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Abstract. Many complex systems, both in technology and nature, ex-
hibit hierarchical modularity: smaller modules, each of them providing
a certain function, are used within larger modules that perform more
complex functions. Previously, we have proposed a modeling framework,
referred to as Evo-Lexis [21], that provides insight to some fundamental
questions about evolving hierarchical systems.
The predictions of the Evo-Lexis model should be tested using real data
from evolving systems in which the outputs can be well represented by
sequences. In this paper, we investigate the time series of iGEM synthetic
DNA dataset sequences, and whether the resulting iGEM hierarchies
exhibit the qualitative properties predicted by the Evo-Lexis framework.
Contrary to Evo-Lexis, in iGEM the amount of reuse decreases during
the timeline of the dataset. Although this results in development of less
cost-efficient and less deep Lexis-DAGs, the dataset exhibits a bias in
reusing specific nodes more often than others. This results in the Lexis-
DAGs to take the shape of an hourglass with relatively high H-score
values and stable set of core nodes. Despite the reuse bias and stability
of the core set, the dataset presents a high amount of diversity among
the targets which is in line with modeling of Evo-Lexis.

Keywords: complex systems · hierarchical structure · optimization ·
hourglass effect · iGEM.

1 Introduction

Hierarchically modular designs enhance evolvability in natural systems [15, 16,
19], make the maintenance easier in technological systems, and provide agility
and better abstraction of the system design [9, 18].

In prior work in [21], we present Evo-Lexis, a modeling framework for the
emergence and evolution of hierarchical structure in complex modular systems.
There are many hypotheses in the literature regarding the factors that contribute
to either the hierarchy or modularity properties. Local resource constraints in
social networks and ecosystems [17], modularly varying goals [7, 13, 14], selection
for more robust phenotypes [4, 24], and selection for lower connection costs in
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a network [15] are some of the mechanisms that have been previously explored
and shown to lead to hierarchically modular systems. The main hypothesis that
Evo-Lexis follows is along the lines of [15], which assumes that systems in both
nature and technology care to minimize the cost of their interconnections or
dependencies between modules. We also studied the hourglass effect via Evo-
Lexis. Informally, an hourglass architecture means that the system of interest
produces many outputs from many inputs through a relatively small number of
highly central intermediate modules, referred to as the “waist” of the hourglass.
It has been observed that hierarchically modular systems often exhibit the ar-
chitecture of an hourglass; for reference, in fields like computer networking [2],
neural networks [11, 10], embryogenesis [5], metabolism [8, 23], and many others
[19, 22], this phenomena is observed. A comprehensive survey of the literature
on hierarchical systems evolution, and the hourglass effect is presented in [19].

The motivation for this paper is that the Evo-Lexis model is quite general
and abstract, and it does not attempt to capture any domain-specific aspects
of biological or technological evolution. As such, it makes several assumptions
that can be criticized for being unrealistic, such as the fact that all targets have
the same length, or their length stays constant, or the fitness of a sequence is
strictly based on its hierarchical cost. We believe that such abstract modeling
is still valuable because it can provide insights into the qualitative properties of
the resulting hierarchies under different target generation models. However, we
also believe that the predictions of the Evo-Lexis model should be tested using
real data from evolving systems in which the outputs can be well represented by
sequences. One such system is the iGEM synthetic DNA dataset [1]. The target
DNA sequences in the iGEM dataset are built from standard “BioBrick parts”
(more elementary DNA sequences) that collectively form a library of synthetic
DNA sequences. These sequences are submitted to the registry of standard bi-
ological parts in the annual iGEM competition. Previous research in [3, 20] has
provided some evidence that these synthetic DNA sequences are designed by
reusing existing components, and as such, it has a hierarchical organization. In
this paper, we investigate how to apply the Evo-Lexis framework in the time
series of iGEM sequences, and whether the resulting iGEM hierarchies exhibit
the same qualitative properties we observed in [21] which was solely based on
abstract target generation models. We ask the following questions in this paper:

1. How can we analyze the iGEM dataset using the evolutionary framework of
Evo-Lexis? How are the batches of targets formed? What properties of the
iGEM batches are different than Evo-Lexis’s setting?

