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Abstract. The deep neural networks (DNNs), although highly accurate,
are vulnerable to adversarial attacks. A slight perturbation applied to a
sample may lead to misprediction of the DNN, even it is imperceptible
to humans. This defect makes the DNN lack of robustness to malicious
perturbations, and thus limits their usage in many safety-critical systems.

To this end, we present DunDi, a metric learning based classification
model, to provide the ability to defend adversarial attacks. The key idea
behind DunDi is a metric learning model which is able to pull samples
of the same label together meanwhile pushing samples of different labels
away. Consequently, the distance between samples and model’s bound-
ary can be enlarged accordingly, so that significant perturbations are
required to fool the model. Then, based on the distance comparison,
we propose a two-step classification algorithm that performs efficiently
for multi-class classification. DunDi can not only build and train a new
customized model but also support the incorporation of the available
pre-trained neural network models to take full advantage of their ca-
pabilities. The results show that DunDi is able to defend 94.39% and
88.91% of adversarial samples generated by four state-of-the-art adver-
sarial attacks on the MNIST dataset and CIFAR-10 dataset, without
hurting classification accuracy.
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1 Introduction

Over the past few years, the machine learning systems, especially the one coop-
erated with the deep neural network (DNN), have reached promising achieve-
ment in many fields including image recognition, speech translation, and pol-
icy decision [11]. Due to the advance, they are being widely deployed in many
real-world applications such as self-driving, face authentication and medical di-
agnosis. Despite the success, however, recent studies have shown that the deep
neural network models, although highly accurate, are vulnerable to adversarial
attacks [4, 13, 16]. That is, the model can be fooled to mispredict a modified
sample which is intentionally perturbed by the attacker, so-called adversarial
sample. These adversarial samples can cause unexpected behaviour of DNNs,
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and thus are problematic when DNNs are used in safety-critical systems. For ex-
ample, an adversarial traffic sign may fool the self-driving system to determine a
wrong policy and even worse cause car crash [14], and an adversarial human face
will allow an attacker to pass the face authorization [21]. Therefore, to provide
the ability to defend adversarial samples (or robustness in other literature), is
one key factor in deploying DNNs in many safety-critical systems.
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Fig. 1. Comparison of traditional model and DunDi model. DunDi employs the Triplet
Network to train a model that puts similar samples together and enlarges the distance
between different samples, which in turn enlarges the distance between samples and
model’s boundary. The testing samples will be classified exploiting the distance metric.
As we can see, an adversarial sample can move across the boundary to lead to mispre-
diction of the Native classifier, but it will be correctly classified by DunDi since it is
closer to the samples of the proper label.

Several approaches have been proposed for defending adversarial attacks in
recent years, such as adversarial training [3,22,23], defensive distillation [17] and
deep contractive networks [7]. In addition to defense, some approaches tend to de-
tect the adversarial samples and exclude them upon testing [12]. Unfortunately,
some works show that these models are still vulnerable to adversarial samples
[5]. Recent studies have shown that the DNNs are not robust mainly because
the natural samples lie very close to the model’s decision boundary [4,13]. Or in
other words, the distance between the sample and boundary is short, so that the
sample can easily move across the boundary by patching with slight perturba-
tions. Inspired by this, we propose DunDi1 to defend against adversarial samples
by enlarging the distance between samples and boundary, so that a much larger

1 DunDi is a kind of magic in ancient Eastern legends, and it can transform far to
near or near to far, thus avoiding enemy attacks.
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magnitude of perturbations are required to move samples across the boundary,
as shown in Figure 1. To achieve this, the key idea behind DunDi is a metric
learning model which has been used in many fields [20]. Specifically, we employ
a recently proposed metric learning model named as Triplet Network [8]. The
Triplet Network takes as input three samples {xa, xp, xn} each time in which
xa and xp are similar while xa and xn are different. Then, it learns to pull to-
gether the samples of the same label (i.e., reducing the distance between xa and
xp) meanwhile pushing away the samples of different labels (i.e., enlarging the
distance between xa and xn). Consequently, it enlarges the distance between
samples and model’s boundary, which in turn amplifies the required perturba-
tions for crafting adversarial samples. Exploiting the trained metric model that
provides distance computation between samples, we then design a two-step al-
gorithm for efficient multi-class classification. DunDi can build a new model
with customized DNN topology. In addition, it supports the incorporation of
the pre-trained DNNs, to take full use of their advantages such as high accuracy.

