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Abstract. Scientific Named Entity Referent Extraction is often more
complicated than traditional Named Entity Recognition (NER). For ex-
ample, in polymer science, chemical structure may be encoded in a vari-
ety of nonstandard naming conventions, and authors may refer to poly-
mers with conventional names, commonly used names, labels (in lieu of
longer names), synonyms, and acronyms. As a result, accurate scientific
NER methods are often based on task-specific rules, which are difficult
to develop and maintain, and are not easily generalized to other tasks
and fields. Machine learning models require substantial expert-annotated
data for training. Here we propose polyNER: a semi-automated system
for efficient identification of scientific entities in text. PolyNER applies
word embedding models to generate entity-rich corpora for productive
expert labeling, and then uses the resulting labeled data to bootstrap a
context-based word vector classifier. Evaluation on materials science pub-
lications shows that the polyNER approach enables improved precision
or recall relative to a state-of-the-art chemical entity extraction system
at a dramatically lower cost: it required just two hours of expert time,
rather than extensive and expensive rule engineering, to achieve that re-
sult. This result highlights the potential for human-computer partnership
for constructing domain-specific scientific NER systems.

Keywords: Scientific Named Entities - Word Embedding - Natural Lan-
guage Processing - Crowdsourcing - Polymers.

1 Introduction

There is a pressing need for automated information extraction and machine
learning (ML) tools to extract knowledge from the scientific literature. One task
that such tools must perform is the identification of entities within text. Many
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rule-based, ML, and hybrid named entity recognition (NER) approaches have
been developed for particular entity types (e.g., people and places) [23, 20].

Scientific NER remains challenging due to non-standard encoding and the
use of multiple entity referents (terms used to refer to an entity). For example,
in materials science, polymers are encoded in text using various representations
(conventional or commonly-used), acronyms, synonyms, and historical terms.
Further challenges arise when trying to distinguish between general and specific
references to members of polymer families, or recognizing references to blends of
two polymers, etc. Such challenges are not unique to polymer science. However,
while NER is a well-studied topic in medicine and biology [5,16], it has only
recently become a focus in materials science [10,29,17,36]. Many approaches
applied in other domains rely on large, carefully annotated corpora of train-
ing data, a luxury not yet available in domains like polymer science. Here we
introduce polyNER, a hybrid computer-human system for semi-automatically
identifying scientific entity referents in text. PolyNER operates in three phases,
first applying a fully automated analysis to produce an entity-rich set of candi-
dates for labeling; then engaging experts to approve or reject a modest number of
proposed candidates; and finally using the resulting labeled candidates to train
a classifier. In both the first and third phases, it uses word embedding models to
capture shared contexts in which referents occur. PolyNER thus seeks to substi-
tute the labor-intensive processes of either assembling a large manually labeled
corpus or defining complex domain-specific rules with a mix of sophisticated
automated analysis and focused expert input.

We evaluate polyNER performance on polymer science publications. We com-
pare the output of its first candidate enrichment phase against expert-labeled
data, and find that it retrieves 61.2% of the polymers extracted by experts with
a precision (26.0%) far higher than the ratio of target entities vs. non-entities
in scientific publications (less than 2% in our experience). We evaluate the per-
formance of polyNER overall by comparing its output polymer referents against
both expert-labeled data and a state-of-the art rule-based chemical entity ex-
traction system, ChemDataExtractor (CDE) [36], which we have previously en-
hanced with dictionary- and rule-based methods for identifying polymers [39].
We find that PolyNER can achieve either 52.7% precision or 90.7% recall, de-
pending on user preference, a 10.5% improvement in precision or 22.4% improve-
ment in recall over the enhanced CDE. These results highlight the potential for
creating domain-specific scientific NER systems by combining sophisticated au-
tomated analysis with focused expert input.

The rest of this paper is as follows. We review scientific NER systems in
Section 2. In Section 3, we motivate the need for identifying polymer names in
text. We describe design and implementation in Section 4 and evaluate polyNER
in Section 5. We summarize and discuss future work in Section 6.
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2 Related Work

Natural Language Processing (NLP) is a way for computers to “read” human
language. NLP tasks include automatic summarization, topic modeling, trans-
lation, named entity recognition (NER), and relationship extraction. NER sys-
tems, which aim to identify and categorize named entities (e.g., a person, or-
ganization, location), have been developed using both linguistic grammar-based
techniques and ML models. While many ML models have been developed, their
performance depends critically on the quantity and quality of training data.