2. When formed incrementally over the iGEM dataset, which are the architec-
tural properties of Lexis-DAGs, and why?

2 Preliminaries

To develop Evo-Lexis, we extend the previously proposed optimization frame-
work Lexis in [20]. Lexis models the most elementary modules of the system as
symbols (“sources”) and the modules at the highest level of the hierarchy as se-
quences of those symbols (“targets”). Evo-Lexis is a dynamic or evolving version
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of Lexis, in the sense that the set of targets changes over time through additions
(births) and removals (deaths) of targets. Evo-Lexis computes an (approximate)
minimum-cost adjustment of a given hierarchy when the set of targets changes
over time (a process we refer to as “incremental design”).
2.1 Lexis Optimization

Given an alphabet S and a set of “target” strings T over the alphabet S, we need
to construct a Lexis-DAG. A Lexis-DAG D is a directed acyclic graph D(V,E),
where V is the set of nodes and E the set of edges, that satisfies the following
three constraints:3 a) Each node v ∈ V in a Lexis-DAG represents a string
S(v) of characters from the alphabet S. The nodes VS that represent characters
of S are referred to as sources, and they have zero in-degree. The nodes VT
that represent target strings T = {t1, t2, . . . , tm} are referred to as targets, and
they have zero out-degree. V also includes a set of intermediate nodes VM , which
represent substrings that appear in the targets T . So, V = VS∪VM∪VT . b) Each
node in VM ∪ VT of a Lexis-DAG represents a string that is the concatenation
of two or more substrings, specified by the incoming edges from other nodes to
that node. Note that there may be more than one edge from node u to node
v. c) A Lexis-DAG should only include intermediate nodes that have an out-
degree of at least two, ∀v ∈ VM , dout(v) ≥ 2 for a more parsimonious hierarchical
representation. Fig. 1 illustrates the concepts introduced here.
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Fig. 1: Illustration of the Lexis-DAG
for a single target T = {abbbbbba} and
sources S = {a, b}. Edge-labels indi-
cate the occurrence indices: (a) A valid
Lexis-DAG having both minimum num-
ber of concatenations and edges. (b)
An invalid Lexis-DAG: two intermedi-
ate nodes are re-used only once. (c) An
invalid Lexis-DAG: the top-layer string
is not equal to the concatenation of its
two in-neighbors (best viewed in color).

The Lexis Optimization Problem The Lexis optimization problem is to
construct a minimum-cost Lexis-DAG for the given alphabet S and target strings
T . In other words, the problem is to determine the set of intermediate nodes VM
and all required edges E so that the corresponding Lexis-DAG D is optimal in
terms of a given cost function C(D). This problem can be formulated as follows:

min(E,VM ) C(D)

s.t. D = (V,E) is a Lexis-DAG for S and T

where C(D) = E(D) =
∑
v∈V

din(v) = |E|
(1)

3 To simplify the notation, even though D is a function of S and T , we do not denote
it as such.
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A natural cost function, as investigated in previous work [20], is the number
of edges in the Lexis-DAG. The edge cost to construct a node v ∈ V is defined as
the number of incoming edges required to construct S(v) from its in-neighbors,
which is equal to din(v). The edge cost of source nodes is obviously zero. The
edge cost E(D) of Lexis-DAG D is defined as the edge cost of all nodes, which
is equal to the number of edges in D. With edge cost, the problem in Eq. (1) is
NP-Hard [20]. This problem is similar to the Smallest Grammar Problem (SGP)
[6] and in fact its NP-Hardness is shown by a reduction from SGP [20].

We solve the Lexis optimization problem in Eq. (1) with a greedy heuristic,
called G-Lexis [20]. G-Lexis starts with the trivial flat Lexis-DAG, and at each
iteration it chooses the substring ξ that maximally reduces the edge cost, when
it is added as a new intermediate node to the Lexis-DAG and the corresponding
edges are rewired by its addition.

