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Abstract. Remote Sensing in agriculture makes possible the acquisition of large 

amount of data without physical contact, providing diagnostic tools with im-

portant impacts on costs and quality of production. Hyperspectral imaging sen-

sors attached to airplanes or unmanned aerial vehicles (UAVs) can obtain spectral 

signatures, that makes viable assessing vegetation indices and other characteris-

tics of crops and soils. However, some of these imaging technologies are expen-

sive and therefore less attractive to familiar and/or small producers. In this work 

a method for estimating Near Infrared (NIR) bands from a low-cost and well-

known RGB camera is presented. The method is based on a weighted sum of NIR 

previously acquired from pre-classified uniform areas, using hyperspectral im-

ages. Weights (belonging degrees) for NIR spectra were obtained from outputs 

of K-nearest neighbor classification algorithm. The results showed that presented 

method has potential to estimate near infrared band for agricultural areas by using 

only RGB images with error less than 9%. 

Keywords: Remote sensing, NIR image estimation, KNN, spectral signature. 

1 Introduction 

Remote Sensing (RS) has become an important system to obtain a huge amount of 

data, especially in precision agriculture processes. The association between information 

technology and agricultural procedures has been useful for obtaining and processing 

farm data, resulting in tools for productivity estimation, nutritional evaluation, water 

management, pests and diseases detection. Among several devices, multispectral and 

hyperspectral sensors attached to airplanes or Unmanned Aerial Vehicles (UAVs) can 

obtain images with detailed spectral information that helps identifying and distinguish-

ing among materials spectrally similar [1]. 

Properties extracted from reflectances in some ranges of the electromagnetic spec-

trum can be better evaluated by arithmetical combinations of different spectral bands 
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[2]. These combinations usually use ranges from visible to Near Infrared (NIR) fre-

quencies and are measures of vegetation activities. These measures are called Vegeta-

tion Indices (VIs) [3]. 

Especially for Brazilian agriculture, costs for acquiring data represent one of the most 

important barrier to the improvements provided by multispectral and hyperspectral sen-

sors. Both sensors and their respective analytical platform are high-cost systems and 

they can not be offered as a set-off for familiar and/or small producers. For instance, 

the price of a hyperspectral camera is above tens of thousands of pounds. Furthermore, 

vehicles that transport these sensors (Drones and UAVs) are susceptible to mechanical 

and also human failures, leading to crashes during flight. Besides damaging the drone, 

the high cost spectral cameras could be damaged too. Common Red-Green-Blue (RGB) 

cameras are currently low cost sensors with potential to estimate some kind of VIs from 

visible spectral bands, such as Modified Photochemical Reflectance Index (MPRI) [4], 

that is applied to light use efficiency and water-stress. Nevertheless, the VI most used 

and accepted by agronomists is the Normalized Difference Vegetation Index (NDVI). 

This index uses NIR band and R band from RGB. 

There are some papers that describe methods to obtain NIR images from ordinary 

cameras. Hardware alterations on cameras are described in [5] and [6], removing NIR 

blocking filters from them. In [5], a new CFA (Color Filter Array) was developed to 

obtain a color image and a NIR image at the same time. A method to obtain NDVI 

images directly from a common camera is proposed in [6]. The first step to obtain this 

kind of images was removing the NIR blocking filter from one of the RGB channels of 

the camera and adding a low pass filter, allowing to obtain only NIR information. In 

this work, B channel from RGB was replaced for NIR. In 2016, a method to estimate 

NIR images from RGB images was proposed [7]. RGB images were captured by a 

camera attached to an UAV on different days and hours as well as NIR images obtained 

by a special camera, but these images were not from an aerial vehicle. After a regression 

analysis using RGB and NIR images, experiments showed that G channel from RGB is 

highly correlated to NIR, thus, they concluded that it is possible to estimate NIR images 

from G channel.  

