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Abstract. Autism spectrum disorder (ASD) is a developmental disorder
that affects communication and behavior. An early diagnosis of neurode-
velopmental disorders can improve treatment and significantly decrease
associated healthcare cost, which reveals an urgent need for the devel-
opment of ASD screening. However, the data used for ASD screening is
heterogenous and multi-source, resulting in existing screening tools for
ASD screening are expensive, time-intensive and sometimes fall short in
predictive accuracy. In this paper, we apply novel feature engineering and
feature encoding techniques, along with a deep learning classifier for ASD
screening. Algorithms were created via a robust deep learning classifier
and deep embedding representation for categorical variables to diagnose
ASD based on behavioral features and individual characteristics. The
proposed algorithm is effective compared with baselines, achieving 99%
sensitivity and 99% specificity. The results suggest that deep embedding
representation learning is a reliable method for ASD screening.

Keywords: Autism Spectrum Disorder · Deep Learning · ASD Screen-
ing · Categorical Embedding.

1 Introduction

Autistic Spectrum Disorder (ASD) is a mental disorder characterized by difficul-
ties with social interaction and communication, and by restricted and repetitive
behavior [7]. In the United States, there are 3 million people who have ASD, and
around 1 out of 68 children are diagnosed with ASD [24]. ASD is a neurodevelop-
ment condition associated with significant healthcare costs, and early diagnosis
can significantly reduce the cost and improve the quality of life of children with
ASD. The increase in the number of ASD cases and the cost impact of ASD
push forward the research of effective screening methods [15, 20, 14]. Most tools
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for autism screening are based on score-sheets with questions for the parent or
the medical practitioner [2], and the summation score is compared with prede-
termined thresholds to produce results. For example, the Modified Checklist for
Autism in Toddlers (M-CHAT) [5] is a checklist-based screening tool for autism
with children between the ages of 16 and 30 months. The Child Behavior Check-
list (CBCL) [4] is a parent-completed screening tool. However, the diagnostic
process for ASD is costly and time-consuming [12]. Recently, machine learning
based approaches have been showing a great direction on objective evaluation
of neuropsychiatric disorders [3, 26, 13]. Machine learning or deep learning based
approaches might allow for detecting ASD diagnosis automatically and are able
to provide a map of high-risk populations [19].

Due to the significance of ASD screening, we propose to develop, validate and
assess efficient deep learning algorithms that identify ASD versus non-ASD. The
ASD screening algorithm will be based on data consolidated from heterogeneous
sources, including questionnaire and demographics. There are some existing fore-
casting algorithms/tools being used for ASD screening based on these kinds of
data [22, 21, 23]. However, these approaches more focused on improving or ap-
plying machine learning algorithms whereas ignored to propose effective feature
engineering methods for the heterogenous ASD data. For instance, the ASD data
are usually a mix of numerical and categorical features, which pose a challenge
for directly applying classifiers as they can only deal with numerical inputs by
design. Nevertheless, most of the existing methods applied one-hot encoding to
deal with categorical variables for the ASD data, and then input one-hot vectors
(or dummy variables) to machine learning models or feed them into neural net-
works. Since one-hot encoding usually yields sparse vectors, it potentially limits
model performance and screening accuracy. Although categorical data is very
common in medical datasets, there are no existing works to effectively handle or
represent categorical medical data. Thus, an effective feature encoding method
is required to improve screening accuracy.

Nowadays, deep learning has been one of the most prominent machine learn-
ing techniques [25, 15], and it has the capability to model data with non-linear
structures and learn a high-level representation of features. In this paper, we
present deep embedding representation for categorical variables, along with neu-
ral network as a classifier for ASD screening. Specifically, we first learn the cat-
egorical feature representation from an embedding layer, then we combine the
learned embeddings and continuous variables as input to a dense layer, followed
by a non-linear activation layer. We use several fully connected layers on top of
the embedding layer. We use DENN for short to denote the model name. The
DENN model outperforms the existing methods on the ASD screening data.