Path-Centrality and the Core of a Lexis-DAG After constructing a Lexis-
DAG, an important question is to rank the constructed intermediate nodes in
terms of significance or centrality. More formally, let PD(v) be the number of
source-to-target paths that traverse node v ∈ VM ; we refer to PD(v) as the
path centrality of intermediate node v. Path centrality can be computed as:
P (v) = PS(v)PT (v) where PS(v) is the number of paths from any source to v,
and PT (v) is the number of paths from v to any target. 4

An important follow-up question is to identify the core of a Lexis-DAG,
i.e., a set of intermediate nodes that represent, as a whole, the most important
substrings in that Lexis-DAG. Intuitively, we expect that the core should include
nodes of high path centrality, and that almost all source-to-target dependency
chains of the Lexis-DAG should traverse at least one of these core nodes. More
formally, suppose K is a set of intermediate nodes and P−(K) is the set of
source-to-target paths after we remove the nodes in K from D. The core of D
is defined as the minimum-cardinality set of intermediate nodes Core(τ) = K̂
such that the fraction of remaining source-to-target paths after the removal of
K̂ is at most τ :5

K̂ = argmin K⊆VM
|K|

s.t. |P−(K)| ≤ τ |P−(∅)|
(2)

where |P−(∅)| is the number of source-to-target paths in the original Lexis-
DAG, without removing any nodes. We solve the core identification problem
with a greedy algorithm referred to as G-Core [20]. This algorithm adds in
each iteration the node with the highest path-centrality value to the core set,
updates the Lexis-DAG by removing that node and its edges, and recomputes
the path centralities of the remaining nodes before the next iteration.

Hourglass score Intuitively, a Lexis-DAG exhibits the hourglass effect if it
has a small core. We use a metric, named as Hourglass Score, or H-Score, in
our study for measuring the “hourglass-ness” of a network. This metric was

4 A similar metric, called stress centrality of a vertex, is studied in [12].
5 To simplify notation, we do not denote the core set as function of D.
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originally presented in [19]. To calculate the H-score, we create a flat Lexis-DAG
Df containing the same targets as the original Lexis-DAG D. Note that Df

preserves the source-target dependencies of D: each target in Df is constructed
based on the same set of sources as in D. However, the dependency paths in Df

are direct, without forming any intermediate modules that could be reused across
different targets. So, by construction, the flat Lexis-DAG Df cannot have a non-
trivial core since it does not have any intermediate nodes. We define the H-score

as follows: HD(τ) = 1− |Core(τ)|
|Coref (τ)| where Core(τ) and Coref (τ) are the core sets

of D and Df for a given threshold τ , respectively. Since that Coref can include
a combination of sources and targets, it would never be larger than either the
set of sources or targets, i.e., |Coref (τ)| ≤ min{|S|, |T |}. Thus, 0 ≤ H(τ) ≤ 1.
The H-score of D is approximately one if the core size of the original Lexis-DAG
is negligible compared to the the core size of the corresponding flat Lexis-DAG.

2.2 Evo-Lexis Framework and Key Results

The Evo-Lexis framework includes a number of components that are described
below. A general illustration of the framework is shown in Fig. 2. In every itera-
tion, the following steps are performed: (1) A batch of new targets is generated
via a target generation model. (2) In the “expansion phase”, the new targets
are added incrementally to the current Lexis-DAG by minimizing the marginal
cost of adding every new target to the existing hierarchy. We refer to this incre-
mental design algorithm as Inc-Lexis, and it is described in detail [21]. (3) If
the number of targets that are present in the system has reached a steady-state
threshold, we also remove the batch of oldest targets from the Lexis-DAG.
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• • • •• • • • •

• • • • • • • • •• •
• • • •• • • • •

• • • •• •
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Fig. 2: A diagram of the Evo-Lexis framework.

In general, a system interacts with its environment in a bidirectional manner:
the environment imposes various constraints on the system and the system also
affects its environment. To capture this co-evolutionary setting in Evo-Lexis,
we study how changes in the set of targets affect the resulting hierarchy but

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_34

https://dx.doi.org/10.1007/978-3-030-22734-0_34


6 P. Siyari et al.

MRS Model
(i.e. Mutations+Recombination+Selection Model)

1- Low-cost hierarchy 4- Hourglass property
2- Deep hierarchy 5- Target diversity
3- Reuse of complex nodes