This paper introduces a method for estimating near infrared spectral information 

from RGB images, using R, G and B values and material endmembers. The purpose is 

making viable development of tools based on cheaper RGB cameras capable of esti-

mating accurately NIR bands for VIs and other agricultural applications, making UAVs 

technology more attractive and accessible to familiar and small producers. 

The rest of the text refers to the following: Section 2 – describing the hyperspectral 

image data used in the development, and the experiments for endmembers extraction; 

Section 3 – presenting the proposed method; Section 4 – describing the experimental 

results; and Section 5 – about conclusions and future works. 
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2 Spectral Data and Endmembers Extraction 

2.1 Hyperspectral Images 

Hyperspectral images were used as source of spectra to create a database of endmem-

bers [8] for this experiment. Pure spectral signatures plays an important role on classi-

fication of materials on hyperspectral images. Because of the lack of a huge free hyper-

spectral image dataset, some well known images from literature were used to collect 

spectral information. These images have a ground truth image, allowing to assign each 

pixel spectral signature to different kinds of ground cover like vegetation, bare soil, 

minerals and water. Three public available hyperspectral scenes indicated in the litera-

ture were chosen to make spectral analysis: Indian Pines, Salinas and Pavia Centre. 

Information about these hyperspectral images can be obtained in [9]. RGB images were 

obtained using the three equivalent wavebands from the original hyperspectral images. 

In addition to literature images, an image mosaic from a citrus cultivation in Lampa, 

Santiago, Chile, was used to do spectral analysis too. It was captured on January 17, 

2011 by using a HySpex VNIR-1600 sensor attached to an airplane. The image was 

acquired between 12:49 and 12:54 p.m, with altitude of 2,500 m above sea level. Each 

image pixel corresponds to 0.5 m of spatial resolution, with 160 spectral bands, ranging 

from visible wavelengths to NIR (411.2 nm - 988.9 nm). To generate a RGB image for 

this image (Figure 1), bands 55 (611nm), 41 (560.2nm) and 12 (453.8 nm) were chosen 

to obtain respectively R, G and B channels. 

 

Fig. 1.  RGB image from citrus cultivation in Lampa, Chile. 

2.2 Endmembers extraction experiments 

Pixels from selected images were taken to represent classes from their respective 

ground truths, resulting in 400 pixels per class, but for Indian Pines image was possible 

to get only 15 pixels per class, because some classes have less than 50 pixels in its 

ground truth. These selected pixels were used to find spectras that best represent each 

class (endmember). Automatic Target Generation Process (ATGP) [10], Pixel Purity 

Index (PPI) [11], N-FINDR [12] and Fast Interative Pixel Purity Index (FIPPI) [13] 

were chosen to find these endmembers and verify the best algorithm to use on proposed 

method.  

In addition to endmembers extraction results, an average of spectra was assessed for 

each class. An example of mean spectral signature can be seen at Figure 2. 
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For the Lampa image, sixteen class labels were categorized for representing areas of 

soils (different conditions), lakes and crops. Each class from this image has an endmem-

ber associated with it. The same procedure is done to all images selected.  

A total of 12,848 pixels were sampled to create a training database. In order to vali-

date the method, 4,190 pixels spectra were sampled from other image areas. In Table 1 

is shown the class label with their respective number of pixels. 

 

 

Fig. 2. Example of mean spectral signature. (a) 400 spectral signatures. (b) Mean spectral val-

ues from (a). 

Table 1.  Training Database samples distribution. 