Scientific domains such as molecular biology and medical NLP have long
used NER for extracting symptoms, diagnoses, medications, etc. from text |5,
16]. More recently, there has also been much interest in chemical entity and
drug recognition [10, 29,17, 36]. However, even state-of-the-art NER systems do
not typically perform well when applied to different domains [13]. Considerable
effort is involved in selecting and (often manually) generating quality data for
trainable statistical NER systems [14].

Various approaches have been proposed to address the lack of training data
for NER and other information extraction tasks. Distant supervision maps known
entities and relations from a structured knowledge base onto unstructured text [26,
43|. However, many fields, including polymer science, lack such knowledge bases.

Data programming uses labeling functions (user-defined programs that pro-
vide labels for subsets of data) [27]. Errors due to differences in accuracy and
conflicts between labeling functions are addressed by learning and modeling the
accuracies of the labeling functions. sets. Under certain conditions, data pro-
gramming achieves results on par with those of supervised learning methods.
But while writing concise scripts to define rules may seem to be a more reason-
able task for annotators than exhaustively annotating text, it still requires expert
guidance. Moreover, labeling functions typically rely on state-of-the-art entity
taggers, such as CoreNLP [19], which recognizes persons, locations, organizations
and more, and which itself has been trained using various corpora, including the
Conference on Computational Natural Language Learning (CoNLL) dataset [32].
A user-defined function may be defined, for example, as: if the word “married”
appears between two PERSONSs (as identified by a state-of-the-art named entity
tagger), then extract the pair as potential spouses. Eventually, we will explore us-
ing polyNER and data programming to extract polymer properties. For instance:
if a sentence contains a polymer name and the words “glass transition”, then ex-
tract number(s) in the sentence as potential glass transition temperature(s) for
that polymer.

Other approaches use unskilled or semi-expert users to crowdsource the label-
ing task [15, 7, 38]. Nonetheless, domain expertise is often crucial for identifying
and extracting complex scientific entities. Hence, we ask: how can we quickly
generate annotated data for scientific named entity recognition?
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3 Motivation

The complexity of scientific NER is primarily due to the fact that entities, for
example biological [12] and chemical [14], can be described in different ways,
with vocabularies often specialized to small communities. Such issues arise in
the polymer science applications that we focus on here. In principle, Interna-
tional Union of Pure and Applied Chemistry (IUPAC) guidelines define polymer
naming conventions [9]. However, such guidelines are not always followed in prac-
tice [37]. Polymer names may be reported as source-based names (based on the
monomer name), structure-based names (based on the repeat unit), common
names (requiring domain-specific knowledge), trade names (based on the man-
ufacturer), and names based on chemical groups within the polymer (requiring
context to fully specify the chemistry). Oftentimes, polymers are encoded using
acronyms.

These different naming conventions arise in part because a desire for clarity
in communications is at odds with the often complicated monomeric structures
found in many polymers [1]. For example, sequence-defined polymers, where mul-
tiple monomers are chemically bound in a well-defined sequence as in proteins,
often defy normal naming practices, as it is not possible to list concisely every
monomer and their respective positions [18]. Another class of polymers that of-
ten suffer from complicated names are conjugated polymers, which exhibit useful
optical and electrical properties. Conjugated polymers are complex due to the
co-polymerization of multiple monomers (donor/acceptor units), the type and
position of side chains along the polymer backbone, and the coupling between
monomer units to control regioregularity [8].

Other challenges arise from the use of labels, structure referents (e.g., “mi-
celles,” “nanostructures”), and unusual author-coined acronyms. For example,
one author defined the acronym DBGA for N,N-dibenzylglycidylamine and then
used the string poly(DBGA) to represent poly(N,N-dibenzylglycidylamine). More
naming variations result from typographical variants (e.g., alternative uses of hy-
phens, brackets, spacing) and alternative component orders.

These issues, which make identifying polymeric names a non-trivial exercise
not only for computers but also for experts, arise in many fields with specialized
vocabularies. Our long-term goal is to build a hybrid human-computer system
in which we leverage both human and machine capabilities for the efficient ex-
traction from text of properties associated with specialized vocabularies. In this
work, we focus on the task of identifying polymer names.

4 Design and Implementation

As noted in the introduction, previous approaches to scientific NER have relied
on large expert-labeled corpora to train NER tools. Our goal in polyNER is to
slash the cost of NER training for new domains by using bootstrap methods
to optimize the effectiveness and impact of minimal expert labeling. As shown
in Figure 1, rather than having experts review entire papers to identify entity
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Fig.1: PolyNER architecture: showing (1) Candidate Generation, which
produces candidate named entities from word vectors, (2) Expert Labeling,
and (3) Classifier Training, which uses labeled candidates to train super-
vised ML models for identifying referents.