✓
✓
✓

✓
✓

• • • • •

• • • • • • • • • • • • • • •

• • • •• • • •

• • • • • •

• • •

Target Generation Models and Resulting Hierarchies

Rem
oving Evolutionary M

echanism
s

- Remove Selection
(i.e. Mutation Model)

• • • • •

• • • • • • • • • • • • • • •

• • • • • • • •• •

• • • • • • • • •

• • •• • •• • •

- Remove Recombination
(i.e. Mutations+Selection Model)

1- Low-cost hierarchy 4- Hourglass property
2- Deep hierarchy 5- Target diversity
3- Reuse of complex nodes

✓
✓
✓

✓
x

• • • • •

• • • • • • • • • • • • • • •

• • • •• • • •

• • • • • •

• • •

Lexis framework
Design optimal hierarchies

over a set of targets
from a given alphabet of sources

Evo-Lexis framework
Co-evolution of

targets and hierarchy

• • • • •Sources

Targets

• • • • • •

• • • •• • • • •

• • • • • • • • •• •
• • • •• • • • •

• • • •• •

• • • • • •

1. Initial Lexis-DAG 2. New targets generated (births)/
Old targets removed (deaths)

Selection based on
target structure and 

current Lexis-DAG contents
✓Cost=2

Cost=6 x
• • • • •

• • • • • •

• • • •• • • • •

• • • • • • • • •• •
• • • •• • • • •

• • • •• •

3. Incrementally adjusted Lexis-DAG
Increasing

node complexity
(sequence length)

• • • • •

?
• • • • • • • • • • • • • • • • • • • • • • • •

• • • • •

• • • •

• •• •

• •

- Remove Mutation (Random Targets)
(i.e. Random Model)

• • • • •

• • • • •

• • • •• •

• • • • •• • • • •

1- Low-cost hierarchy 4- Hourglass property
2- Deep hierarchy 5- Target diversity
3- Reuse of complex nodes

✓
✓
✓

1- Low-cost hierarchy 4- Hourglass property
2- Deep hierarchy 5- Target diversity
3- Reuse of complex nodes

x
x

x
x

x
x
x

Fig. 3: Overview of results from Evo-Lexis.

also how the current hierarchy affects the selection of new targets (i.e. whether
a new candidate target is selected or not depends on its fitness or cost – and
that depends on how easily that target can be supported by the given hierarchy).
By incorporating well-known evolutionary mechanisms, such as tinkering (muta-
tion), recombination, and selection, Evo-Lexis can capture such co-evolutionary
dynamics between the generation of new targets and the hierarchy that sup-
ports them. Fig. 3 is an overview of the following key results from the Evo-Lexis
model: i) Tinkering/mutation in the target generation process is found to be a
strong initial force for the emergence of low-cost and deep hierarchies. ii) Selec-
tion is found to enhance the emergence of more complex intermediate modules
in optimized hierarchies. The bias towards reuse of complex modules results in
an hourglass architecture in which almost all source-to-target dependency paths
traverse a small set of intermediate modules. iii) The addition of recombina-
tion in the target generation process is essential in providing target diversity in
optimized hierarchies.

3 iGEM Dataset

3.1 Preliminaries

The International Genetically Engineered Machine (iGEM) is an annual world-
wide synthetic biology competition. The competition is between students from
diverse backgrounds including biology, chemistry, physics, engineering, and com-
puter science to construct synthetic DNA structures with novel functionalities.

Every year at the beginning of the summer, there is a “Distribution Kit”
handed to teams which includes interchangeable parts (so called “BioBricks”)
from the Registry of Standard Biological Parts comprising various genetic com-
ponents such as promoters, terminators, reporter elements, and plasmid back-
bones. Then, the teams try to use these parts and the new standardized parts of
their own in order to build biological systems. The teams can build on previous
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projects or create completely new parts. At the end of the summer, all teams
add their new BioBricks to the registry for further possible reuse in next years.

