input-output relationship. For
comparison, we use a standard neural network with one hidden layer of 10 hidden
McP units (standard NN). The standard NN is trained in the same way as the GAON
on the same training set (see appendix) [19]. As seen in Fig. 2, the value of the loss
function of the standard NN remains larger than that of the GAON even after many
epoch. We should note however that the learning rate of the GAON is slower than that
of the standard NN (by a factor of ~ 0.1), because the GAON is more sensitive to
weight changes than the standard NN (see appendix). This results in a larger number of
iterations per epoch for the GAON.

We further compare the extrapolation capabilities of our method with those of the
standard NN and the nonlinear support-vector machine (SVM), the latter for both poly-
nomial and radial-basis-function kernels (RBF) [3, 19]. The results are shown in Fig. 3.
To evaluate the results, we plot the predicted output ¢ as a function of the true value
y for the different methods. In case of perfect agreement, the points should lie on a
line, i.e., § = y (shown in black). The results are plotted as blue circles for interpo-
lated values (i.e., values that lie within the range of the training data) and as red dots
for extrapolated values (situated outside that range). It can be seen that the results from
the GAON lie close to the line of perfect agreement for both interpolated and extrapo-
lated predictions (Fig. 3a). For the standard NN (Fig. 3b) and the SVMs (Fig. 3c-d), the
extrapolated predictions mostly disagree with the observed values.

3.2 Classification

We further test the network on a data-classification task. Here, we use m = 10 hidden
units for the GAON, but similar results are obtained for other choices of m (not shown).
In this task, vectors belonging to class +1 (TRUE) have end points lying within an
area of symmetrical shape, namely a circle, a rectangle, and a diamond, defined by the
implicit function |z1|P + |z2[? < rP with p = 0.5, 2,20, respectively. The vectors
lying outside of the shape belong to class 0 (FALSE). Since the shapes are symmetric,
it suffices to train and test the methods on the absolute values of the input data. To
specifically test their extrapolation capabilities, we train the methods only on partial
shapes. The respective region of feature space used for training is underlaid in gray color
in the plots (see Fig. 4). We repeat the training and testing process 100 times, varying

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

Function and pattern extrapolation with product-unit networks

20 GAON Standard NN
» Extrapolated Prediction
o Interpolated Prediction
- Perfect Agreement

20

Jury
wv

predicted value g
=
o

20

20 SVM (RBF) 20 SVM (Po.l.yn’gmial)

predicted value g

0 5 10 15 20 0 5 10 15 20
true value y true value y

Fig. 3. Function-regression task. The function y(x1,x2) = 21,/Z2 + 1 is learned and the

predicted value is plotted against the true value for a) the GAON b), the standard NN, c) the SVM
with RBF kernel, and d) polynomial kernel.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOIJ 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

8 Babette Dellen, Uwe Jaekel, and Marcell Wolnitza

randomly drawn training sets and computing the frequency with which the data point
is assigned to the class TRUE. The frequency of occurrence is color-coded in shades
of blue and presented together with the correct class boundaries of the classification
problem (black line). In Fig. 4a, the results from the GAON are shown for the different
shapes. In areas where the patterns have to be extrapolated, our method outperforms the
standard NN (Fig. 4b) and the two SVMs (Fig. 4c-d) for all cases.

The accuracy of the classifications results obtained with the different methods for
the three shapes is presented in table 1. The GAON achieves higher accuracies than the
standard NN and the two SVMs in the extrapolation task for p = 0.5, p = 2 and p = 20.
The GAON outperforms all three methods in the extrapolation task. In the interpolation
task, the standard NN and the GAON achieve comparable accuracies.

Accuracy [%]

Method total interpolation extrapolation # Hidden Units/Support Vectors
p=0.5
GAON 97.68 £0.12 99.64 + 0.01 91.82 £ 0.48 10
Standard NN 97.66 4+ 0.04 99.65 £+ 0.01 91.69 £ 0.16 10
SVM (RBF) 94.65 + 0.04 99.04 £ 0.02 81.49 + 0.14 35297 £7.23
SVM (Polynomial) 94.40 & 0.37 99.43 £ 0.02 79.30 + 1.46 8.49 £ 0.08
p=2
GAON 98.80 £ 0.09 99.72 + 0.01 96.04 £ 0.35 10
Standard NN 97.80 £ 0.11 99.72 +0.01 92.03 £ 0.44 10
SVM (RBF) 97.30 + 0.03 99.50 £ 0.01 90.69 + 0.13 239.13 £4.90
SVM (Polynomial) 98.22 £ 0.24 99.61 &£ 0.02 94.03 £ 0.93 6.63 £ 0.09
p=20
GAON 99.22 £ 0.02 99.29 4+ 0.01 99.00 £ 0.06 10
Standard NN~ 98.46 £ 0.11 99.74 4+ 0.01 94.63 £ 0.45 10
SVM (RBF) 97.76 £ 0.03 99.40 &£ 0.02 92.83 £ 0.12 258.01 £ 5.64
SVM (Polynomial) 98.85 £ 0.05 99.44 + 0.02 97.07 £+ 0.16 942 £0.16