Publications

referents, we use NLP tools to identify a set of promising candidate entity ref-
erents (Candidate Generation), then in an Expert Labeling step employ experts
to accept or reject those candidates, and finally in a Classifier Training step use
the accepted candidates to train an entity classifier

Before turning to the details of the polyNER implementation, we define an
NLP filtering process that is used in various places in polyNER to filter out
words that are unlikely to be polymer referents. 1) We remove numbers. 2)
Hypothesizing that names of scientific entities will not, in general, be English
vocabulary words, we remove words found in the SpaCy and NLTK dictionaries
of commonly used English words [4, 2]. (We manually remove common polymer
names, such as polystyrene and polyethylene, from the dictionaries.) 3) We use
SpaCy’s part-of-speech tagging functionality to remove non-nouns. 4) We remove
unwanted characters (e.g. 2, ¢.”, ¢’, ¢, -”) from the beginning and the end of each
candidate, allowing us to recognize, for example, polyethylene; (which fails the
exact string comparison test against “polyethylene”). 5) We remove plurals (e.g.,
polyamides, polynorbornenes), as they can represent polymer family names.

4.1 Candidate Generation

This first phase uses word vector representations, context vector similarity mea-
sures, and minimal domain knowledge to identify a set of high-likelihood (“can-
didate”) entity referents (names, acronyms, synonyms, etc.) in a supplied corpus
of full-text documents (in the work presented here, scientific publications).

We first apply the NLP filtering process to reduce false positives. We next
face the problem of determining whether a particular string is a polymer referent.
String matching only gets us so far: for example, “polyethylene” names a polymer,
but “polydispersity” does not. We need also to consider the context in which the
string occurs. For example, the polymer name “polystyrene” in a sentence “The
melting point of polystyrene is ...” suggests that X may also be a polymer in the
sentence “The melting point of X is ...".

NLP researchers have developed a variety of word embedding methods for
capturing this notion of context. A word embedding method maps each word in
a sentence or document to a vector in an n-dimensional real vector space based on
the linguistic context in which the word appears. (This mapping may be based,
for example, on co-occurrence frequencies of words.) We can then determine the
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context-similarity between two words by computing the distance between their
corresponding vectors in the feature space. Such vector representations can be
created in many different ways [30,31]. Recently, the efficient neural network-
based Word2Vec has become popular [21,22].

We consider two measures of context-similarity between word vector repre-
sentations in this step. CG1 uses the Gensim implementation of the Word2Vec
algorithm [28] to generate 100-dimension vectors. CG2 employs an alternative
FastText word embedding method that considers sub-word information as well as
context [3,11], allowing it to consider word morphology differences, such as pre-
fixes and suffixes. Sub-word information is especially useful for words for which
context information is lacking, as words can still be compared to morphologically-
similar existing words. We set the length of the sub-word used for comparison—
FastText’s n_ gram parameter—to five characters, based on our intuition that
many polymers begin with the prefixes “poly” or “poly(”. FastText produces 120-
dimension vectors by default. We keep this slightly increased dimension (120 vs
100) as the embedding captures character information in addition to context
information. Both CG1 and CG2 employ the continuous bag-of-words (CBOW)
word embedding, in which a vector representation is generated for each word
from an adjustable window of surrounding context words, in any order.

We compute a CG1 (Gensim) vector and a CG2 (FastText) vector for each
NLP-filtered word in the input corpus, and also for a small set of representative
polymer referents. Here we use polystyrene and its common acronym, PS, based
on the assumption that polystyrene, as the most commonly mentioned polymer,
provides a large number of example sentences in which polymers are mentioned.
We can then determine, for each NLP-filtered word, the extent to which it occurs
in a similar context to the representative polymers, by computing the similarities
between the word’s CG1 and CG2 vectors and those for polystyrene and PS. We
discard the lower score for each of CG1 and CG2 to obtain two scores per word.

Having thus obtained scores, we then select as candidates, for each of CG1
and CG2, the N highest-scored words (2N candidate total), with N selected
based on the time available for experts. We also use a rule-based synonym
finder to identify synonyms of generated polymer candidates [33]. For exam-
ple, if polypropylene has been identified as a candidate, then the expression
“polypropylene (PP)” leads to PP being added to the candidate list.