The iGEM Registry (i.e., the dataset we are working with) includes a set of
standard biological parts. A [biological] part is a DNA sequence which encodes
a biological function, e.g., a promoter or protein coding sequence. These biologi-
cal parts are standardized to be easily assembled together and reused with other
standardized parts in the registry. A “basic part” is a functional unit of a synthe-
sized DNA that cannot be subdivided into smaller component parts. BBa R0051
is an example of a promoter basic part. Basic parts have the role of sources in
the Lexis setting. A “composite part” is a functional unit of DNA consisting of
two or more basic parts assembled together. BBa I13507 is an example of a com-
posite part, consisting of four basic parts “BBa B0034 BBa E1010 BBa B0010
BBa B0012”. The dataset we analyze is the set of all composite parts submitted
to the registry from 2003 to 2017. In this dataset, the composite parts are rep-
resented by the string of their basic parts (i.e., a non-dividing representation).
The sequence of iGEM composite parts can be considered as a sequence of tar-
get strings over a set of sources (i.e., basic parts). We have acquired the iGEM
data from https://github.com/biohubx/igem-data. All the BioBrick parts were
crawled until Dec 28th 2017. In Table 1, the preliminary statistics about the
dataset are listed. The dataset mostly presents targets of small length. The top

Table 1: Basic statistics on iGEM dataset during 15 years (2003-2017)
# Sources # Targets Total Length Min/Max Target Length

7,889 18,394 107,022 2 / 100

5 categories having the highest fraction of the targets belongs to those of length
5, 2, 3, 4 and 6, accounting for more than 70% of the dataset. Less than 10% of
the targets have a length of more than 10.

3.2 Considering Annual Batches of Targets

The iGEM competition is conducted annually. Hence, it is reasonable to consider
the sequences of targets as annual batches of targets arriving each year. This
consideration is in line with the incremental design process in Evo-Lexis.

To show some differences between iGEM and Evo-Lexis, in Fig. 4, we can see
how the number of sources, the number of targets, length statistics and source
reuse statistics change over time. We can make the following observations from
these figures:

1. The number of sources increases, where it was constant in Evo-Lexis.

2. In the first four years, the number of targets per year is noticeably small.
Later on, the number of targets increases up to 2,000 and then fluctuates
around 1,000 to 1,300 targets per year. In Evo-Lexis, the number of targets
per batch is constant and they all have the same length.

3. The mean and median of target lengths stay in the same range (∈ [5, 7])
during all 15 years.
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4. The reuse of sources (except for the beginning years) is extremely skewed
in all years: few sources are used much more often than most of the sources
(Fig. 4d). In Evo-Lexis, all sources are equally likely.

In the following sections, we show that how these differences between iGEM
dataset and Evo-Lexis cause differences between the resulting Lexis-DAGs.
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Fig. 4: Statistics of iGEM dataset when considered as yearly batches. Number
of reuse is the number of times a source appear in a target in each year.

4 Analysis of iGEM Dataset in Evo-Lexis Framework

From this section on, we compare the results over iGEM with the results gathered
from Evo-Lexis in [21]. We refer the reader to [21] for details of the model and
parameter settings.

4.1 Lexis-DAG Cost Analysis

In this section, we observe how cost efficient the Lexis-DAGs over the iGEM
dataset are. We consider an incremental setting similar to Evo-Lexis: In the first
year, a clean-slate Lexis-DAG is constructed over the targets of that year. For the
targets of the subsequent years, an incremental Lexis-DAG is constructed. Fig. 5
shows how the normalized cost of the Lexis-DAGs varies over the years on iGEM.
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Fig. 5: Comparison of cost evolution in iGEM and Evo-Lexis (from [21])

We observe major differences with Evo-Lexis; in Evo-Lexis the normalized cost
remains almost constant.

To investigate the reasons for the above observations, in the same Fig. 5,
we also track the cost reduction performance of the two stages of Inc-Lexis for
each batch (as a reminder, in stage-1, we reuse intermediate nodes from previous
Lexis-DAG and in stage-2, we further optimize the hierarchy using G-Lexis).
This experiment is done due to our interest in seeing how much stage-1 of Inc-
Lexis contributes to the cost reduction on iGEM. There are two observations
that we can make:

1. In most batches, more than 50% of the cost reduction is achieved by the
stage-1, i.e., reuse stage. The contribution of stage-2 of Inc-Lexis is roughly
constant throughout years. This suggests that iGEM targets reuse a signifi-
cant amount of sequences from previous years in their own submissions.