We implement DunDi on Keras/Tensorflow platform. The experimental re-
sults show that DunDi is able to defend a significant fraction of adversarial sam-
ples. Specifically, it correctly predicts 94.39% and 88.91% of adversarial samples
[5] respectively on the MNIST and CIFAR-10 dataset. To conclude, this paper
makes the following contributions:

– First, we propose a metric learning based method to enlarge the distance
between samples and model’s boundary, which in turn amplifies the mag-
nitude of malicious perturbations required to craft adversarial samples, for
improving the robustness of DNN to adversarial attacks.

– Second, we design a two-step classification algorithm for classifying samples
in a multi-class scenario efficiently based on the distance metric.

– Third, we implement DunDi and evaluate it on two datasets to show its
effectiveness when suffering different types of adversarial attacks.

2 Background and Related Work

2.1 Adversarial Attacks

Adversarial attacks intentionally design a new sample by adding slight pertur-
bations to a sample that is correctly classified by the model, so that the model
misclassifies the new sample, so-called adversarial sample. Many recent works
tend to carefully perturb samples for improving the attack success rate, including
fast gradient sign method (FGSM), iterative FGSM (iFGSM), Jacobian-based
saliency map algorithm (JSMA), projection method (DeepFool), etc. We will
give a brief introduction to these methods below.

Notations: Let x be a sample, f be the trained classifier, y be the predicted
label of input x (i.e., y = f(x)), and y∗ be the true label of x. During the training
stage, the model f will be continuously updated for minimizing the value of loss
function L(y, y∗) given a set of x and y∗.
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FGSM: FGSM [6] computes the gradient of the loss function L with respect
to a sample x, generates perturbations formed by the sign of the gradient mul-
tiplied by a parameter ε, and finally crafts an adversarial sample x′ by adding
perturbations to x, as shown in Equation 1. ε refers to the specified magnitude
of perturbations. If it is small enough, the crafted adversarial sample and the
original sample will be indistinguishable from the human view.

x′ = x+ εsign(∇xL(y, y∗)) (1)

A later work, named as iterative FGSM or iFGSM, extends FGSM by apply-
ing FGSM multiple times with a finer perturbation. In each step, iFGSM clips
pixel values of intermediate results of the previous step. The advantage over
FGSM is that it achieves smaller distortion and higher attack success rate [9].

JSMA: JSMA is a targeted attack approach, i.e., it specifies a target label
yt and tends to perturb x so that the model misclassifies the crafted sample x′

to yt [15]. To achieve this, JSMA iteratively searches for pixels or pairs of pixels
in x to change such that the probability of the target label is increased and the
probability of all other labels are decreased.

DeepFool: DeepFool is an untargeted attack algorithm based on the theory
of projection to the closest separating hyperplane in classification [14], so that
it can compute minimal perturbations to sufficiently fool the classifier.

2.2 Defenses

Adversarial training. This method augments the training dataset with a num-
ber of correctly labelled adversarial samples and then retrains the neural network
model. With weights updating for minimizing the value of loss function, espe-
cially that of adversarial samples, the retrained neural network model will be
more robust to adversarial samples [22,23].

Defensive distillation. This strategy firstly trains a model using hard class
labels. Then, exploiting the initial model’s softmax probability outputs, it trains
a second model. This method can smooth the model’s surface in the directions
would be exploited by attackers, making it difficult to discover gradients for
crafting adversarial samples [17].

Gradient masking. Observed that most adversarial attack techniques gen-
erate adversarial samples using the gradients of the neural network, gradient
masking is proposed to eliminate the gradients, so that the attackers fail to find
appropriate directions that can be used for perturbing the samples [19,24]. How-
ever, a recent study has shown that this method fails to work in many scenarios
because the attacker can still discover gradients in a high dimension space

3 Design and Implementation of DunDi

In this section, we first formulate the robustness problem by the distance between
samples and model’s boundary and then present an overview of the proposed so-
lution. Finally, we introduce two essential parts, i.e., how to enlarge the distance
for improving robustness and how to classify samples with the distance metric.
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Fig. 2. Samples, boundaries, and adversarial samples. fa and fb are two accurate but
not robust classifiers, while fr is more robust because the distance between samples and
boundary is larger. The green and red regions denote the distribution of adversarial
samples with respect to xa and xb respectively.

3.1 Enlarging Distance for Robustness

We first introduce some notations related to the robustness of neural networks
[4], and then explain why increasing the distance would improve robustness.

