
Multi-Source Manifold Outlier Detection

Lei Zhang1,⋆, Shupeng Wang1,⋆, Ge Fu2,⋆, Zhenyu Wang1, Lei Cui1, and
Junteng Hou1

1 Institute of Information Engineering, CAS, Beijing 100093, China
{zhanglei1, wangshupeng, zhenyuwang, cuilei, houjunteng}@iie.ac.cn

2 CNCERT/CC, Beijing 100029, China
fg@cert.org.cn

Abstract. Outlier detection is an important task in data mining, with
many practical applications ranging from fraud detection to public health.
However, with the emergence of more and more multi-source data in
many real-world scenarios, the task of outlier detection becomes even
more challenging as traditional mono-source outlier detection techniques
can no longer be suitable for multi-source heterogeneous data. In this pa-
per, a general framework based the consistent representations is proposed
to identify multi-source heterogeneous outlier. According to the informa-
tion compatibility among different sources, Manifold learning are com-
bined in the proposed method to obtain a shared representation space,
in which the information-correlated representations are close along man-
ifold while the semantic-complementary instances are close in Euclidean
distance. Furthermore, the multi-source outliers can be effectively identi-
fied in the affine subspace which is learned through affine combination of
shared representations from different sources in the feature-homogeneous
space. Comprehensive empirical investigations are presented that confir-
m the promise of our proposed framework.

Keywords: Multi-source · Manifold learning · Heterogeneous · Outlier
detection.

1 Introduction

Recent years have witnessed significant advances in multi-source learning. Many
multi-source techniques have been developed to assist people in extracting useful
information from rapidly growing volumes of multi-source data [25,26]. However,
unlike the previous work that focused on the study of mining general patterns
from different sources, it is worth to note that no existing efforts have focused
on the detection of multi-source heterogeneous outliers. In particular, this de-
tection is generally performed to identify abnormal heterogeneous observation
from different sources.

Furthermore, detecting outliers is more interesting and useful than identifying
normal instances [4,11,17]. For example, to protect the properties of customers,
an electronic commerce detection system can monitor the customers’ financial
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Fig. 1. Multi-Source Heterogeneous Outlier.

activities in order to identify abnormal consuming behavior of credit card as
criminal activities (outlier). Consequently, multi-source outlier detection is an
important task in data mining, with many practical applications ranging from
fraud detection to public health. Many outlier detection methods have been
proposed over the past decades, including mono-source [6, 12, 13, 18] and multi-
view [10, 14, 21, 27] outlier detection.

Mono-Source Outlier Detection Recently, some researchers have investi-
gated many machine learning methods [6,12,13,18] to deal with outlier detection
problems in mono-source data. Knorr et al. pointed out in [12] that the identi-
fication of outliers can lead to the discovery of truly unexpected knowledge in
various actual application fields. Meanwhile, they proposed and analyzed several
algorithms for finding DB-outliers. In [13], Li et al. presented a representation-
based method to calculate the reverse unreachability of a point to evaluate to
what degree this observation is boundary point or outlier. Rahmani and Atia [18]
proposed two randomized algorithms for two distinct outlier models namely, s-
parse and independent outlier models based robust principal component analysis.
k-Nearest Neighbors (kNN) [6] defines the distance of a given data point to its
kth nearest neighbors as the outlier. The greater the value of the score, the most
likely the outlier.

However, with the emergence of more and more multi-source data in many
real-world scenarios, the task of outlier detection becomes even more challenging
as traditional mono-source outlier detection techniques can no longer be suitable
for multi-source heterogeneous data. For example, as shown in Fig. 1, it is greatly
difficult in the single voice source to discovery the outlier x4, i.e., White tiger,
hidden in the cluster of Siberian tiger. However, according to the distribution
of the corresponding Image source, the heterogeneous outlier y4 can be easily
identified. Thus, it is necessary to develop an effective outlier detection method
for multi-source heterogeneous data.