2. There is an increasing trend in the normalized cost after stage-1. This obser-
vation means that the contribution of the reuse stage in Inc-Lexis decreases
over the years. As mentioned, the contribution of stage-2 stays mostly con-
stant. Hence, we can relate the increasing trend of the normalized cost to
the fact that the amount of reuse reduces from year to year.

We can find the root-cause of the decrease of reuse over time on iGEM to the
increase of the size of the set of sources. We have observed in Fig. 4a that there
are many new sources that get introduced over the years. One of the requirements
for reuse from one batch to another in Evo-Lexis is the fact that the set of sources
does not drastically change (in fact it is constant in the Evo-Lexis framework). To
investigate whether this is true in iGEM, we check the ratio of the sources from
one year to the next that remain the same. Specifically, if we have y2 = y1 + 1,
and if Sy1 & Sy2 are the set of sources in year y1 & y2 respectively, we check the

ratio:
|Sy1
∩Sy2

|
|Sy1 |

. This ratio, i.e., year-by-year similarity, is the fraction of sources

that remain from the previous year. Fig. 4c shows how this ratio changes from
year to year. By year 2008, the ratio drops significantly to a value around 0.2
which means around 80% of the sources from the previous year are not reused.
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This reduces the amount of reuse that is possible in the iGEM dataset. The
introduction of new sources is also propagated in individual targets. As time
progresses, there is a higher probability to use more than X number of new
sources per target. This observation is a further obstacle for reuse, especially
given that the targets in iGEM are often short (5-7 subparts). Following the
increase of the normalized cost, Fig. 6 shows that the DAGs get less deep and
have lower average node length as time progresses. Overall, the results of this
section show a number of differences between iGEM and Evo-Lexis:
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Fig. 6: Average depth and node length in iGEM and Evo-Lexis (in green, [21])

1. In iGEM, the set of sources in each year has low similarity to the previous
years, while in Evo-Lexis the source set is constant. The high amount of
churn in the set of sources is the primary reason for the lower reuse in iGEM
data compared to Evo-Lexis. The fact that the targets are shorter is another
factor for iGEM’s lower potential for reuse of longer intermediate nodes.

2. The normalized cost, depth and average node length are all lower in iGEM
due to the reduced reuse potential as discussed above.

4.2 Hourglass Effect in iGEM

The following results in this section show that in all years, there is a small
number of core nodes in the iGEM Lexis-DAGs. Fig. 7 shows that such small
cores make the topology of iGEM Lexis-DAGs consistent with an hourglass
organization (high H-score values - more than 0.6 in Fig. 7c). In Evo-Lexis,
we observe similar values of H-score for DAGs constructed using synthetic data.
As observed, although the core size increases in iGEM over time, we see a steeper
increase in the size of the flat DAG’s core mostly due to the increase in set of
sources. In Evo-Lexis, the core size shows a decreasing trend while the size of
the core of the flat DAG does not significantly change, reflecting similarly high
H-score values as in iGEM. Overall, we can see that the topology of the Lexis-
DAGs in iGEM data is in line with the Evo-Lexis model, although the bias in
selection of cost-saving nodes is not sufficiently large to cause a non-increasing
normalized cost.
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Fig. 7: Cores in iGEM and Evo-Lexis (bottom, [21]) (τ = 0.85).

4.3 Diversity among iGEM Targets

Another question is the degree of diversity among the targets of iGEM over time.
We define the concept of Normalized Diversity as follows: Suppose we have a
set of strings T = {t1, t2, ..., tn}. The goal is to provide a single number that
quantifies how dissimilar these elements are to each other.

– We first identify the medoid MT of the set T , i.e., the element that has the
lowest average distance from all other elements. We use Levenshtein distance
as a measure of distance between targets:MT = arg minm∈T

∑
t∈T LD(t,m).

– To compute how diverse the elements are with respect to each other, we
average the normalized distance of all elements from the medoid (distance
is normalized by the maximum length of the two sequences in question).
We call this measure σT , the Normalized Diversity of set T . The bigger the

metric, the more diverse a set of strings is: σT =

∑
t∈T

LD[t,MT ]
max(|t|,|MT |)
|T | .