Perturbation. Let x be a sample, f be the trained classification model.
δ refers to the perturbations applied to x for generating a new sample x′, i.e.,
x′ = x+δ. If the predicted label of x′ is different from that of x, i.e., f(x) 6= f(x′),
then an adversarial sample x′ with respect to δ is successfully crafted.

Magnitude of perturbation. The magnitude of perturbations δ is denoted
by ‖ δ ‖S . It can be computed in many norms such as `1, `2 and `∞ in S which
denotes the space of admissible perturbations.

Robustness of one sample. The robustness of one sample x, denoted by
r(x), can be measured by the minimal perturbations changing the label of x,
i.e., r(x) = min ‖ δ ‖S subject to f(x + δ) 6= f(x). The smaller value of r(x)
implies that it requires slight modifications at x for changing its label, thereby
enabling the perturbed samples difficult to be detected.

Robustness over the classifier. To measure the robustness over the clas-
sifier f , denoted by R(f), we can simply compute the expectation of r(x) over
all the samples, i.e., R(f) = EX(r(x)).

Figure 2(a) illustrates the notations associated with two classes of samples
and several classifiers. For a sample xa, the dashed cycle shows the space of
admissive perturbations, i.e., S. A large number of new samples can be gener-
ated by adding perturbations within the cycle to xa. Given a classifier fa, the
robustness of xa, denoted by r(xa) in Figure 2(a), refers to the shortest distance
for moving xa across the boundary of fa.

Recent DNNs have shown the ability to train accurate classifiers. However,
high accuracy does not mean robustness. As shown in Figure 2(a), two classifiers
fa and fb are accurate because they can correctly classify the samples. Unfortu-
nately, they are not robust. Any sample x′a in the green region, which perturbs
xa by adding perturbations with a magnitude greater than r(xa), can lead to
misclassification of fa. The same is true for sample xb and classifier fb. The rea-
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Fig. 3. Overview. The green arrow shows the training stage, while the red dashed arrow
shows the testing stage.

son is that the sample lies too close to the classifier’s boundary, so that it can be
easily perturbed for moving across the boundary. Inspired by this, an accurate
and robust classifier should keep the samples far away from the boundary for de-
fending adversarial attacks. Figure 2(b) presents a more robust classifier fr, i.e.,
a larger magnitude of perturbations (i.e., r(xa∗)) is required to fool the classifier
due to a larger distance between xa and fr. Such considerable perturbations
would surpass the allowed perturbing space S, making the crafted sample be
easily detected. This gives us a hint that enlarging the distance between samples
and boundary would help to improve the robustness of the model.

3.2 Overview of DunDi

As stated above, the distance is one of the keys to improve the robustness of
neural network models [4, 13]. To this end, we propose to enlarge the distance
between samples and model’s boundary with metric learning. Figure 3 presents
a brief overview of DunDi on describing the process of training stage and testing
stage. The critical component is a Distance Neural Network (Distance NN). It is
responsible for producing an embedding, which is a numeric vector representing
learned features for each input sample. The embeddings should satisfy two re-
quirements. First, for samples of the same label, the distance of their embeddings
should be small. Second, for samples of different labels, the distance of associ-
ated embeddings should be large. To achieve this, the Distance NN during the
training stage takes as input samples and produces embeddings. Then, the Com-
parator computes the distance between embeddings, computes the loss between
the expected distance (i.e., specified by the user) and the predicted distance
(i.e., computed between generated embeddings), and then leverages the loss to
update the weights of Distance NN with feedback propagation. Finally, with the
aim to minimize the loss, the Distance NN will learn to generate embeddings
following the two requirements.

For testing, DunDi maintains an Oracle Database storing a certain number
of samples for each class in the dataset, which are considered as oracle samples
for classification. Given a testing sample, the Classifier leverages Distance NN to
produce the embedding, employs Comparator to compute the distance between
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Fig. 4. Design of Distance NN and Comparator based on Triplet Network. f denotes
the embedding for each sample, g denotes the similarity between two embeddings, and
1− h denotes the triplet loss.

the testing sample and oracle samples, and finally employs the proposed multi-
class classification algorithm to predict the label.

