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Abstract. Nowadays, network traffic identification, as the fundamental
technique in the field of cybersecurity, suffers from a critical problem,
namely “unknown traffic”. The unknown traffic refers to network traffic
generated by previously unknown applications (i.e., zero-day applica-
tions) in a pre-constructed traffic classification system. The ability to
divide the mixed unknown traffic into multiple clusters, each of which
contains only one application traffic as far as possible, is the key to solve
this problem. In this paper, we propose the DePCK to improve the clus-
tering purity. There are two main innovations in our framework: (i) It
learns to extract bottleneck features via deep auto-encoder from traffic
statistical characteristics; (ii) It uses the flow correlation to guide the
process of pairwise constrained k-means. To verify the effectiveness of our
framework, we make contrast experiments on two real-world datasets.
The experimental results show that the clustering purity rate of DePCK
can exceed 94.81% on the ISP-data and 91.48% on the WIDE-data [1],
which outperform the state-of-the-art methods: RTC [20], and k-means
with log data [15].

Keywords: Unknown traffic · Deep auto-encoder · Bottleneck features
· Pairwise constrained k-means.

1 Introduction

The performance of network traffic identification directly affects network se-
curity and controllability, because it is a basic tool for network management
tasks such as network monitoring, quality of service, traffic priority [20]. With
the explosion of network applications, network traffic identification suffers from
a critical problem, namely “unknown traffic”. The unknown traffic is defined
as network traffic generated by previously unknown applications (i.e., zero-day
applications) in a traffic classification system. The network traffic statistics of
the Internet2 organization to the North American backbone network shows that
nearly 50% of the traffic belongs to unknown traffic [16].

The methods of fine-grained unknown traffic identification can be generally
divided into three stages. First, extracting mixed unknown traffic from raw net-
work traffic (including known traffic, and unknown traffic) [10] [20] [21]. Then,

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_23

https://dx.doi.org/10.1007/978-3-030-22734-0_23


2 Yongzheng Zhang, Shuyuan Zhao, and Yafei Sang

dividing the mixed unknown traffic into multiple clusters, each of which contains
only one application traffic as far as possible [8] [15] [20]. Finally, identifying clus-
ters through manually labeling [20] or association information (e.g., DNS). To
solve this problem, machine learning methods based on typical flow-statistical-
features (e.g., packet size, packet-interval) have been widely applied in unknown
traffic identification, but most of them are aimed at solving the key problems
of the first stage [7] [9] [10] [14] [21]. Previous research of the second stage has
the following shortcomings: (i) Previous studies cannot perform beneficial fea-
ture selection just using unlabeled dataset [8] [15] [20]. (ii) Flow correlation is
not entirely utilized to guide the clustering method [8] [15] [20]. All these issues
will reduce the accuracy of clustering and affect the efficiency of unknown traffic
identification.

In this paper, an unsupervised framework, which we call DePCK, is proposed
to improve the dividing power of mixed unknown traffic (focusing on the second
stage). To achieve traffic information embeddings without labels, it uses deep
auto-encoder to build a self-supervised feature extraction model. To improve
clustering performance, it fully uses flow correlation to guide the process of
pairwise constrained clustering.

The major contributions can be summarized as follows:

– We propose the DePCK, an unsupervised framework for unknown traffic
identification problem.

– We first use the bottleneck features (by mean of deep auto-encoder) to model
unknown traffic.

– We use flow correlation (i.e., 3-tuple of flow) to guide pairwise constrained
clustering.

– The experiments of DePCK on two real-world datasets: ISP, and WIDE [1],
show that the clustering purity rate of DePCK can exceed 94.81% on the
ISP-data and 91.48% on the WIDE-data, which outperform the state-of-the-
art methods: RTC [20], and k-means with log data [15].

The rest of this paper is structured as follows. A novel framework for network
unknown traffic identification is proposed in Section 2, Section 3 and Section 4.
Section 5 describes the datasets and evaluation metrics. Section 6 reports a large
number of experiments and experimental results. Section 7 discusses related work
in unknown traffic identification. Finally, Section 8 concludes the paper.