2 Data and Analysis

2.1 Data Description and Data Exploration

The data we used is the Autism Screening Adult Data Set provided by the UCI
Machine Learning Repository [8]. This is a new dataset related to autism screen-
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Table 1. Basic descriptive statistics for the variables (we truncated the variable names
of the A1 Score to A10 Score variables to A1 to A10).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 age result

mean 0.723 0.453 0.459 0.497 0.498 0.285 0.417 0.651 0.325 0.574 29.698 4.883

std 0.447 0.498 0.498 0.500 0.500 0.451 0.493 0.476 0.468 0.494 16.507 2.498

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.000 0.000

max 1.000 1.000 1.000 1.00 1.00 1.000 1.000 1.000 1.000 1.000 383.00* 10.000

* Indicate a possible outlier value

ing of adults that contains 704 observations with 21 variables to be utilised for
further analysis especially in determining influential autistic traits and improv-
ing the classification of ASD cases. The raw data contains ten binary variables

Fig. 1. Statistical distribution of ethnicity. Fig. 2. Statistical distribution of relation.

Fig. 3. Statistical distribution of country
(only show names of major countries).

Fig. 4. Statistical distributions on
three categorical variables (autism,
used app before, jaundice), and the class
label (ASD/non-ASD).
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Fig. 5. Correlation heatmap for the dataset.

(AQ-10-Child) representing the screening questions, and the categorical variables
of gender, ethnicity, jaundice, autism, country of res, used app before, age desc,
relation and Class/ASD. There are also two numeric variables named age and
result. The 21 variables, representing behavioural features and individuals char-
acteristics, that have proved to be effective in detecting the ASD cases from
controls in behaviour science [22, 6, 23]. Some basic descriptive statistics for the
variables are shown in Table 1 and Figures 1 - 4.

2.2 Data Cleaning and Preprocessing

After obtaining the statistic information of the variables from data exploration,
we need to clean the data of unwanted information to prepare it as appropriate
input features for our machine learning algorithms.

Cleaning missing values and outliers: In this data, there are missing values in
the age variable. Since there are only two missing age values, we simply remove
all of the observations containing the missing age values. As we can see from
Table 1, there is an impossibly large maximum value of 383 in the age variable.
Given that there are already many typographical errors present in the data, it is
reasonable to assume that this is because of a typing error and the intended value
should be 38. After preprocessing the missing values and outliers, we visualize
the data to explore potential challenges and solutions for a learning model.

2.3 Data Visualization and Analysis

Before proceeding to apply any machine learning algorithm, we visualize and
analyze the data to provide a better solution for ASD screening. In Figure 5,
we compare the correlation among the variables to demonstrate how close two
variables are to having a linear relationship with each other. From Figure 5,
we can observe that there is a high correlation between AQ-10-Child score and
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Fig. 6. The connection visualization be-
tween jaundice and result.

Fig. 7. The connection visualization be-
tween gender and result.

result, which indicates they have a linear relationship. However, other variables
have a non-linear relationship (as shown in Figure 5). Therefore, a good machine
learning model using these variables should consider both linear and non-linear
relationships.

To obtain the first impression of the internal connections of some of the
variables that are presented in the data set, we visualize the connection between
several attributes and display how they are related with the target class in Figure
6 - 8. Figure 6 and 7 show a similar relationship between gender and result vs.
jaundice and result. From both cases, the individual with a higher result score is
more likely to have ASD, independent of the other variables. The variables gender
and jaundice do not seem a major influence in deciding ASD. Nevertheless, from
Figure 8, we can observe that when jaundice presents at birth, the individual
with a higher result score will have ASD regardless of their gender. In Figure 9,
we plot the data in terms of age, gender, jaundice and relation to visualize their

Fig. 8. The connection visualization among jaundice, gender and result.
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Fig. 9. Distribution plot for some of the input variables to machine learning models.

distribution on ASD class and non-ASD class. They have similar distribution on
the data belongs to different class.

The purpose is to develop effective algorithms for ASD screening and diag-
nosis based on the data described above. However, from the above analysis, the
variables in the dataset consist of two data types: continuous (e.g., age) and
categorical (e.g., gender). Dealing with continuous numeric data is often easier
than categorical data given that it can be fed into most of machine learning mod-
els after normalization. However, naively applying machine learning algorithms
with integer representation for categorical variables does not work well. Since
categorical variables are known to hide and mask lots of interesting information
in a dataset and they might even be the most important variables in a model,
we will present an advanced technique called deep embedding representation to
deal with categorical variables in neural networks for ASD screening.