3.3 Enlarging Distance using Metric Learning

In DunDi, we enlarge the distance with metric learning (also known as similarity
learning), which tends to learn from samples a similarity function that measures
how similar two objects are. Specifically, we employ the idea of recently proposed
Triplet Network to train the model [8]. The Triplet Network takes as input a
tuple, which contains three samples along with a ranking of similarities between
them. It can learn to compute similarities that are distributed in a wide range,
i.e., [0,1], enabling the model to outperform other metric learning methods such
as Siamese Network that only operates either 0 (same samples) or 1 (different
samples) [2]. As shown in Figure 4, the input of Distance NN is a tuple denoted
by {xa, xp, xn}, in which xa (anchor sample) is more similar to xp (positive
sample) than it is to xn (negative sample). DunDi aims to put the positive pair
closer (i.e., xa and xp) meanwhile pushing the negative one further (i.e., xa and
xn), for following the ranking of similarities provided in the input tuple. To
achieve this, it computes the triplet loss of three input samples, which acts as
the loss to be minimized during the training stage.

As shown in Figure 4, given the tuple {xa, xp, xn}, the Distance NN produces
an embedding for each sample, denoted by f(x). With these embeddings, the
Comparator calculates the similarity of each pair, denoted by g(f(xa), f(xp)) (or
ga,p for short) for the positive pair and ga,n for the negative pair. Then, it com-
putes the predicted discrepancy between ga,p and ga,n, denoted by h(ga,p, ga,n),
and finally computes the triplet loss by the difference between the expected dis-
crepancy (specified by the user) and the predicted discrepancy. The following
parts will describe how to generate the embedding, compute the similarity and
compute the triplet loss in detail.

Distance NN. It is responsible for producing an embedding for an input
sample. The embedding is a vector in a n-dimensional Euclidean space, repre-
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senting the learned features of the sample. Distance NN contains two modules,
the Embedding module and the DNN module, as illustrated in Figure 4. The
Embedding module is composed of several fully connected layers, and it takes
the weights of the last layer as the generated embedding. The DNN module can
be the convolutional neural network or other DNNs. It is worth noting that the
DNN module can incorporate the pre-trained DNN models to take full advantage
of their capabilities. For a pre-trained DNN model, we simply remove its softmax
layer and then connect it to the Embedding module to produce the embedding.

Similarity computation. There exist many methods to compute the sim-
ilarity (or, in this case, the distance) between two embeddings, e.g., Euclidean,
Manhattan and Cosine distance. In DunDi, we leverage the Euclidean distance to
measure the similarity, i.e., ga,p = 2

√
(a1 − p1)2 + (a2 − p2)2 + ...+ (an − pn)2.

Loss function. As stated before, the tuple {xa, xp, xn} implies that xa
and xp are more similar than xa and xn. For simplicity, we assign xa and xp
with samples of the same label while xn a different label, so that the expected
discrepancy, denoted by he(ga,n, ga,p), is 1. Let hp(ga,n, ga,p) denote the predicted
discrepancy, then the triplet loss value is computed by 1 − hp(ga,n, ga,p). The
Comparator will return the loss back to the Distance NN for optimizing the
weights of the neural network model. By iteratively optimization, the triplet loss
will continue to decrease until convergence. We leverage the sigmoid function to
compute the predicted discrepancy, i.e., hp = sigmoid(ga,n − ga,p), so that its
value as well the triplet loss can be mapped to a range of 0 to 1.

3.4 Multi-class Classification Algorithm

As for testing, it only requires a pair of samples each time, one of which is the
testing sample and the other from the labelled dataset. We employ the Distance
NN to produce embeddings and then computes the similarity between the two.
Exploiting the similarities between the testing sample and other samples, we can
classify the testing sample using the idea of nearest neighbour clustering, i.e., it
will be assigned with the label of the closest class of samples.

Unfortunately, this approach will introduce significant time overhead, mainly
because there exist multiple classes each of which has thousands of samples in
the dataset for similarity computation. To mitigate this problem, instead of using
the whole dataset, we use a small number (n) of labelled samples of each class
as oracle samples. These samples are randomly selected to cover the diversity
of samples. We then propose a two-step multi-class classification algorithm for
reducing the computation cost, as shown in Algorithm 1. The first step attempts
to exclude the most unlikely labels. It compares the testing sample with m
(m < n) oracle samples of each class (# 2-6) and selects the top k labels showing
the highest similarities (#7). Then, the second step compares the testing sample
with n samples of each of the selected k labels (#9-13) and finally assigns it with
the label with the highest similarity (#14). We empirically set the value of n,
m, and k to 20, 3, and 5 respectively, which achieves well trade-off between the
accuracy and testing time.
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Input: text x
Output: predicted label
selected labels← {}, similarities← {} ;
for label ∈ all labels do

label sim← 0;
for sample ∈ oracle samples[label][0 : m] do

sim← sim(test x, sample), label sim← label sim + sim;
end
similarities← similarities ∪ label sim;

end
selected labels← argtop k(similarities);
predicted label← 0, similarities← {} ;
for label ∈ selected labels do

label sim← 0 ;
for sample ∈ oracle samples[label][0 : n] do

sim← sim(test x, sample), label sim← label sim + sim;
end
similarities← similarities ∪ label sim;

end
predicted label = arg max(similarities)