2 The DePCK Framework

Fig. 1 provides the details of the DePCK. This framework includes two main
modules: features extraction module and clustering module. In the features ex-
traction module, according to the demonstrated capabilities [6] of feature learn-
ing and the theoretical function approximation properties [11] of deep neural
networks (DNNs), we use a deep auto-encoder to train a self-supervised deep
neural network and learn bottleneck features from unlabeled samples. This part
is described in detail in Section 3. In the clustering module, we first extract the
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constrained relation between traffic flow and then use the MPCKMeans algo-
rithm to match the unknown traffic identification scenario. The training data of
this module is the bottleneck features of the features extraction module. This
part is described in detail in Section 4.
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Fig. 1: The DePCK Framework

3 Bottleneck Features Extraction

In this section, we describe the feature extraction module of DePCK based on
deep auto-encoder, which can automatically train an unsupervised deep neural
network and obtain the bottleneck features of the samples.

3.1 Deep Embedding

Network traffic classification schemes based on flow statistics generally train a
classification model from a set of labeled data, which is composed of multiple sta-
tistical characteristics (e.g., packet size, packet-interval) and class labels. Based
on labels, most schemes usually first use supervised feature selection methods
(e.g., correlation coefficient, and covariance) to remove redundant and unrelated
features.

Since unknown traffic has no labels, supervised feature selection methods
are invalid to solve the unknown traffic identification problem. To tackle this
problem, we use a neural network, which has demonstrated feature learning
capabilities [18], to transform the feature with non-linear mapping. The non-
linear transformation of features is to map the feature space from X to Z:

fθ : X → Z (1)

where Z is the latent feature space, and its dimensionality is smaller than the
space X, and θ are parameters that can be automatically learned based on a
deep neural network.
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3.2 Training a Bottleneck Network

Deep neural networks have multiple hidden layers, which can train the input
data through non-linear mapping and obtain hidden feature sets of samples. In
our scene, without labeled data, we use an unsupervised deep auto-encoder to
train the deep neural networks. Deep auto-encoder is an unsupervised neural
network, which composed of multilayer auto-encoders.

An auto-encoder is a type of artificial neural network used to learn efficient
data codings in an unsupervised manner [12]. The aim of an auto-encoder is to
learn a representation (encoding) for a set of data. Architecturally, the form of
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Fig. 2: Deep Auto-Encoder Structure

an auto-encoder is a feedforward, non-recurrent and two-layer neural network.
As shown in the green part of Fig. 2, an auto-encoder always consists of two
parts, the encoder and the decoder, which can be defined as:

ψ : α→ β (2)

ϕ : β → α (3)

ψ, ϕ = argminψ,ϕ||α− (ψ ◦ ϕ)α||2 (4)

where the encoder stage of an auto-encoder takes the input x ∈ Rd = α and
maps it to z ∈ RP = β, and the decoder stage of the auto-encoder maps z to
the reconstruction x′ of the same shape as x :

z = r1{W1x+ b1} (5)
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x′ = r2{W2z + b2} (6)

where z is latent representation, r1 and r2 are element-wise activation function
such as a sigmoid function or a rectified linear unit. W1 and W2 are weight
matrix, b1 and b2 are bias vector. In the model, all activation functions are
rectified linear units (ReLUs).

The training process of the auto-encoders is to minimize the loss function J.
The loss function is defined as:

J(x, x′) =
∑
x∈D

Lp(x, x′) (7)

where Lp is reconstruction errors, here we use the square of Euclidean norm:
||x− y||2. D is the dataset.

As shown in the middle part of Fig. 2, the deep auto-encoder is a deep neural
network with multiple layers. After training auto-encoders by greedy layer-wise
training, we connect all the encoders in series and then combine all the decoders
in the opposite direction to form a deep auto-encoder. When designing the deep
network structure, we set the middle layer with the minimum dimension in all
layers to build the bottleneck features, because the bottleneck features have
recently found success in a variety of speech recognition tasks [18]. Then, we get
the final model by discarding and use the model as the initial mapping between
the raw feature space and the bottleneck feature space.

4 Pairwise Constrained Clustering

In this section, we first describe the constrained relation between network
traffic and then introduce the modified pairwise constrained clustering algorithm
based on flow correlation.