3 Prediction Methodology

We aim to use the dataset described in Section 2 to predict whether these patients
actually have autism accurately. A main challenge to develop an algorithm is that
the data contains both continuous numerical variables and categorical variables.
Therefore, we first propose a deep categorical embedding method for feature
engineering, and then present a neural network classifier using the embedded
features for ASD screening. The model is denoted as DENN for short. The
overall architecture of DENN is illustrated in Figure 10.

3.1 Deep Embedding Representation for Categorical Variables

For the continuous numerical data, we use identity mapping to map numerical
values to feature vectors. Since neural network can only deal with numerical
inputs by design, the categorical features can not be input to neural network di-
rectly. One-hot encoding is a commonly used method for converting a categorical
variable into a continuous variable. By one-hot encoding, the new representa-
tion is a vector with one element being one and all others being zero, so it is
also called dummy coding or the 1-of-c encoding where c is the number of total
possible categories of a categorical feature. If we have P categorical features and
the i-th feature can take ci values, this encoding will result in dimensionality of
d, such that,
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d =

P∑
i=1

ci (1)

Although one-hot encoding is simple and common, it often yields a very
sparse and high dimensional representation of the data, and it ignores the infor-
mative relations between them because it treats different values of categorical
variables completely independent of each other. In this section, we present an ad-
vanced method that aims to capture the different categories with a much smaller
dimension and represents the categorical features more efficiently.

Continuous
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Data Categorical
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Mapping
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Fig. 10. Overall architecture of DENN.

We map categorical variables in a function approximation problem into Eu-
clidean spaces, which is to build a vector embedding to every category type, such
that ei : xi 7→ xi. For each categorical variable, we initialise a m×D embedding
matrix E as

where m is the number of total possible categories of a categorical variable,
hyperparameter D is the desired dimension for embedding representation, which
is usually less than m.

E =


x11 x12 · · · x1D

x21 x22 · · · x2D

...
. . .

...
xm1 xm2 · · · xmD

 = (xij) ∈ Rm×D (2)

Then we add an embedding layer in a deep neural network to do a lookup for
a given value from the embedding matrix E, which returns a vector xk = (xkj) ∈
R1×D. The new representation xk along with the numerical variables would then
be fed into the next layer in the neural networks, and all the embeddings are
updated and learned through backpropagation.
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3.2 Neural Network Architecture for ASD Screening

As shown in Figure 10, the embedded categorical variables are concatenated
with numerical features as new feature vectors that can be fed into a dense layer.
There are several dense layers in our neural network architecture, and each dense
layer followed by an activation layer. We used ReLu as the activation function
to introduce non-linearity. After the ReLu activation, we have f(z) = max(0, z)
that gives an output z if z is positive and 0 otherwise.

Then, an output layer is placed after the last hidden layer. From hidden layer
to output layer is a sigmoid function to output the predicted probability of a
feature vector x belonging to class 1:

Pr(y = 1|x,wo) =
1

1 + exp(−wT
o x)

(3)

where wo is the weights of the output layer (the subscript o represents the
parameters in the output layer).

Since this is a binary classification problem, we encoded the class label as
one-hot vector and set categorical cross entropy as the loss function, as follows:

L = − 1

N

N∑
i=1

K∑
t=1

(yi,t ∗ log(ŷi,t)) (4)

where N is the total number of training samples, ŷ is the predicted label, and
K is the total number of classes (K equals 2 for ASD screening). To learn and
optimize the parameters of the model, we minimize the loss function L. The
loss minimization and parameter optimization can be performed through the
backpropagation using mini-batch stochastic gradient descent.

4 Experiments and Evaluation

4.1 Datasets and Setup

We trained the proposed approach on the Autistic Spectrum Disorder Screening
Data from the University of Irvine data collection 5. After preprocessing, this
dataset contains 702 samples, including 513 patients or children that have been
screened for autism (i.e., 189 cases and 513 controls). We randomly selected 80%
as training data and the remaining 20% as testing data.