Multi-View Outlier Detection To overcome the drawback of traditional
mono-source methods, several efforts [10,14,21,27] have been devoted to identify-
ing multi-source outliers. In [21], Li et al. proposed a multi-view outlier detection
framework to detect two different types of outliers from multiple views simulta-
neously. The characteristic of this method is that it only can detect the outliers
from different views in their own original low-level feature spaces. Similarly, Zhao
and Fu [27] also investigated multi-view outlier detection problem to detect two
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different kinds of anomalies simultaneously. Different from Li’s approach, they
represented both kinds of outliers in two different spaces, i.e. latent space and o-
riginal feature space. Janeja and Palanisamy presented in [10] a two-step method
to find anomalous points across multiple domains. This technique first conduct-
ed single-domain anomaly detection to discover outliers in each domain, then
mined association rule across domains to discover relationship between anoma-
lous points. A multi-view anomaly detection algorithm was developed by Liu
and Lam in [14] to find potentially malicious insider activity across multiple
data sources.

Difficulties and Challenges Generally, these existing methods tend to i-
dentify multi-source outliers from different feature spaces by using association
analysis across sources. Most of these methods are, however, designed for detect-
ing the Class-outliers [21,27] in spaces of the original attributes, and discovering
Attribute-outliers [21, 27] in combinations of underlying spaces. Consequently,
these methods will face an enormous challenge in the real-world applications
for the following reason. Due to the attempt of identifying multi-source out-
liers in different original feature spaces, it is extremely difficulty for the above-
mentioned approaches to capture much more complementary information from
different sources. It will lead to a low recognition rate for multi-source outlier-
s. Furthermore, it has been proved in [26] that the consistent representations
for multi-source heterogeneous data will be more favorable for fully exploiting
the complementarity among different sources. Thus, it is inevitably an urgent
problem to detect all kinds of multi-source outliers from different sources in a
consistent feature-homogeneous space.

1.1 Main Contributions

The key contributions of this paper are highlighted as follows:

• To detect multi-source heterogeneous outliers, a general Multi-Source Man-
ifold Outlier Detection (MMOD) framework based the consistent represen-
tations for multi-source heterogeneous data is proposed.

• Manifold learning is integrated in the framework to obtain a shared-represe-
ntation space, in which the information-correlated representations are close
along manifold while the semantic-complementary instances are close in Eu-
clidean distance.

• According to the information compatibility among different sources, an affine
subspace is learned through affine combination of shared representations
from different sources in the feature-homogeneous space.

• Multi-source heterogeneous outliers can be effectively identified in the affine
subspace under the constraints of information compatibility among different
sources.

1.2 Organization

The remainder of this paper is organized as follows: In Section 1.3, the notations
are formally defined. We present a general framework for detecting multi-source
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heterogeneous outliers in Section 2.1. Furthermore, Section 2.2 provides an ef-
ficient algorithm to solve the proposed framework. Experimental results and
analyses are reported in Section 3. Section 4 concludes this paper.

1.3 Notations

In this section, some important notations are summarized into Table 1 for con-
venience.

Table 1. Notations

Notation Description

Sx Source X
Sy Source Y

XN ∈ R
n1×dx Normal samples in Sx

YN ∈ R
n1×dy Normal samples in Sy

XS ∈ R
n2×dx Suspected outliers in Sx

xi ∈ R
dx The i-th sample from Sx

yi ∈ R
dy The i-th sample from Sy

n1 Number of normal data
n2 Number of suspected outliers
dx Dimensionality of Sx

dy Dimensionality of Sy

(xi, yi) The i-th multi-source datum
|| · ||F Frobenius norm
▽f(·) Gradient of smooth function f(·)

2 Detecting Multi-source Heterogeneous Outliers

Here we propose a general framework to detect heterogeneous outliers in multi-
source datasets.

2.1 The Proposed MMOD Model

In the light of the existing multi-source methods’ shortcomings, we focus on a
particularly important problem of identifying all kinds of multi-source heteroge-
neous outliers in a consistent feature-homogeneous space.