4.1 Correlations between Network Traffic

In Transmission Control Protocol/Internet Protocol (TCP/IP) model, IP
flow, a series of data packets transferred between two programs, is the basic
unit for end-to-end data transfer. In the program, the system determines an
IP flow through the IPv4 five-tuple. A five-tuple refers to a set of five differ-
ent values that uniquely identifies a UDP/TCP session. It includes a source IP
address/port number, destination IP address/port number and transport pro-
tocol. An Internet Protocol address (IP address) is a numerical label assigned
to each device connected to a computer network that uses the Internet Protocol
for communication. A port is an endpoint of communication in an operating
system, which identifies a specific process or a type of network service running
on that system. Hence, a port can be used with an IP address of a host and the
transport layer protocol for communication. For example, to transfer a file to a
remote computer, one could specify the machine itself by IP address, use TCP
for transport, and the FTP file server service on that computer on port 20.
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We assume that the service provided by a particular port lasts for a certain
period. In this example, the flows that have the same three-tuple (service IP ad-
dress, service port number, and transport protocol) can be considered to belong
to the same protocol. This assumption is typically valid for the Internet because
of the port-reuse restriction rule enforced by operating systems, in which a local
port number will become unavailable for some time after closing unless a par-
ticular program is bound to it [17]. Therefore, we can use the 3-tuple of flows to
obtain constrained dataset.

The flows’ constrained relation can be used to guide the clustering process
when the unknown traffic is identified based on the clustering algorithm. In
the clustering process, if there is a large number of associated flows between two
independent clusters, the clustering algorithm can determine that the correlation
between the two clusters is strong. Based on this idea, we propose an unknown
traffic identification method based on pairwise constrained clustering algorithm.

4.2 Modified PCKMeans

In previous studies, unknown traffic clustering methods based on statistical
characteristics cannot make good use of flow correlation [8] [15] [20]. To make
full use of the flows’ constrained relation, we propose the modified pairwise
constraint clustering algorithm based on PCKMeans [5].

Pairwise Constraint Conditions. PCKMeans, an improved k-means al-
gorithm, uses the prior knowledge of the data to guide the clustering process and
gets better clustering results. Consequently, in addition to the distance between
samples in the data, this algorithm uses pairwise must-link (ML) and cannot-
link (CL) constraints to guide clustering. ML is a set of must-link pairs and
CL is a set of cannot-link pairs. if (xi, xj)∈ML, xi and xj should be assigned
to the same cluster. Conversely, if (xi, xj)∈CL, xi and xj should be assigned to
the different cluster.

In our DePCK, we can use the 3-tuple of network flows to construct the ML
set but can not build the CL set.

Modified PCKMeans. The PCKMeans algorithm implements the use of
ML set and CL set by adding a constraint violation penalty term to the objective
function of the k-means algorithm. In the case of a given dataset D, a set of
must-link constraints ML, a set of cannot-link constraints CL, the PCKMeans
algorithm can minimize objective function by giving the weights corresponding
to the ML and CL respectively. The objective function J of PCKMeans can be
computed as:

JML =
∑

(xi,xj)∈ML

wijI(Ci ̸= Cj) (8)

JCL =
∑

(xi,xj)∈CL

wijI(Ci = Cj) (9)

J =
1

2

∑
xi∈D

||xi − ci||2 + JML + JCL (10)
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where xi and xj are the single sample of the dataset; Ci and Cj are the assigned
cluster of xi and xj respectively, wij and wij are two sets that give weights
corresponding to the ML and CL respectively, I(·) is the indicator function,
with I(true) = 1 and I(false) = 0. In Eq. (10), ci is centroid of Ci.

Because there is no CL set of network traffic, we do not need to add JCL to
the objective function J . The objective function J of our model is defined as:

J =
1

2

∑
xi∈D

||xi − ci||2 + JML (11)

Algorithm 1 Modified PCKMeans

Input: D = {xi}ni=1:set of samples; ML = {(xi, xj)}: set of must link samples;
k: number of clusters;w: weight of constraints;

Output: Jmin:divide the dataset into k clusters and have the smallest J value;
C = C1, C2, ..., Cn:the set of clusters.

1: initialize the Centroids {ci}ki=1 of k clusters at random
2: repeat
3: for xi ∈ D do
4: for Cj ∈ C do
5: Calculate the objective function: Jj =

∑
xi∈D

||xi − cj ||2

6: end for
7: assign sample xi to the cluster j where Jj=argmin(J∗)
8: end for
9: for ci ∈ {ci}ki=1 do

10: recalculate the Centroids {ci}ki=1 of k clusters: ci =

∑
xi∈D

xi

|Ci|
11: end for
12: until none of the Centroids {ci}ki=1 of k clusters changes
13: repeat
14: for xi ∈ D do
15: for Cj ∈ C do
16: Calculate the objective function: JML =

∑
(xi,xj)∈ML

wijI(Ci ̸= Cj)