Since our model is based on supervised learning, the input of the models
utilizes a training dataset of cases (the number is 155) and controls (the number
is 406) that have already been diagnosed. Usually, the cases and controls have
been generated using a screening tool such as ADOS-R, ADI-R, etc., in a clinic
by a behaviorist, clinical psychologist, or a licensed clinician specialized in that
tool. In our experiment settings, we use two fully connected layers (1000 and
500 neurons respectively) on top of the embedding layer. The neural network is
trained for 50 epochs.

5
https://archive.ics.uci.edu/ml/datasets/Autistic+Spectrum+Disorder+Screening+Data+for+Children++
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Table 2. Confusion Matrix for ASD screening.

Predicted Class

ASD non-ASD

Actual Class

ASD True Positive (TP) False Negative (FN)

non-ASD False Positive (FP) True Negative (TN)

4.2 Evaluation Criteria

The experiments are designed to validate whether the ASD screening model,
which combines deep embedding representation and neural networks, can achieve
better performance than using one-hot encoding and shallow machine learning
models. All the experiments were implemented in Python and Keras framework.
The source codes used for this experiments and results can be found in this
github repository 6.

Following the most common procedure for evaluating models for ASD screen-
ing, we use Sensitivity (Recall), Specificity (Precision), F-measure (F1-Score)
Receives Operating Characteristic (ROC) Curve, and Area Under ROC Curve
(AUC) to evaluate the ASD screening approaches. To compute the measure-
ments, we can use a confusion matrix to summarize the performance w.r.t. var-
ious models, as shown in Table 2. For classification problem, if the sample is
positive and it is classified as positive, it is counted as a true positive (Eq. 5);
If the sample is negative while it is classified as positive, it is counted as a false
positive (Eq. 6).

TP =
Correctly classified positives samples

Total no. of positives
(5)

FP =
Incorrectly classified negative samples

Total no. of negative samples
(6)

Following formulas are used to measure above mentioned performance mea-
sures are shown below.

Specificity =

∑N
n=1 TNn∑N

n=1 TNn + FPn

, Sensitivity =

∑N
n=1 TPn∑N

n=1 TPn + FNn

(7)

F1 = 2× Specificity × Sensitivity

Specificity + Sensitivity
(8)

Baselines. We also conducted comparison experiments with different meth-
ods, including Random Forest, Support Vector Machine (SVM), Gradient Boost-
ing, and Neural Networks without embedding layer. These machine learning-

6
https://github.com/BlindReview/ASD Prediction
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based baselines have been applied and reported [23, 9, 1, 19, 2, 11] for ASD screen-
ing based on the same dataset. The inputs for all of the baselines are one-hot-
encoded features. The baselines are implemented using the scikit-learn library
of python and default parameters.

4.3 Experimental Results

Table 3 and Figures 11-13 present the performance of ASD screening based on
different machine learning models on the test dataset. In comparison to the base-
lines on the test dataset, we observed that the deep embedding representation
model performs better than baselines in terms of specificity, sensitivity and f1
score. The baseline using neural network without embedding layer (denoted as
NN for short) performs better than other baselines but worse than the DENN
model. This is because the deep embedding representation is more efficient than
one-hot encoding for categorical feature representation, and neural network fits
better than shallow machine learning models on the autism dataset. As we can
observe from the ROC curves in figure 11, under the same false positive rate, we
are able to identify ASD with high true positive rate, which is better than that
of in the baselines.

Table 3. Comparison of different methods w.r.t. specificity, sensitivity and F1-score.

Method Specificity Sensitivity F1-Score

DENN 0.99 0.99 0.99

NN 0.94 0.94 0.94

Random Forest 0.92 0.91 0.91

SVM 0.73 0.73 0.73

Gradient Boosting 0.85 0.85 0.85

We visualize the confusion matrix of the DENN model on the test data in
Figure 12. From Figure 12, we can observe that there is only one sample is
misclassified on the test data. The deep embedding representation with neu-
ral networks is able to achieve almost 100% accuracy for ASD screening on
the dataset. However, other baselines have higher misclassification rate for ASD
group because there are fewer ASD samples in the dataset. The baselines are
not able to learn enough information due to their limited learning capability.
From the experimental results, we can conclude that effective categorical feature
embedding method can help to improve the learning ability and model perfor-
mance. The data has both linearity and nonlinearity nature, resulting in DENN
achieves the best performance, followed by neural network based approach.
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Fig. 11. ROC curve w.r.t. various ASD
screening approaches.