Table 1. Classification results for the different methods and data sets. The number of support
vectors is averaged over 100 trials.

3.3 Real-world application

As an illustrative example for a real-world application of product-unit networks, we
considered the problem of completing incomplete labelings of images as they occur
frequently in image-segmentation tasks. In Fig. 5a the image of a tobacco plant during
plant growth is shown [2]. Using graph-based image segmentation [7] and removing
segments below a critical size threshold, an imcomplete labeling of the image is ob-
tained (see Fig. 5b). Areas without label are depicted in black color. The number of la-
bels corresponds to the number of prominent leaves in the images plus the background.
The leaf pointing north is particularly poorly segmented by the method. Completing the
labeling of the image can be posed as a classification task, where the pixel coordinates

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

Function and pattern extrapolation with product-unit networks 9

p=2 p=20

EXTRA-

GAON
T

&) -
INTER-
NOollLvioOod
-) -

POLATION

N)
"

0

H
N
0
&
o
-
~

Standard NN
Xro

N
-
o
-
N
N
N
=)
-
N
)
N
o
-
N]

—_~
o
m '
X o 0 0
=
>
n 1 -1 1
2 2 2
2 1 0 1 2 2 1 0 1 2 2 1 0 1 2
2 2 2 — -
=
i) 1 1 1
IS
<)
c
% 2o ol 0
o
=
=
-1 - -
s 1 1
w
2 2 2
2 1 1 2 2 1 0 1 2 2 1 0 1 2
1) 1

Fig. 4. Classification results for a) the GAON, b) the standard NN, c) the SVM with RBF kernel,
and d) polynomial kernel for the different data sets. The frequency of occurrence of the class
label TRUE is color coded in shades of blue for 100 trials and shown together with the correct
class boundaries (black line).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOIJ 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

10 Babette Dellen, Uwe Jaekel, and Marcell Wolnitza

and their respective class labels ranging from 0 to 5 provide the input training data for
the classifier. Pixels, for which no label could be assigned, are not a part of the training
data.

We use these data to train the product-unit network shown in Fig. 1d. The two-
dimensional input data, i.e., the pixel coordinates, provide the input to a dense layer
consisting of two summing units without activation. A bias is provided to each of the
summing units to allow shifts of the data. The output of the two summing units is fed to
a layer of six GAON-units. The output of the GAON-layer then is passed on to another
layer of six summing units with softmax activation. For the loss function, Tensorflow’s
sparse categorical crossentropy is used [1]. Using gradient descent with batches of 40
data points, we obtained an accuracy of 0.9979 after 2000 epochs. We use the neural
network to extrapolate class labels into the previously unlabeled regions and obtain the
completed segmentation shown in Fig. Sc. The segments now assume the nonlinear,
approximately elliptic shape of the leaves.

4 Discussion

In this work, we augmented the algebraic structure of neural networks with a mul-
tiplicatory elementary unit [6, 12] that computes the products of its inputs raised to
the power of their weights, representing the multiplicatory analogon to the classical
McP-neuron. To evaluate the extrapolation capabilities of the network, we used both
a function-extrapolation task and a pattern-classification-extrapolation task. We could
demonstrate that the GAON outperforms the standard NN and the nonlinear support
vector machine for the given tasks. We presume that the gain in performance originates
from the property that the multiplier network can learn arbitrary functions of the form

™
E

o
8

being generated by the outputs of the hidden units [}, x;®*, allowing extrapolation

into unknown domains. The net outputs of the hidden units of the standard NN are
linear functions and as such do not represent a generating set, hindering extrapolation
of the pattern. The nonlinear support vectors machine is constrained by the choice of
the kernel function; the polynomial kernel SVM performs excellently for the circular
shape in our example, but in this case the kernel represents an almost perfect fit for the
characteristics of the pattern.