In general, outliers are located around the margin of the data set with high
density, such as a cluster. Furthermore, Elhamifar [7] has pointed out that each
data point in a union of subspaces can be efficiently represented as a linear or
affine combination of other points in the dataset. Meanwhile, Bertsekas has also
proved that all convex combinations are geometrically within the convex hull of
the given points [2]. Consequently, the negative components in the representation
correspond to the outliers outside the convex combination of its neighbors [5,20].
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Fig. 2. 4 Types of Heterogeneous Outliers.

Following the above-mentioned theoretical results, we propose a novel Multi-
Source Manifold Outlier Detection (MMOD) framework based the consistent
representations for multi-source heterogeneous data. The main goal of the pro-
posed framework is unified detection of outliers from heterogeneous datasets in a
feature-homogeneous space, in order to avoid wasting the complementary infor-
mation among different sources and improve the recognition rate for multi-source
outliers.

In this paper, we focus on detecting all kinds of heterogeneous outliers (See
Fig. 2) from multi-source heterogeneous data. In particular, we aim to identify
four types of heterogeneous outliers that are defined below.

Definition 1. Type-A outliers have consistent abnormal behaviors in each
source.

Definition 2. Type-B outliers are deviant instances that show normal
clustering results in one source but abnormal cluster memberships in another
source.

Definition 3. Type-C outliers own abnormal clustering results in each
source.

Definition 4. Type-D outliers refer to exceptional samples that exhibit
normal clustering results in one source but abnormal behavior in another source.

Given a normal dataset XN = {x1, x2, · · · , xn1
} ∈ R

dx×n1 and a sample
c ∈ R

dx , an affine space H = {w ∈ R
n1 |XNw = c} can be spanned by its

neighbors from Source X . Note that w is the representation of c in the affine
space, and wi is the component of the representation w of c. Generally, outliers
are located around the margin of the dataset with high density, such as a cluster.

It is known that if 0 ≤ wi ≤ 1, then the point c will be within (or on the
boundary) of the convex hull. If any wi is less than zero or greater than 1, then
the point will lie outside the convex hull. Thus, data representation can uncover
the intrinsic data structure. Obviously, heterogeneous outliers can be identified
according to the following principle.

1. c is normal point if 0 ≤ wi ≤ 1.
2. c is abnormal point (outlier) if any wi < 0 or wi > 1.

Specifically, the new distance metrics are defined as follows to learn a Maha-
lanobis distance [23]:

DMX
(xi, xj) = (xi − xj)

TMX(xi − xj), (1)
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DMY
(yi, yj) = (yi − yj)

TMY (yi − yj), (2)

where MX = ATA and MY = BTB are two positive semi-definite matrices.
Thus, the linear transformations A and B can be applied to each pair of co-
occurring heterogeneous representations (xi, yi).

Then the proposed approach can be formulated as follows:

Ψ1 :

min
A,B,M,W

‖ XNAMBTY T
N ‖2F +α ‖ XNA− YNB ‖2F

s.t. ATA = I and BTB = I and M � 0

XSA = WTYNB

(3)

where A∈Rdx×k, B∈Rdy×k, k is the dimensionality of the feature-homogeneous
subspace, and α is a trade-off parameter. The first item of the objective function
in the model Ψ1 is to measure the smoothness between different linear transfor-
mations A and B to extract the information correlation among heterogeneous
representations. Moreover, the motivation of introducing the second item in the
objective function is to capture the semantic complementarity among different
sources. The orthogonal constraints ATA = I and BTB = I are added into the
optimization to effectively remove the correlations among different features in
the same source, the positive semidefinite restraint M ∈ S

k×k
+ � 0 can ensure a

well-defined pseudo-metric. To identify multi-source heterogeneous outliers, the
affine hull constraint XSA = WTYNB based on data representation is added in-
to the model Ψ1 to learn an affine subspace. The matrices W ∈ R

n1×n2 encodes
the neighborhood relationships between points in the affine subspace, wi ∈ R

n1

is the representation of xi
S ∈ R

dx in the affine subspace, respectively.
Note that solving the problem Ψ1 in Eq.(3) directly is a challenging task

for two main reasons. First, it is difficult to seek the solution that satisfies the
convex hull constraint. Second, the orthogonal constraints are not smooth, which
makes it even more difficult to compute the optimum. Thus, we propose to use
Lagrangian duality to augment the objective function with a weighted sum of
the convex hull constraint to obtain a solvable problem Ψ2 as follows:

Ψ2 :
min

A,B,M,W
‖ XNAMBTY T

N ‖2F +α ‖ XNA− YNB ‖2F +β ‖XSA−WTYNB ‖2F
s.t. ATA = I and BTB = I and M � 0

(4)
In Section 2.2, an efficient algorithm is proposed to solve the problem Ψ2.

2.2 An Efficient Solver for Ψ2

Here we provide an efficient algorithm to solve Ψ2.
The optimization problem Ψ2 in Eq.(4) can be simplified as follows:

min
Z∈C

F (Z) = ‖ · ‖F + α‖ · ‖F + β‖ · ‖F , (5)

where F (·) is a smooth objective function, Z = [AZ BZ MZ WZ ] symbol-
ically represents the optimization variables, and C is the closed domain with
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respect to each variable:

C = {Z|AT
ZAZ = I, BT

ZBZ = I,MZ � 0}. (6)

Obviously, the optimization problem in Eq.(5) is non-convex. However, Ando
and Zhang have testified in [1] that the alternating optimization method can ef-
fectively solve non-convex problem. They have also pointed out that this method
usually did not lead to serious problems since given the local optimal solution
of one variable, the solution of other variables would still be globally optimal.

Additionally, the problem in Eq.(5) is separately convex with respect to each
optimization variable. Furthermore, as F (·) is continuously differentiable with
Lipschitz continuous gradient [15] with respect to each variable, respectively.
Thus, through combining Accelerated Projected Gradient (APG) [15] method
and alternating optimization approach [1], the problem in Eq.(5) can be effec-
tively solved.

However, the non-convex optimization problem in Eq.(5) is generally difficult
to optimize due to the orthogonal constraints. Guo and Xiao have pointed out
in [8] that Gradient Descent Method with Curvilinear Search (GDMCS) in [24]
can effectively solve non-convex optimization problem for a local optimal solution
as long as the Armijo-Wolfe conditions are satisfied.

Furthermore, since the objective function in Eq.(5) is smooth, the gradient of
the objective function with respect to A,B can be easily computed, respectively.
In each iteration of the gradient descent procedure, given the current feasible
point (A,B), the gradients can be computed as follows:

G1 = ▽AF (A,B), (7)

G2 = ▽BF (A,B). (8)

We then compute two skew-symmetric matrices:

F1 = G1A
T −AGT

1 , (9)

F2 = G2B
T −BGT

2 . (10)

It is easy to see FT
1 = −F1 and FT

2 = −F2. The next new point can be searched
as a curvilinear function of a step size variable τ , such that

Q1(τ) = (I + τF1/2)
−1(1− τF1/2)A, (11)

Q2(τ) = (I + τF2/2)
−1(1 − τF2/2)B. (12)

It is easy to verify that Q1(τ)
TQ1(τ) = I and Q2(τ)

TQ2(τ) = I for all τ ∈ R.
Thus we can stay in the feasible region along the curve defined by τ . Moreover,
dQ1(0)/dτ and dQ2(0)/dτ are equal to the projections of (−G1) and (−G2) onto
the tangent space C at the current point (A,B). Hence {Q1(τ), Q2(τ)}(τ≥0) is
a descent path in the close neighborhood of the current point. We thus apply a
similar strategy as the standard backtracking line search to find a proper step
size τ using curvilinear search, while guaranteeing the iterations to converge
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to a stationary point. We determine a proper step size τ as one satisfying the
following Armijo-Wolfe conditions [24]:

F (Q1(τ), Q2(τ))≤F (Q1(0), Q2(0))+ρ1τF
′

τ (Q1(0), Q2(0)), (13)

F
′

τ (Q1(τ), Q2(τ)) ≥ ρ2F
′

τ (Q1(0), Q2(0)). (14)

Here F
′

τ (Q1(τ), Q2(τ)) is the derivative of F with respect to τ ,

F
′

τ (Q1(τ), Q2(τ)) =

−tr((▽AF (Q1(τ), Q2(τ)))
T (I +

τ

2
F1)

−1F1(
A+Q1(τ)

2
)

−tr((▽BF (Q1(τ), Q2(τ)))
T (I +

τ

2
F2)

−1F2(
B +Q2(τ)

2
).