Class label Number of samples (Pixels) 

Dirt Road 1 415 

Dirt Road 2 640 

Lake 1 672 

Lake 2 663 

Plantation 1 861 

Plantation 2 846 

Plantation 3 660 

Plantation 4 1,045 

Plantation 5 976 

Soil 1 1,024 

Soil 2 900 

Soil 3 820 

Soil 4 877 

Native Soil 1 772 

Native Soil 2 647 

Native Vegetation 1,030 

Total 12,848 
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3 Proposed Method 

Figure 3 shows a block diagram that summarizes the proposed method. At the top, it is 

seen the hyperspectral image block, since the whole development is based on pixels 

sampled from this type of images. Then at the right side it is shown a block of endmem-

bers extraction. These endmembers are hyperspectral pixels chosen to represent classes, 

as described in the previous section. At the left side it is seen the RGB image block, 

which represents the RGB pixel values extracted from the hyperspectral image data; 

and at the middle it is seen the ground truth pixels representing the classes. Using the 

RGB image input and the ground truth, the KNN classification is applied, to obtain the 

spectral signatures estimate of the RGB image pixels. It is important to explain that this 

block diagram is referred to the development diagram, since after this development, the 

NIR band estimation is based on RGB image and ground truth, without the use of the 

hyperspectral image data. The method will be described in detail in the following par-

agraphs, starting from KNN classification, because Hyperspectral images, RGB images 

acquisition, ground truth and Endmembers extraction have already been described in 

the previous section. 

 

Fig. 3. Block diagram representing the proposed method. 
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The WEKA tool [14] was used for the experiments. The K-Nearest Neighbours 

(KNN) algorithm was chosen as the instance classifier. Input attributes were R, G, B 

and MPRI values. 

MPRI is a VI based on normalized difference between two spectral bands in visible 

wavelength, specifically, red and green [5]. The MPRI equation is expressed as follow-

ing: 

  

𝑀𝑃𝑅𝐼 =
(𝑅𝐺𝑟𝑒𝑒𝑛−𝑅𝑅𝑒𝑑)

(𝑅𝐺𝑟𝑒𝑒𝑛+𝑅𝑅𝑒𝑑)
 (1) 

where 𝑅𝐺𝑟𝑒𝑒𝑛 is the green reflectance value and  𝑅𝑅𝑒𝑑 is the red reflectance value. 

WEKA KNN returns a vector with a belonging degree to each class for the classified 

instance (pixel). At first, the algorithm creates an n dimension array called dist, which 

n is the number of classes from classification problem. Each dist element has an initial 

value, called classifier correction, defined by equation (2), where N is the number of 

instances. 

 

 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
1

𝑀𝐴𝑋(1,𝑁)
       (2) 

For each k nearest neighbors the algorithm calculates a weight W using the distance 

between them and the sample to be classified, using the number of attributes (𝑥) from 

input data, equation 3. 

 

 𝑊𝑖 =
√𝑥

𝑑𝑖𝑠𝑡𝑖
2 , 1 ≤ 𝑖 ≤ 𝑘 (3) 

The dist array is updated on positions corresponding to each of k nearest neighbors, 

as can be seen on equation (4). After updating dist, the array is normalized, generating 

the proximity degree, or probability distribution Pi, equation (5). 

 𝑑𝑖𝑠𝑡𝑖 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑊𝑖 (4) 

 𝑃𝑖 = 𝑁𝑜𝑟𝑚𝑖 =  
𝑑𝑖𝑠𝑡𝑖

∑ 𝑊𝑗
𝑘
𝑗=1

, 1 ≤ 𝑖 ≤ 𝑘 (5) 

Pi is used to calculate a weighted sum that origins new spectral signature, such as: 

 𝑆′ = ∑ 𝑃𝑖
𝑛𝑐
𝑖=1 𝑆�̅� (6) 

where 𝑛𝑐 is the number of class labels, 𝑃𝑖  is the probability of pixel belong to class i 

and 𝑆�̅� is the endmember array of class i. This new spectral signature calculated by 

equation (6) is based on the principle that hyperspectral pixels are composed by a mix-

ture of endmembers from different targets [8]. Figure 4 illustrates how this step of ob-

taining new spectral signatures works, so that, at the left side it is shown the k = 3 

nearest neighbors, represented by their endmember signatures, and their respective 

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_41

https://dx.doi.org/10.1007/978-3-030-22734-0_41


7 

proximity degree, Pi, from the RGB pixel; and at the right side, the resulting estimative 

of spectral signature for the RGB pixel. Using this estimated spectral signature for all 

the pixels of the RGB image, it is possible to estimate its NIR band. 