Our proposed network is structurally simple and the training straightforward. The
use of adjustable weights that are appearing as exponents of the inputs in the network
allows the GAON to learn arbitrary functions from the data. This property makes it
fundamentally different from polynomial classifiers, where a fixed set of predefined
polynomial basis functions is chosen for the discrimination function and combined in a
weighted sum [19]. Related to this, Bayesian neural networks employing higher-order
polynomials [4] have been proposed in the past, for which however similar restrictions

apply.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

Function and pattern extrapolation with product-unit networks 11

a) Original image

b) Incomplete segmentation

c) Completed segmentation

Fig.5. a) Grayscale image of a tobacco plant [2]. b) Incomplete segmentation obtained with
a graph-based image-segmentation method [7]. ¢) Completed segmentation obtained with a
product-unit network trained with the incomplete-segmentation result (for better visualization
of the results, the color code of the segment labels has been slightly modified).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

12 Babette Dellen, Uwe Jaekel, and Marcell Wolnitza

We restricted ourselves to positive weights in the data classification task. This pre-
vents failure when input values are near zero. However, this does not limit the applica-
bility of the method by any means. We explain this giving an example: The inequality
z% +22 < 1 contains a negative exponent, but it can be recast by multiplying both sides
with z; (given that we work with positive input data only, which can always be achieved
by shifting). This yields the new inequality 1 + z123 < 21, or 7123 — 7 < —1, which
still represents the same classification problem as the original inequality. Hence, there
exists an infinite set of discrimination functions with positive exponents that describe
the classification problem. More than that, we suspect that this property allows the
network to escape local minima by moving toward a more advantageous discriminant
function, securing convergence of the method. This conjecture might further explain
why the multiplier network is robust to changes in the number of hidden units when
solving classification tasks. However, when solving regression tasks, extrapolation per-
formance depends on the number of hidden units, and we observed that extrapolation
improves when the number of hidden units matches the number of basis functions of
the function space required for properly describing the input-output relationship. In all
cases our method leads to a very sparse representation of functions and patterns that
allows, unlike nonlinear SVMs, a direct interpretation of its components in terms of
mulitplicative relationships.

We further demonstrated that product units can be intergrated in larger networks
(see Fig. 1d) using the framework Tensorflow [1] by extrapolating labels in image seg-
mentation into unlabeled regions (see Fig. 5). This is particular useful when the shapes
of the objects that are to be segmented are unknown prior to the task. Our approach can
be applied to other labeling problem as well, e.g., the assignment of disparity labels to
pixels in stereo vision.

To address concerns regarding convergence of gradient-descent training, we revis-
ited the parity-8 problems [12] and trained the same network that was used to solve
the image-segmenation task (see Fig. 1d) for the parity-8 problem. The method con-
verged to solutions with accuracy 1. The authors of [12] searched for a single set of
weights that would classify the parity-8 data correctly by considering a network that
basically consisted of a single product unit only. In a larger product-unit network, there
presumably exists more than one weight combination that classifies the data correcty.
We reckon that this has an impact on convergence.

S Appendix

All methods are implemented in MATLAB. We use a training set size of 1000, drawn
uniformly from randomly distributed values in the range O, . .., 42 for the regression
task and —2,...,42 for the classification task. Every input is mapped onto the first
quadrant by using only absolute values. To test the inter- and extrapolation capabilities
of our network, we require the examples of the training set to satisfy the following
condition: |x1| > 0.5|x2|. This defines our interpolation region (represented as the
white space in Fig. 4). The examples of the test set are allowed to take on any value in
the range indicated above. We use self-coded functions for the GAON and standard NN
and built-in functions from Matlab for the SVMs.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

Function and pattern extrapolation with product-unit networks 13

We also implemented the GAON in Python within the Keras-API of the Tensorflow
library [1] to enable fast computation with graphics processing units (GPUs) and make
use of modularity. We used this framework to build the larger product-unit network used
for multi-label classification.

5.1 GAON.

For training in function-regression tasks, we use Z;VZI (9;—y;)? as loss function, where
y; is the true value corresponding to the input vector x; and y; the predicted value. For
network training in classifications tasks, we use the cross entropy € = — Zﬁvzl [y; log ;+
(1 —y;)log (1 — y;)] as loss function. IV is the number of training vectors.

For our runs with the GAON we use a constant learning rate of /,, = 102 and train
the network for 10000 epochs with stochastic gradient descent, using one training ex-
ample per iteration. One epoch is defined as a complete process over the whole training
set (corresponding to 1000 iterations in our setup). The initial values for the weights
in the first layer are drawn randomly from a uniform distribution, whereas those of the
second layer are normally distributed. Additionally we restrict the weights of the first
layer to be only positive in the training process (see main text).