Fig. 12. Confusion matrix of DENN model
on the test data for ASD screening.

(a) ASD screening via Neural Network. (b) ASD screening via Random Forest.

(c) ASD screening via SVM. (d) ASD screening via Gradient Boosting.

Fig. 13. Confusion matrix on the test data w.r.t. various baseline methods.

5 Related Work

Autism spectrum disorder (ASD) is a developmental disorder, affecting about
1% of the global population [19]. ASD screening is crucial in helping a child
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with autism live a more normal life in society. Diagnosing ASD typically takes
two steps: Developmental Screening and Comprehensive Diagnostic Evaluation.
Developmental Screening determines if children are learning basic skills at the
right age or later. Doctors may recommend developmental tests to determine
if cognitive, language, and social skills acquisition is delayed. Comprehensive
evaluation is a thorough review that includes looking at the child’s behavior
and development and interviewing the parents. It may also include hearing and
vision screening, genetic testing, neurological testing, and other medical testing.

To date, behavior-based tests are the standard clinical approach for ASD di-
agnosis [19, 7], hence, traditional tools for autism screening are based on score-
sheets with questions for the parent or the medical practitioner [2], and the
summation score is compared with predetermined thresholds to produce results.
For example, the Modified Checklist for Autism in Toddlers (M-CHAT) [5] and
the Child Behavior Checklist (CBCL) [4]. A number of other existing clinical
diagnosis methods have also been used for ASD identification, such as Autism
Diagnostic Interview-Revised (ADI-R) [18] and Autism Diagnostic Observation
Schedule-Revised (ADOS-R) [17], have shown superior performance. Yet those
methods rely on handcrafted rules that employ mathematical summation for-
mulas of scores to come up with the appropriate diagnosis [23]. Moreover, the
majority of existing ASD screening tools require substantial time to produce a
complete diagnosis. Therefore, they are time-consuming and costly.

Several studies have recently employed machine learning and deep learning
to improve the diagnosis process for ASD. Researchers have adopted several
supervised machine learning techniques (such as Neural Network, Decision Trees,
Logistic Regression, Random Forest, Support Vector Machines(SVM), k-Nearest
Neighbors(kNN), Naive Bayes) to solve the classification problem of predicting
whether an individual with certain characteristics has ASD [23, 9, 1, 19, 2]. The
study [11] applied a machine learning algorithm to identify ASD from attention
deficit hyperactivity disorder based on a 65-item Social Responsiveness Scale.
Another study [10] combines the Social Responsiveness Scale with the ADI-R
score to train their models to distinguish ASD from controls. More recently,
studies [16, 15, 3] have developed machine learning models using the Autism
Brain Imaging Data Exchange (ABIDE) towards the automated diagnosis of
ASD based on brain neuroimaging data.

The main purposes of the existing machine learning-based ASD diagnostic
tools were to improve diagnosis accuracy, and speed up diagnosis time to provide
timely access to healthcare services. However, the existing machine learning or
deep learning based approaches for ASD either rely on neuroimaging data or
simply applying traditional learning algorithms without considering the latent
feature characteristics. Therefore, new effective feature representation methods
for machine learning based ASD diagnosis is significant to improve the diagnosis
performance.
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6 Conclusion

Autism spectrum disorder (ASD) is a developmental disability that can cause
significant social, communication and behavioral challenges. ASD screening is
significant because it enables early intervention. Early treatment is more effective
than later treatment for ASD. In this paper, we are able to predict autism in
patients with about 99% accuracy based on the UCI ASD screening data. Since
there are plenty of health applications are going to have categorical data, we also
learned how to deal with categorical data using deep embedding representation
along with a neural network as a classifier for ASD screening. Compared with
other models for ASD screening, the DENN model is more efficient and accurate
for ASD screening.
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