(15)

Therefore,

F
′

τ (Q1(0), Q2(0)) = −tr(GT
1 (G1A

T −AGT
1 )A)

−tr(GT
2 (G2B

T −BGT
2 )B)

= −‖F1‖2F
2

− ‖F2‖2F
2

.

(16)

Accordingly, it is appropriate to use the gradient descent method to solve the
problem Ψ2 in Eq.(5).

The APG algorithm is a first-order gradient method, which can accelerate
each gradient step on the feasible solution to obtain an optimal solution when
minimizing a smooth function [16]. This method will construct a solution point
sequence {Zi} and a searching point sequence {Si}, where each Zi is updated
from Si.

Furthermore, a given point s in the APG algorithm needs to be projected
into the set C:

projC(s) = arg min
z∈C

‖z − s‖2F /2. (17)

Weinberger et al. proposed a Positive Semi-definite Projection (PSP) [23] to
minimize a smooth function while remaining positive semi-definite constraints.
It will project optimal variables into a cone of all positive semi-definite matrices
after each gradient step. The projection is computed from the diagonalization
of optimal variables, which effectively truncates any negative eigenvalues from
the gradient step, setting them to zero. Then we can use the PSP to solve the
problem in Eq.(17).

Finally, to solve the problem in Eq.(5), the projection Z = [AZ BZ MZ WZ ]
of a given point S = [AS BS MS WS ] onto the set C is defined by:

projC(S) = arg min
Z∈C

‖Z − S‖2F /2. (18)

By combining APG, GDMCS, and PSP, we can solve the problem in Eq.(18).
The overall algorithm is given in Algorithm 1, where the function Schmidt(·)
denotes the GramSchmidt process.
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Algorithm 1: Multi-Source Manifold Outlier Detection (MMOD)

Input: F (·), Z0=[AZ0
BZ0

MZ0
WZ0

], τ1, 0 < ρ1 < ρ2 < 1, s=1, t=1, p=1,
q=1, η1>0, θ1>0, λ1>0, µ1>0.

Output: Z∗.
1: Set AZ1

=AZ0
, BZ1

=BZ0
, MZ1

=MZ0
, and WZ1

=WZ0
.

2: for i =1,2,· · ·,max−iter do
3: Fix B, M , W and approximately solve for A.
4: Define Fη,AS

(AZ)=F (AS)+〈▽F (AS), AZ−AS〉+η‖AZ−AS‖2F /2.
5: for j =1,2,· · ·, h1 do
6: Set aj = (s− 1)/s.
7: Compute ASi

= (1 + αj)AZi
− αjAZi−1

.
8: Compute ▽AS

F (ASi
).

9: while (true)

10: Compute ÂS = ASi
− ▽AS

F (ASi
)/ηi.

11: Compute [ÂS ] = Schmidt(ÂS).

12: Set [AZi+1
] = GDMCS(F (·), ÂS , τ1, ρ1, ρ2).

13: if F (AZi+1
) ≤ Fηi,ASi

(AZi+1
), then break;

14: else Update ηi = ηi × 2.
15: end-if
16: end-while
17: Update s =

(
1+

√
1+4s2

)
/2, ηi+1=ηi.

18: end-for
19: Fix A, M , W and approximately solve for B.
20: Define Fθ,BS

(BZ)=F (BS)+〈▽F (BS), BZ−BS〉+θ‖BZ−BS‖2F/2.
21: for j =1,2,· · ·, h2 do
22: Set aj = (t− 1)/t.
23: Compute BSi

= (1 + αj)BZi
− αjBZi−1

.
24: Compute ▽BS

F (BSi
).