Fig. 8 shows that the normalized diversity metric has a value of more than
0.5 throughout time and reaches up to 0.8 (this means that on average 50% to
80% of a target should be changed so that a target is converted to another in
the set of targets in each year). Although such values of diversity are in line
with Evo-Lexis, it is understandable that the diversity in iGEM is also partially
impacted (towards higher values) by the introduction of new sources discussed
before. Because of this reason, and the fact that the diversity is measured in a
slightly different way in [21], we do not show a direct comparison in Fig. 8.
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Fig. 8: Target diversity and core stability in iGEM over time.

4.4 Core Stability in iGEM Lexis-DAGs

We have already defined the core size and the H-score. Here we define an addi-
tional metric, related to the stability of the core across time.

We track the stability of the core set by comparing two core sets at two
different times. A direct comparison of the core sets via the Jaccard index leads
to poor results. The reason is that often the strings of the two sets are similar
to each other but not completely identical.

Thus, we define a generalized version of Jaccard similarity that we call
Levenshtein-Jaccard Similarity :

– Suppose we aim to compute the similarity of two sets A and B of strings.
We define the mapping A→ B where every element a ∈ A is mapped to the
most similar element b ∈ B. We also define the mapping B → A from every
element b ∈ B to the most similar element a ∈ A:{

A→ B = {(a, b) s.t. a ∈ A & b ∈ B & b = arg maxx∈BSim(a, x)}
B → A = {(b, a) s.t. a ∈ A & b ∈ B & a = arg maxx∈ASim(b, x)}

(3)
where Sim(a, b) is the similarity of a to b and is calculated as: Sim(a, b) =

1− LD(a,b)
max(|a|,|b|) . Notice that max(|a|, |b|) is the maximum value of Levenshtein

distance between a and b. This consideration ensures that if a = b then
Sim(a, b) = 1, and if a and b have the maximum distance then Sim(a, b) = 0.

– Considering both A→ B and B → A, we get the union of the two mappings
and define the Levenshtein-Jaccard similarity as follows:

LevJac(A,B) =

∑
(a,b)∈A→B Sim(a, b) +

∑
(b,a)∈B→A Sim(b, a)

(|A|+ |B|)
(4)

We can see that if A = B (all weights are equal to one) then LevJac(A,B) =
1. Also if none of the elements in A are similar to B (all the element pairs
take zero similarity value), then LevJac(A,B) = 0.

As the results in Fig. 8c show, the core set in iGEM DAGs have relatively
high values of the core stability measure (Eq. (4)), close to the values we observed
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in Evo-Lexis. This means that the core nodes stay similar across time, and there
are no sudden changes in the content of the core set. One reason for this stability
is that the set of core nodes includes several sources, and many of core sources
get transferred to the next year.

Additionally, every year the focus of the iGEM designers is on specific parts,
most of which are of high path centrality. For example, “BBa B0010 BBa B0012”
(the most widely used “terminator” part) and “BBa B0034” are almost always
the top-2 central nodes (with the exception of year 2011). Also, some sources such
as “BBa R0011”, always appear in the top-20 nodes in the core set. Remember
that Fig. 4d shows that the reuse distribution of sources is highly skewed. In
summary, the stability of the core set in iGEM is caused by the same reason
with Evo-Lexis, which is the bias and selectivity towards using a specific set of
nodes in consecutive years.

5 Conclusions
iGEM is a dataset that satisfies the basic assumption of Evo-Lexis framework: a
sequence of target strings with potential temporal reuse of previously introduced
substrings. Because of this compatibility, we chose to use this dataset in a case-
study and contrast its qualitative properties with Evo-Lexis. We can summarize
the answers to the questions posed in the abstract of this paper as follows:

– We observe that although incremental design can build efficient hierarchies
over the iGEM targets, the normalized cost increases over time. This is due
to the fact that the amount of reuse from previous years decreases mainly
due to the frequent introduction of new sources over time. The small length
of the targets in iGEM is also an additional factor for lowering the potential
of reuse of the previously constructed parts in iGEM.

– The increasing normalized cost causes the Lexis-DAGs to become less deep
and to contain shorter nodes on average as time progresses. This is different
than Evo-Lexis. In addition, there is a high fraction of very short targets in
each year in comparison to Evo-Lexis.