4.2 Expert Labeling

The previous step produces a set of candidate polymer referents: NLP-filtered
strings that have been determined to occur in similar contexts to our represen-
tatives. We next employ an expert polymer scientist to indicate, for each such
candidate, whether or not it is in fact a polymer referent. The expert simply ap-
proves or rejects each candidate via a simple web interface: a task that is more
efficient than reading and annotating words in text.

The interface (see Figure 2) provides the expert with example sentences as
context for ambiguous candidates, and allows the expert to access the publica-
tion(s) in which a particular candidate appears when desired.
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Fig.2: PolyNER web interface showing annotated candidates. Clicking on
“?” delivers up to 25 more example sentences.

4.3 Candidate Discrimination

We next use the expert-labeled data to create a binary entity (polymer/not
polymer) classifier. Many classification methods could be applied; we consider
three in the work reported here: K Nearest Neighbor (KNN), Support Vector
Classifier (SVC), and Random Forest (RF). Previous work has shown that KNNs
perform reasonably well in text classification tasks [42]. SVC, an implementation
of Support Vector Machines (SVMs), maps data into a feature space in which
it can separate the data into two or more sets. RF groups decision trees (“weak
learners”) to form a strong learner; it produces models that are inspectable,
and includes a picture of the most important features. In each case, we use the
100 (Gensim) + 120 (FastText) = 220 dimensions of the two word vectors as
input features. Given limited training and testing data, we evaluate all three
classifiers, as implemented within scikit-learn [24], in Section 5.3. We envision
that with more annotated data, we will be able to use neural-network-based
classifiers.

5 Evaluation

We report on studies in which we evaluate the performance of both the unsuper-
vised Candidate Generation step and various classifiers trained on the labeled
data that results from the Candidate Generation and Expert Labeling steps.

5.1 Dataset

We work with two disjoint sets of full-text publications in HTML format from
the journal Macromolecules: P100 comprising 100 documents with 22664 sen-
tences and 508391 (36293 unique) words or “tokens,” and P50 comprising 50
documents with 12148 sentences and 270514 (22571 unique) tokens. For later
use in evaluation, we engaged six experts to identify one-word polymer names
in P100. They find 467 unique one-word polymer names.
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5.2 Evaluation of Candidate Generation Methods

Recall that the polyNER candidate generation module employs two candidate
generation methods, CG1 and CG2, plus a rule-based synonym finder. We eval-
uate the performance of both the complete polyNER candidate generation mod-
ule and its CG1 and CG2 submodules by comparing the sets of candidates that
they each generate from P100, both against the 467 one-word polymer names
identified by experts in P100, and against two other polymer name extraction
methods, CDE and CDE+, plus a sixth compound method formed by combin-
ing polyNER with CDE+. We use exact string-matching between candidates
and expert-identified names (all lower cased). Results are in Table 1. For each,
we evaluate extraction accuracy in terms of precision, recall, and Fj score. Re-
call is the fraction of actual positives that are labeled correctly and precision
the fraction of predicted positives that are labeled correctly; Fp, the harmonic
average of precision and recall, reaches its best value at 1 and worst at 0.

The first two methods considered, CDE and CDE+, serve as baselines. CDE
is a state-of-the-art Python package that extracts chemical named entities and
associated properties and relationships from text [36]. As CDE aims to extract all
chemical compounds, not just polymers, it serves only as a demonstration of an
alternative approach in the absence of a polymer NER system. Its recall is high
at 74.5% but its precision is, as expected, low at 8.7%. CDE+ extends CDE with
manually defined polymer identification rules [39] to achieve a higher precision
of 42.2% but a slightly decreased recall of 68.3%. These results emphasize the
difficulty of automatically recognizing complex entities such as polymers.

Rows 3 and 4 show performance for CG1 and CG2 when employed indepen-
dently. Recall that polyNER performs NLP filtering before applying CG1 and
CG2. The filtering step eliminate all but 6878 of the 36293 unique tokens in
P100. Recall also that CG1 and CG2 each assign a score to each of the 6878
remaining words based on their context-based vector similarities to polystyrene
and PS, and select the N highest scoring. In this evaluation, we set IN=500.
CG2, which takes word morphology into account, achieves higher precision and
recall than does CG1 (41.8% vs. 15.6% precision and 44.8% recall vs. 16.7%
recall for CG2 and CG1, respectively). CG2 retrieves more words starting with
“poly” (67% of the 500 candidates vs. only 4% for CG1) while CG1 retrieves
more acronyms (38% of the 500 candidates contained more upper than lower
case letters, vs. 23% for CG2). CG1 returns more false positives. While charac-
ter level information is useful for unseen words, or in this case for words lacking
context information, we cannot dismiss the use of CG1. Authors often introduce
polymer names and subsequently use acronyms more heavily, especially for long
names. The facts that CG1 returns more acronyms and that there is likely more
context information about acronyms, suggests that the performance of CGI,
albeit lower, is solely based on context information.