25: while (true)

26: Compute B̂S = BSi
− ▽BS

F (BSi
)/θi.

27: Compute [B̂S ] = Schmidt(B̂S).

28: Set [BZi+1
] = GDMCS(F (·), B̂S , τ1, ρ1, ρ2).

29: if F (BZi+1
) ≤ Fθi,BSi

(BZi+1
), then break;

30: else Update θi = θi × 2.
31: end-if
32: end-while
33: Update t =

(
1+

√
1+4t2

)
/2, θi+1=θi.

34: end-for
35: Fix A, B, W and approximately solve for M .
36: Define Fλ,MS

(MZ)=F (MS)+〈▽F (MS),MZ−MS〉+λ‖MZ−MS‖2F /2.
37: for j =1,2,· · ·, h3 do
38: Set aj = (p− 1)/p.
39: Compute MSi

= (1 + αj)MZi
− αjMZi−1

.
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40: Compute ▽MS
F (MSi

).

41: while (true)

42: Compute M̂S = MSi
− ▽MS

F (MSi
)/λi.

43: Compute [MZi+1
] = PSP(M̂S).

44: if F (MZi+1
) ≤ Fλi,MSi

(MZi+1
), then break;

45: else Update λi = λi × 2.

46: end-if

47: end-while

48: Update p =
(
1+

√
1+4p2

)
/2, λi+1=λi.

49: end-for

50: Fix A, B, M and approximately solve for W .

51: Define Fµ,WS
(WZ)=F (WS)+〈▽F (WS),WZ−WS〉+µ‖WZ−WS‖2F/2.

52: for j =1,2,· · ·, h4 do

53: Set aj = (q − 1)/q.

54: Compute WSi
= (1 + αj)WZi

− αjWZi−1
.

55: Compute ▽WS
F (WSi

).

56: while (true)

57: Compute WZi+1
= WSi

− ▽WS
F (WSi

)/λi.

58: if F (WZi+1
) ≤ Fµi,WSi

(WZi+1
), then break;

59: else Update µi = µi × 2.

60: end-if

61: end-while

62: Update q =
(
1+

√
1+4q2

)
/2, µi+1=µi.

63: end-for

64: end-for

65: Set Z∗=[AZi+1
BZi+1

MZi+1
WZi+1

].

3 Experimental Evaluation

Our experiments are conducted on three publicly available multi-source datasets,
namely, UCI Multiple Features (UCI MFeat) [3], Wikipedia [19], and MIR Flickr
[9]. The statistics of the datasets are given in Table 2, and brief descriptions of
the chosen feature sets in the above-mentioned datasets are listed in Table 3.

Table 2. Statistics of the Multi-source Datasets

Dataset Total Attributes Total Classes Total Samples

UCI MFeat 123 10 2000
Wikipedia 258 10 2866
MIR Flickr 5857 38 25000
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Table 3. Brief Descriptions of the Feature Sets

Dataset Feature Set Total Attributes Total Labels Total Instances

UCI MFeat
fou (Sx) 76 10 2000
zer (Sy) 47 10 2000

Wikipedia
Image (Sx) 128 10 2866
Text (Sy) 130 10 2866

MIR Flickr
Image (Sx) 3857 38 25000
Text (Sy) 2000 38 25000

Note that all the data are normalized to unit length. Each dataset is ran-
domly separated into a training set and a test set. The training samples account
for 80 percent of each original dataset, and the remaining ones act as the test
data. Such a partition of each dataset is repeated five times and the average
performance is reported. The 100 outliers are generated from Gaussian noise
with the same dimension as normal samples in each source. We mix these outlier
data into each dataset. Some key parameters of all the methods in our experi-
ments are tuned using the 5-fold cross-validation based on the AUC (area under
the receiver operating characteristic curve) on the training set. Particularly, the
LIBSVM classifier serves as the benchmark for the tasks of classification in the
experiments.