 

  

Fig. 4. Obtention of new spectral signatures from weighted sum using endmembers and KNN 

proximity degree. 

In order to evaluate this experiment results, Root Relative Squared Error (RRSE) was 

calculated between classes’ endmembers and validation data, wavelength by wave-

length, using their respective KNN classification label. RRSE is given by: 

 𝑅𝑅𝑆𝐸(𝑗) = √
∑ (𝑆𝑗,𝑖−𝑉𝑗,𝑖)

2𝑛
𝑖=1

∑ (�̅�𝑗−𝑉𝑗,𝑖)
2𝑛

𝑖=1

 (7) 

where 𝑛 is the number of samples from validation dataset, 𝑆�̅�,𝑖 refers to endmember 

reflectance for wavelength j, 𝑉𝑗,𝑖 is the validation dataset reflectance value for wave-

length j. �̅�𝑗 is a mean value of reflectance values from validation dataset pixels for 

wavelength j. 

4 Experimental Results 

Endmembers were extracted with ATGP, PPI, N-FINDR, FIPPI and also mean spectral 

signature. Image segmentation with Spectral Angle Mapper (SAM) [15] and Spectral 

Information Divergence (SID) [16], spectral similarity measures, were used to verify 

which algorithm could be used to feed the estimation method with the best 
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endmembers. SAM and SID algorithms use endmembers as a class reference pattern to 

classify spectral signatures of pixels from hyperspectral images, analyzing how far or 

near these pixels are from endmembers. Table 2 shows accuracy of segmentation per-

formed after endmembers being extracted by these methods. 

Table 2. Image Segmentation Accuracy (%) with SAM and SID. 

INDIAN PINES 

 
ATGP PPI N-FINDR FIPPI 

Mean Spectral 

Signature 

SAM 25.66 22.64 23.68 31.02 33.33 

SID 24.28 25.29 32.31 33.90 40.08 

SALINAS 

 
ATGP PPI N-FINDR FIPPI 

Mean Spectral 

Signature 

SAM 29.59 44.45 52.10 54.72 62.14 

SID 34.61 42.15 48.89 53.43 59.49 

PAVIA CENTRE 

 
ATGP PPI N-FINDR FIPPI 

Mean Spectral 

Signature 

SAM 48.10 81.79 79.34 82.94 88.71 

SID 69.14 58.96 73.06 57.61 84.27 

 

According to Table 2, Mean Spectral signature outperformed classical algorithms of 

endmembers extraction, presenting the best segmentation results using SAM and SID 

classifiers. For the literature methods of endmembers extraction, FIPPI spectral signa-

tures presented best results in segmentation task. Therefore, Mean Spectral signatures 

and spectral signatures selected by FIPPI were used on NIR estimative experiments. 

The best performance on training datasets indicated 5 neighbors and weighted dis-

tance inverse (Euclidean distance) for KNN. Table 3 shows KNN classification accu-

racy using RGB and MPRI data from data set (section 2.2) as input. As can be seen, 

Salinas image data showed best accuracy result, so it was chosen to make NIR estima-

tive and also Lampa image, to verify estimative results on an image that doesn’t have 

ground truth defined by remote sensing specialists. 

Table 3.  KNN Classification Accuracy to the Data Sets. 

Image Accuracy (%) 

Indian Pines 56.61 

Salinas 93.76 

Pavia Centre 69.39 

 

The KNN classification accuracy to the Lampa image was 64.46%. After KNN clas-

sification, the RRSE was calculated between each sample spectra from validation data 

and the mean spectral signature which has the same label given by classifier. RRSE 

mean value between validation and average spectra is 58.88% to the Salinas data set 

and 52.86% to the Lampa  data set (blue curve on Figure 5). For experiments done with 

spectral signatures extracted with FIPPI, RRSE mean value between validation data 
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and FIPPI endmembers is 67.68% to the Salinas data set and 70.22% to the Lampa data 

set (blue curve on Figure 6). 