Algorithm 1: Two-step classification algorithm

3.5 Implementation

We implement DunDi using Keras on top of TensorFlow [1]. Within the paper, we
focus on image classification, and thus we use the convolutional neural network
as the DNN model in the Distance NN. Unlike traditional CNN topologies, which
are configured with a softmax layer to help output a single label or a probability
distribution over several labels, the CNN of DunDi has no softmax layer but is
connected to the Embedding module. The Embedding module is a simple neural
network composed of two fully-connected layers, and it produces a 128 length
vector which is the final embedded representation of the input sample. As for
the pre-trained CNN model, we firstly employ it to produce intermediate vectors
and feed them into the Embedding module. Then we only update the weights of
the Embedding module for minimizing the triplet loss value during training.

In Comparator, we compute the Euclidean similarity between two embed-
dings. Then, we compute the predicted discrepancy between the similarities of
two pairs, i.e., positive pair and negative pair. Finally, we use the Sigmoid func-
tion to normalize the predicted discrepancy and compute the triplet loss by
the difference between the expected discrepancy and predicted discrepancy. The
triplet loss will be minimized during training, as mentioned before. In Classifier,
we compare the testing sample and samples in the Oracle Database, and then
employ the two-step classification algorithm for image classification.
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Fig. 5. Adversarial samples of different attacks.

4 Evaluation

4.1 Experimental Setup

Dataset. We evaluate DunDi on MNIST and CIFAR-10 dataset. It is worth
noting that in DunDi, the input upon training is a tuple of three images, in which
the first two are of the same class (positive pair) and the third a different class
(negative pair). Consider that there exist thousands of images in the dataset,
we randomly select images of each class and pack them into tuples. Finally, we
generate 360K tuples for training and use 10K original testing images for testing.

Models. As for MNIST, we use three CNN models of different architectures
[10,18] as Native models for comparison. DunDi uses the same topology of these
models as the DNN module and then retrains the entire Distance NN, named as
DunDi R (Retrained). In addition, it also incorporates the pre-trained models
available in DeepXplore [18] and only trains the Embedding module, named as
DunDi P (Pre-trained). Similarly, for CIFAR-10, we employ the VGG-16 model
to retrain a DunDi R model, and we also incorporate a pre-trained VGG-16
model to build DunDi P. We by default set the number of oracle images to 10.

Adversarial samples. We generate adversarial samples with the method
proposed in [5], which supports four types of attacks, i.e., FGSM, JSMA, and
two variants of iFGSM (iFGSM-a which stops iterating when misclassification
is achieved, and iFGSM-b which runs for a certain number of iterations that is
well beyond the average misclassification point). For each attack, we generate
one adversarial sample with respect to each testing image and eventually get
40,000 adversarial images for each dataset. Figure 5 shows several adversarial
samples generated by these attack approaches.

We run the experiments on one Tesla K40 GPU configured with 12GB of
RAM. We train the model of DunDi R with VGG-16 for 200 epochs and train
others for 10 epochs. The following sections will report the experimental results.

4.2 Accuracy of Models

We first present the accuracy of different models. As can be seen in Table 1, for
the MNIST dataset, the accuracy of the three native models is 98.78%, 98.99%
and 99.05% respectively, which match the reported accuracy of previous works,
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e.g., 98.3%, 98.9% and 99.05% respectively in [18]. The results of both retrained
and pre-trained DunDi models are comparable with the accuracy of the native
models. For example, the accuracy is 99.05%, 99.05% and 98.94% for Model3,
DunDi R3 and DunDi P3 respectively when the number of oracle images is 20.
These results imply that the proposed classification algorithm based on the dis-
tance metric is feasible. In addition, with the increasing number of oracle images,
the accuracy increases as well. For example, the accuracy is 98.86%, 99.0% and
99.05% respectively when the number is 1, 10 and 20 for DunDi R3. This is
mainly because more oracle images are capable of representing the diversity of
features for each class of images, so that the variance is reduced and the accuracy
can be improved accordingly. The results on CIFAR-10 show similar results. It
should be pointed out that the accuracy of DunDi P is higher than that of Na-
tive Model, e.g., 93.1% against 89.7%. We suspect this is because the distance
between images across different classes is much larger than that within the same
class, so that the distance comparison can help to hide the variances between
images of the same class, particularly for CIFAR-10 where the images exhibit
large variances. We leave the further exploration as our future work.