3.1 Comparison of Multi-View Outlier Detection Methods

The purpose of comparing the proposed MMOD model and multi-view outli-
er detection methods, such as Li’s method [21], Zhao’s method [27], Janeja’s
method [10], and Liu’s method [14] is to show the importance of identifying
multi-source outliers in a consistent feature-homogeneous space. Due to the at-
tempt of identifying multi-source outliers in different original feature spaces, it
is extremely difficulty for the other compared approaches to capture much more
complementary information from different sources. It will lead to a low recog-
nition rate for multi-source outliers. To validate this point, we further compare
the recognition rate of MMOD with the above-mentioned multi-view outlier de-
tection methods. The parameter settings in the compared methods are the same
as in their original literatures.

Table 4. Comparison of Multi-View Outlier Detection Methods

Method
Dataset

UCI MFeat Wikipedia MIR Flickr

Li’s 0.7492 0.7822 0.8053
Zhao’s 0.7192 0.7618 0.7891
Janeja’s 0.7197 0.7359 0.8096
Liu’s 0.8013 0.8296 0.8394

MMOD 0.8977 0.8671 0.8824
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The proposed MMOD model identifies multi-source outliers in a consistent
feature-homogeneous space. As shown in Table 4, MMOD can improve more
effectively the recognition rate for multi-source outliers than Li’s method, Zhao’s
method, Janeja’s method, and Liu’s method. It means that MMOD can capture
the information compatibility among different sources more effectively.

3.2 Comparison of Mono-source Outlier Detection Approaches

To evaluate the performance of outlier detection, we compare our method with
some representative state-of-the-art mono-source methods such as Li’s method
[13], Rahmani’s method [18], and kNN [6] in three multi-source datasets. Ba-
sic metric, Precision (P), is used to evaluate the ability of each algorithm. For
Li’s method, Rahmani’s method, and kNN, we first use CCA [22] to project the
multi-source data into a feature-homogeneous space and then apply these meth-
ods to retrieve the most likely outlier. For MMOD, we tune the regularization
parameters on the set {10i|i = −2,−1, 0, 1, 2}. For Li’s method and Rahmani’s
method, the experiment settings follow the original works [13, 18], respectively.
The parameter k in kNN is selected from the set {2 ∗ i + 1|i = 5, 10, 15, 20, 25}.

Fig. 3. Comparisons of Outlier Detection Approaches.

From Fig.3, we can see that MMOD achieves significant gains, and can almost
detect all the outliers. This observation indicates that MMOD will be more
favorable to detect multi-source heterogeneous outliers because of fully taking
into account the information compatibility and semantic complementarity among
different sources.

3.3 Comparison in Different Outlier Rates

To test the performance of the proposed MMOD in different outlier rates, we
further compare the recognition rate of MMOD with other multi-view outlier
detection methods such as Li’s method [21], Zhao’s method [27], Janeja’s method
[10], and Liu’s method [14] in the larger MIR Flickr dataset. We tune the outlier
rates on the set {10%, 15%, 20%, 25%}.
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Fig. 4. Comparison in Different Outlier Rates.

We can see from Fig.4 that MMOD is superior to other multi-view outlier
detection methods in recognition rate. This observation further confirms that
MMOD can effectively identify multi-source outliers. Nevertheless, with the in-
creasing of outlier rate, the performance of MMOD will degrade. Thus, MMOD
also has some limitations that it need a certain number of existing samples to
identify multi-source outliers.

4 Conclusion

In this paper, we have investigated the heterogeneous outlier detection problem
in multi-source learning. We developed a MMOD framework based the consisten-
t representations for multi-source heterogeneous data. Within this framework,
Manifold learning is integrated to obtain a shared-representation space, in which
the information-correlated representations are close along manifold while the
semantic-complementary instances are close in Euclidean distance. Meanwhile,
an affine subspace is learned through affine combination of shared representa-
tions from different sources in the feature-homogeneous space according to the
information compatibility among different sources. Finally, multi-source hetero-
geneous outliers can be effectively identified in the affine subspace.
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