Estimated spectral signatures were obtained by applying Equation 6 for each sample 

of the validation dataset and RRSE was calculated for the two selected images using 

Mean Spectral Signatures (green curve on Figure 5) and FIPPI spectras (green curve on 

Figure 6). In average, RRSE for all wavelengths was 8.12% to the Salinas estimated 

image and 8.48% to the Lampa estimated image. RRSE results calculated between es-

timated spectras and FIPPI endmembers were 9.04% to the Salinas data and 10.14% 

for Lampa data in average. It is possible to see how RRSE get lower error values per 

band for estimated spectral signatures in comparison to the RRSE calculated in relation 

to the spectral signature from hyperspectral images for both Mean Spectral Signatures 

and FIPPI endmembers. Although new spectral signatures being a kind of endmembers 

mixture, they are still closer to the endmembers than spectral signatures from validation 

data for each classified pixel with KNN. 

 

Fig. 5. RRSE between real validation data and average spectral signature (blue); and RRSE be-

tween new spectral signature and average spectral signature (green) (Lampa Image). 

 

Fig. 6. RRSE between real validation data and spectral signatures extracted with FIPPI (blue); 

and RRSE between new spectral signature and endmembers extracted with FIPPI (Lampa im-

age). 
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Entire Salinas image was used to show the power that this method has to estimate 

NIR spectral information, creating full RGB and NIR images for visual comparison. 

Since Lampa image has high dimension, an image region (400 x 400 pixels) was ex-

tracted from Figure 1, also for a visual comparison between real images and those esti-

mated by the proposed method. The estimative were performed using Mean Spectral 

Signatures and the results to the Salinas image are shown in Figure 7. Results of esti-

mation to the Lampa region image are shown in Figure 8. Note that estimated images 

preserve a lot of transitions (high frequencies) among image components (classes), with 

good similarity with original images. 

 

Fig. 7. Estimated image to Salinas Data Set. 

 

Fig. 8.  Estimated image to Lampa image 

At Figures 9 and 10, NDVI pseudo color images are showed both NDVI calculated 

with original NIR data and NDVI calculated with estimated NIR data. NDVI values 

between 0.4 and 0.8 were considered to generate color ranges, because this NDVI value 

range shows the state of vegetation health. Red areas show uncovered soil and un-

healthy vegetation. Colored areas (orange to green) shows different health state of veg-

etation, being green areas related to healthiest vegetation. Note that NDVI maps as-

sessed using original NIR data and those based on NIR estimatives are very similar. 
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Fig. 9. NDVI maps for Salinas image.  

 

Fig. 10. NDVI maps for Lampa image. 

5 Conclusion 

In this paper, a method for estimating spectral signatures from RGB images using KNN 

was proposed. The use of a weighted sum using belonging degrees to classes has shown 

high potential for estimating spectral signatures for each image pixel, with an error 

smaller than 9% for NIR bands using Mean Spectral Signatures as endmembers, also 

resulting in quite similar NDVI maps. This kind of method makes feasible the use of 

accessible technologies to familiar and small producers. Some applications have high 

correlation between visible band and other bands, such as NIR. Thus, low-cost RGB 

cameras can be applied for obtaining adequate estimations in agriculture. Despite its 

good results, the method has limitations such as dependence on having ‘pure’ spectral 

signatures (endmembers) to estimating NIR bands and knowledge of the flight region 

to create a precise ground truth for KNN classification step. Ongoing work has shown 

many possibilities for improvements, including local correlations, measurements with 

a hand-held spectroradiometer and use of images with few bands (multispectral im-

ages).  
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