– The iGEM Lexis-DAGs present a bias in reusing specific nodes more often
than the other nodes. This biased reuse results in the Lexis-DAGs to take
the shape of an hourglass with relatively high H-score values and a stable
set of core nodes over time. This observation is consistent with Evo-Lexis.

– The core sets over the years remain stable and similar to previous years in
iGEM data despite the fact that the set of sources changes significantly and
the target sets are diverse each year. Most of the stability is contributed by
a small set of central sources and central intermediate nodes that are heavily
reused in iGEM registry over time.

References

1. igem.org/Main Page

2. Akhshabi, S., Dovrolis, C.: The evolution of layered protocol stacks leads to an
hourglass-shaped architecture. pp. 206–217. SIGCOMM ’11, ACM (2011)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_34

https://dx.doi.org/10.1007/978-3-030-22734-0_34


14 P. Siyari et al.

3. Blakes, J., Raz, O., Feige, U., Bacardit, J., Widera, P., Ben-Yehezkel, T., Shapiro,
E., Krasnogor, N.: Heuristic for maximizing DNA re-use in synthetic DNA library
assembly. ACS Synthetic Biology 3(8), 529–542 (2014)

4. Callebaut, W., Rasskin-Gutman, D.: Modularity: Understanding the Development
and Evolution of Natural Complex Systems. Vienna series in theoretical biology,
MIT Press (2005)

5. Casci, T.: Hourglass theory gets molecular approval. Nature Reviews Genetics 12,
76 EP – (Dec 2010)

6. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The Smallest Grammar Problem. IEEE T. on Inf. Theory 51(7) (2005)

7. Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Pro-
ceedings of the Royal Society of London B: Biological Sciences 280(1755) (2013)

8. Csete, M., Doyle, J.C.: Bow ties, metabolism and disease. Trends in biotechnology
22 9, 446–50 (2004)

9. Fortuna, M.A., Bonachela, J.A., Levin, S.A.: Evolution of a modular software net-
work. PNAS 108(50), 19985–19989 (2011)

10. Friedlander, T., Mayo, A.E., Tlusty, T., Alon, U.: Evolution of bow-tie architec-
tures in biology. PLOS Computational Biology 11(3), 1–19 (03 2015)

11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

12. Ishakian, V., Erds, D., Terzi, E., Bestavros, A.: A Framework for the Evaluation
and Management of Network Centrality, pp. 427–438

13. Kashtan, N., Noor, E., Alon, U.: Varying environments can speed up evolution.
PNAS 104(34), 13711–13716 (2007)

14. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs.
PNAS 102(39), 13773–13778 (2005)

15. Mengistu, H., Huizinga, J., Mouret, J.B., Clune, J.: The evolutionary origins of
hierarchy. PLOS Computational Biology 12(6), 1–23 (06 2016)

16. Meunier, D., Lambiotte, R., Bullmore, E.: Modular and hierarchically modular
organization of brain networks. Frontiers in Neuroscience 4, 200 (2010)

17. Miller, W.: The hierarchical structure of ecosystems: Connections to evolution.
Evolution: Education and Outreach 1(1), 16–24 (Jan 2008)

18. Myers, C.R.: Software systems as complex networks: Structure, function, and evolv-
ability of software collaboration graphs. Phys. Rev. E 68, 046116 (Oct 2003)

19. Sabrin, K.M., Dovrolis, C.: The hourglass effect in hierarchical dependency net-
works. Network Science 5(4), 490–528 (2017)

20. Siyari, P., Dilkina, B., Dovrolis, C.: Lexis: An optimization framework for discov-
ering the hierarchical structure of sequential data. pp. 1185–1194. SIGKDD ’16,
ACM (2016)

21. Siyari, P., Dilkina, B., Dovrolis, C.: Emergence and evolution of hierarchical struc-
ture in complex systems. To Appear in Dynamics On and Of Complex Networks
III: Machine Learning and Statistical Physics Approaches (2019)

22. Supper, J., Spangenberg, L., Planatscher, H., Dräger, A., Schröder, A., Zell, A.:
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