Row 5 shows results for the complete polyNER candidate generator: that
is, the combined CG1 and CG2 candidates plus their rule-based extracted syn-
onyms. This method achieves 61.2% recall and 26.0% precision, producing an
entity-rich set of candidates without any domain-specific rules and without
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any (tedious, time-consuming, and costly) expert-annotated corpus of polymer
names. We are encouraged to observe that polyNER retrieves polymers not ex-
tracted by CDE: the combined recall for PolyNER U CDE+ (row 6 in the table)
is 81.6%—higher than CDE itself. This result suggests that polyNER’s candidate
generation module can be used not only to annotate automatically a diverse set
of polymers based on context, but also to improve on the results of more sophis-
ticated hybrid rule- and ML-based NER tools.

Figure 3, which shows every word in P100 in FastText vector space, illustrates
the challenges and opportunities inherent in differentiating between polymer and
non polymer word vectors. The polymer names (in red and green) form two
rather diffuse clusters that overlap considerably with non polymers (in blue).
Interestingly, the subset of polymer names that are acronyms (the red points)
are clearly clustered.

100

« Non-polymers .
« Polymer acronyms
« Other polymer names

-To S [ 5 10

Fig.3: A two-dimensional representation of all words in P100, generated
with the scikit-learn implementation of t-distributed Stochastic Neighbor
Embedding (t-SNE) [41]. Of the words identified by experts as polymers, we
show acronyms in red and non-acronyms in green; all other words are blue.
‘We label our two representative words. (The t-SNE plot, a dimensionality
reduction technique used to graphically simplify large datasets, reduces the
120-dimensional vectors to two-dimensional data points. The axes have no
“global” meaning.)
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Table 1: Results when polymer candidates are extracted from our test cor-
pus, P100, via different methods. For each, we show true positives, false
positives, false negatives, precision, recall, and F-score.

# | Method Total | TP | FP|FN | Precision | Recall| F:

1 |CDE 3994 | 348 | 3646 | 119 8.7% 74.5% | 15.6%
2 | CDE-+ 7551319 | 436|148 42.2% 68.3% |52.2%
3 |CG1 500 | 78 | 422|389 15.6% 16.7% | 16.1%
4 | CG2 500 | 209 | 291 | 258 41.8% 44.7% | 43.2%
5 | PolyNER 1099|286 | 813|181 26.0% 61.2% | 36.5%
6 | PolyNER U CDE+ 1495|381 | 1114 | 86 25.4% 81.6% | 38.8%

5.3 Evaluation of Classifier Training Methods

The evaluation of Candidate Generation phase mainly illustrates the entity-
richness of the candidate pool generated using the context-similarity criteria.
The ultimate goal, however, is to train a classifier of context-aware vectors able to
differentiate between polymer and not-polymer names in a set of test documents.
Hence, we next evaluate how well classifiers trained on expert-labeled output
from the Candidate Generation phase perform when applied to directly to a set
of full-text documents. Here, we make use of our second dataset, P50, to train
and test our classifiers, and P100 to validate the trained classifiers.

Before training our classifiers, we need a set of expert-labeled candidates.
Thus we first apply the CG1 and CG2 methods of Section 4.1 to P50, generating
a total of 897 unique candidates: 500 for CG2 and 466 from CG1, of which
69 overlapped. (We do not apply the rule-based synonym finder here.) Then
we employ an expert to label as polymer or non-polymer each of those 897
candidates, producing a new dataset that we refer to as P50-labeled. Note that
this task is quick work for the expert, as only 897 words need to be evaluated:
the total time required was two hours. This expert review identifies 260 (29.0%)
of the 897 as polymers.

Training and validating the classifiers: We next use the 897 expert-labeled
words to train our three classifiers. We use 90% (807) for training and hold out
10% (90) for validation.