Table 1. Accuracy of different models. The Native Models are irrelevant to oracle
images, so their results are only reported on column ’1’.

Dataset Model Name
Number of oracle images

1 10 20

MNIST

Native Model1 98.78% N/A N/A
Native Model2 98.99% N/A N/A
Native Model3 99.05% N/A N/A
DunDi R1 97.88% 98.53% 98.65%
DunDi R2 98.59% 98.96% 98.98%
DunDi R3 98.86% 99.0% 99.05%
DunDi P1 98.79% 98.96% 99.04%
DunDi P2 98.07% 98.59% 98.71%
DunDi P3 98.5% 98.82% 98.94%

CIFAR-10
Native Model 89.7% N/A N/A
DunDi R 91.16% 91.37% 91.53%
DunDi P 93.1% 93.28% 93.32%

4.3 Robustness of Models

We measure the robustness by the defense success rate, which refers to the num-
ber of correctly predicted adversarial samples to the total number of adversarial
samples. Figure 6 compares the defense success rate of various DunDi models and
a recently proposed method which employs Bayesian uncertainty estimates and
density estimates to detect adversarial samples (named as Bayesian) [5]. As we
can see, all the DunDi models achieve high defense success rate for the four types
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Fig. 6. Defense success rate of different models.

of adversarial attacks. For MNIST, the average defense success rate of the six
DunDi models is 98.07%, 91.45%, 90.91% and 97.13% respectively for iFGSM-
a, iFGSM-b, FGSM, and JSMA attack. As for CIFAR-10, the average value of
DunDi models is 90.46%, 94.0%, 80.7% and 90.49% respectively. The accura-
cies are comparable with the results reported in the Bayesian approach. These
results prove the effectiveness of the proposed DunDi approach which improves
robustness by enlarging the distance between samples and model’s boundary.

4.4 Varying Parameters

In this section, we show the effects on accuracy and robustness of varying con-
figurations used in DunDi, including the size of training dataset, the number of
oracle images 2. For brevity, here we only report the results on MNIST.

Varying dataset size. Table 2 illustrates the accuracy and robustness on
the training dataset of different sizes (or, in this case, the number of tuples). It
can be seen that the accuracy increases with the increasing size of the dataset,
e.g., it increases from 96.1% to 98.8% when the size increases from 18,000 to
360,000. The defense success rate, which denotes the average value of DunDi R1
under four adversarial attacks, also shows an overall increasing trend. Thus, the
model can achieve higher accuracy and robustness when training on more tuples.

Table 2. Accuracy and defense success rate of DunDi R1 with varying dataset size.

Dataset Size 18,000 36,000 180,000 360,000

Accuracy 96.1% 96.6% 98.0% 98.8%
Defense success rate 91.90% 92.02% 92.35% 93.06%

Varying number of oracle images. Figure 7 compares the robustness with
varying number of oracle images. As expected, the defense success rate increases

2 Here we only report the results of varying number of oracle images (i.e., n) because it
plays a more significant role than m and k in the multi-class classification algorithm.
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Fig. 7. Robustness with varying number of oracle images.

with the increasing number of oracle images, mainly because more oracle image
can capture the diversity of features. It is worth noting that the defense success
rate is high even if there is only 1 oracle image for each label, e.g., the value
of DunDi P1 is 97.55%, 88.42%, 87.94% and 97.1% respectively for the four
adversarial attacks, as shown in Figure 7(b). This implies that the model can
learn representative features to characterize the distance between images.

5 Conclusions

The deep neural networks are vulnerable to adversarial attacks, which limits the
usage of DNN in safety-critical systems. This paper presents DunDi to improve
the robustness of neural networks. DunDi employs the metric learning approach
to put the samples of the same class together and push the samples of different
classes away, so that the distance between samples and model’s boundary can
be enlarged as well. The increase of distance will require a larger magnitude of
perturbations for generating adversarial samples to move across the boundary,
which yet will be easily detected. The experimental results show that DunDi can
defend a significant fraction of adversarial samples without losing classification
accuracy. In the future, we plan to extend DunDi with deeper CNN models such
as ResNet-50 and evaluate it with real-world images of ImageNet.
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