For the results of the classifications (Fig. 4 and Table 1) we repeat the whole training
and testing process 100 times with varying training sets and present the mean along with
the standard error of the mean.

5.2 Standard Neural Network.

For our runs with the standard neural network we use a constant learning rate of [, =
10~2. We train the network with stochastic gradient descent for 10000 epochs with one
example per iteration. The initial values for the weights are drawn in the same as in the
GAON method, but here we do not restrict the weights in any layer. We used the same
loss functions as for the GAON.

5.3 Support Vector Machine.

For our runs with the SVMs we use the Matlab-function fitrsvm for the regression and
fitcsvm for the classification task. Our models include standardization (centering and
devision by standard deviation) of the input and an automatic selection of the scaling
factor by a heuristic procedure. The polynomial SVM has an order of four.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, 1., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems
(2015), https://www.tensorflow.org/, software available from tensorflow.org

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

14

10.
11.
. Leerink, L.R., Giles, C.L., Horne, B.G., Jabri, M.A.: Learning with product units. Advances
13.
14.

15.

16.

17.

19.

20.

21.

6

Babette Dellen, Uwe Jaekel, and Marcell Wolnitza

. Agostini, A., Aleny, G., Fischbach, A., Scharr, H., Wrgtter, F., Torras, C.: A cognitive ar-

chitecture for automatic gardening. Computers and Electronics in Agriculture 138, 69 — 79
(2017)

. Bose, B., Guyon, I, Vapnik, V.: A training algorithm for optimal margin classifiers. Proceed-

ings of the 5th Annual Workshop on Computational Learning Theory pp. 144-152 (1992)

. Clark, J.W,, Gernoth, K.A., Dittmar, S., Ristig, M.L.: Higher-order probabilistic perceptrons

as bayesian inference engines. Phys. Rev. E 59, 6161-6174 (May 1999)

. Cortes, C., Vapnik, V.: Support vector network. Machine Learning 20, 273-297 (09 1995)
. Durbin, R., Rumelhart, D.E.: Product units: A computationally powerful and biologically

plausible extension to backpropagation networks. Neural Computation 1(1), 133-142 (1989)

. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Interna-

tional Journal of Computer Vision 59(2), 167-181 (Sep 2004)

. Hubel, D., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in

the cat’s visual cortex. J. Physiol., Lond. 160, 54-106 (01 1962)

. Husain, F., Dellen, B., Torras, C.: Scene Understanding Using Deep Learning. Academic

Press (2017)

Husain, F., Schulz, H., Dellen, B., Torras, C., Behnke, S.: Combining semantic and geomet-
ric features for object class segmentation of indoor scenes. IEEE Robotics and Automation
Letters 2, 49-55 (2017)

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436-44 (05 2015)

in Neural Information Processing Systems 7, 537 (1995)

McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics pp. 115-133 (5 1943)

Minsky, M.L., Papert, S.: Perceptrons : an introduction to computational geometry. MIT
press (1988)

Rajaraman, S.K., Antani, S., Candemir, S., Xue, Z., Kohli, M., Thoma, G.: Comparing deep
learning models for population screening using chest radiography. SPIE Medical imaging
(03 2018)

Rosenblatt, F.: The perceptron - a probabilistic model for information storage and organiza-
tion in the brain. Psychological Review 65 (1958)

Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, Cambridge, MA, USA (2001)

. Sergios Theodoridis, S., Koutroumbas, K.: Linear Classifiers. Academic Press, Boston,

fourth edition edn. (2009)

Sergios Theodoridis, S., Koutroumbas, K.: Nonlinear Classifiers. Academic Press, Boston,
fourth edition edn. (2009)

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
Kalchbrenner, N., Sutskever, 1., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Has-
sabis, D.: Mastering the game of go with deep neural networks and tree search. Nature 529,
484489 (01 2016)

Werbos, P.J.: Beyond regression : new tools for prediction and analysis in the behavioral
sciences. Harward University (1974)

Acknowledgements

We thank John W. Clark for his help in improving the manuscript through his com-
ments. B.D. and U.J. contributed in equal parts to the ideation, design and implementa-
tion of the method. M.W. contributed to the implementation, integration and the train-
ing/testing of the method.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22741-8_13 |

https://dx.doi.org/10.1007/978-3-030-22741-8_13