The left-hand side of Table 2 shows the performance of the different trained
classifiers when applied to the P50 hold-out words. Note that performance here
is defined with respect to how well the classifier does at predicting the expert
labels assigned to the polyNER-generated candidates—not how well the classifier
identifies all polymer referents in P50, as we do not have the latter information.

All three classifiers obtain between 66.7% and 100.0% precision and between
28.6% and 57.1% recall. SVC achieves the highest recall and Fj score. The lower
part of the table (“combined classifiers”) shows that combined classifiers can
improve performance. The 3-of-3 method achieves the highest precision (100.0%)
but lowest recall, as one might expect. The >2 method also achieves 100.0%
precision but with a higher recall (42.3% vs 28.6%). The >1 method has the
lowest precision but the highest recall at 57.1%.
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Table 2: Results when various classifiers (trained on expert-labeled P50
candidates) are applied to P50 holdouts (left) and P100 (right). The results
in the bottom two rows are copied from Table 1 for ease of comparison.

Classifier Validation on P50 holdouts Testing on P100
Precision| Recall F Precision| Recall Fq

KNN 75.0% 42.8% 54.5% 9.5% 77.8% 16.9%
SvC 66.7% 57.1% 61.5% 16.8% 76.5% 27.5%
RF 100.0% 28.6% 44.4% 51.0% 42.0% 46.1%
Combined

3-0f-3 100.0% 28.6% 44.4% 52.7% 39.1% 44.9%
>2 100.0% 42.3% 60.0% 22.8% 66.6% 34.0%
>1 57.1% 57.1% 57.1% 9.1% 90.7% 16.5%
CDE 8.7% 74.5% 15.6%
CDE+ 42.2% 68.3% 52.2%

Testing the trained classifiers: We test the trained classifiers by applying
each to all 6878 NLP-filtered nouns extracted from P100 and comparing the re-
sulting polymer/non-polymer labels against our ground truth of polymer names
extracted from P100 by experts. Results are in the right-hand side of Table 2.
RF achieves the highest F score (46.1%) with 51.0% precision and 42.1% recall.
While recall is relatively low (fewer entities retrieved), precision is significantly
better than that achieved by CDE+. We observe also that combined classifiers
can improve precision (52.7%) at the expense of recall, or significantly increase
recall (90.1%) at the expense of precision. Users can thus trade off precision and
recall, in each case exceeding those achieved by the rule-based CDE+ system.

5.4 Discussion

These results are based on only limited training data: just 897 labeled words,
of which 260 are polymers. We view the effectiveness of the classifiers trained
with these limited data as demonstrating the feasibility of using small amounts
of expert-labeled data to bootstrap context-aware word-vector classifiers. Im-
portantly, this whole process was both inexpensive and generalizable to other
domains. Candidate generation was fully automated and involved no domain
knowledge besides the two representative words, polystyrene and PS. Labeling
required just two hours of an expert’s time. Classifier training was again auto-
mated and involved no domain knowledge.

6 Conclusion

Despite much progress in NLP, scientific named entity recognition (NER) re-
mains a research challenge. A lack of labeled training data in fields such as poly-
mer science limits the use of machine learning models for this task. PolyNER is
a generalizable system that can efficiently retrieve and classify scientific named
entities. It uses word representations and minimal domain knowledge (a few
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representative entities) to produce a small set of candidates for expert labeling;
labeled candidates are then used to train named entity classifiers.

PolyNER can achieve either 52.7% precision or 90.7% recall when combining
classifiers: a 10.5% improvement in precision or 22.4% in recall over a well-
performing hybrid NER model (CDE+) that combines a dictionary, expert cre-
ated rules, and machine learning algorithms. PolyNER’s architecture allows users
to tradeoff precision and recall by selecting which classifiers are used for discrim-
ination. One out of every four candidates identified by our current polyNER
prototype is in fact a polymer. This enrichment relative to the relative paucity
of polymers in publications significantly reduces the effort required by experts.
Considering that polyNER relies on simple distance from a known polymer(s),
and default word embedding parameters, this result is encouraging.

An important issue to explore in future work is whether classifier performance
can be improved by providing additional expert-labeled words. We plan to apply
active learning [34] to select good candidates. As we generate more expert-labeled
candidates, we will explore the use of neural network word vector classifiers to
improve accuracy, and the use of polyNER-labeled data to annotate text for
other NER approaches, such as bidirectional long short-term memory models.
With a view to exploring generalizability, we are also working to apply polyNER
to quite different problems, such as extracting dataset names from social science
literature. We may explore more recent word representation models, which are
pre-trained on large corpora [25, 6].
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