17: Calculate the objective function: Jj =
∑

xi∈D

||xi − ci||2 + JML

18: end for
19: assign sample xi to the cluster j where Jj=argmin(J∗)
20: end for
21: for ci ∈ {ci}ki=1 do

22: recalculate the Centroids {ci}ki=1 of k clusters: ci =

∑
xi∈D

xi

|Ci|
23: end for
24: until none of the Centroids {ci}ki=1 of k clusters changes

In the PCKMeans algorithm proposed by Basu et al. [5], the initialization
phase strategy is designed as follows: Firstly, using themust-link set to construct
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λ neighborhood sets {Np}λp=1, then using the information of neighborhood sets
to initialize the center centroids of k clusters as much as possible. The most sig-
nificant advantage of this strategy is that the must-link set directly determines
the distribution of the clusters. However, in the unknown traffic identification
scenario, this advantage will have the opposite effect because it prevents the al-
gorithm from discovering new traffic protocol or application from mixed traffic.

In order to solve the above problem, we propose an improved pairwise con-
straint clustering algorithm (MPCKMeans) Algorithm 1.

In this algorithm, we first use the k-means algorithm to complete the clus-
tering of data D and obtain the centroid of the clustering clusters as the initial
centroid of the next stage. Then, based on the result of k-means, we use the
must-link constraints to guide the clustering process. The improved algorithm
not only makes full use of the pairwise constraints, but also has excellent ability
to discover unknown protocols.

5 Preliminaries

In this section, we first introduce how we build the ground truth dataset
using traffic traces. Then, we show the assessment criteria.

5.1 Dataset

In this paper, two Internet traffic traces, WIDE [1] and ISP, are used for our
experimental study. Table 1 shows the main detail of traffic traces.

Table 1: Traffic Traces

Trace Data Time Duration Type Volume

ISP-data 2015-08-17 1 day edge 130.7 GB

WIDE-data 2012-03-30 5 hours backbone 482.8 GB

The ISP trace was collected from our routers in the edge of a campus network
on August 17, 2015 from 1 am to 12 pm. This trace consists of 3 million flows
with full packet payload. The WIDE trace was captured by MAWI Working
Group in March 2012 that was during 5 hours. In this trace, all the IP addresses
are anonymized and each packet just includes forty bytes of application layer
payload.

We used two steps to obtain the ground truth dataset. Firstly, we used an
open source tool nDPI [2] to label the ISP trace. Besides we used the port-based
method to enhance the reliability of the dataset. Because the WIDE trace does
not include the full payload, we directly use the port-based approach to label this
dataset. Then we used tool Netmate to extract statistical flow characteristics.
This tool’s job is to classify packets into flows and to calculate the statistics

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_23

https://dx.doi.org/10.1007/978-3-030-22734-0_23


Title Suppressed Due to Excessive Length 9

of flows.. When building the experimental dataset, we will calculate as many
features as possible. Finally, we select 28 flow features, which are described in
Table 2.

From the ISP trace, eight protocols, BT, DNS, HTTP, IMAP, NTP, SSDP,
SSL, LLMNR, were extracted and constituted the ISP-data. Our sampling rules
are that: randomly sampling 40K flows from each protocol if it contains more
than 40k flows, otherwise sampling all the flows. The experimental dataset con-
sists of 233k flow randomly sampled from the initial traffic dataset, which is de-
scribed in Fig. 3(a). From the WIDE trace, seven protocols, POP3, FTP, SSH,
SMTP, SSL, DNS, HTTP, were extracted and constituted the WIDE-data. This
experimental dataset consists of 56k flows with the rule of randomly sampling
up to 10K flows from each protocol, which are described in Fig. 3(b). During
experiments, we simulated the problem of unknown applications. Both ISP-data
and WIDE-data represent mixed unknown traffic datasets.

Table 2: Network Flow Statistical Features

Category of
features

Description of feature No. of
feature

Packets Number of packets transferred in unidirection 2

Bytes Volume of bytes transferred in unidirection 2

Packets Size Min, Max, Mean and Standard deviation of
packets size in unidirection

8

Inter Packet Time Min, Max, Mean and Standard deviation of
inter packet time in unidirection

8

Connection Duration Min, Max, Mean and Standard deviation of
subflow activity time

4

Idle Time Min, Max, Mean and Standard deviation of
subflow idle time

4

Total 28

5.2 Assessment Criteria

To evaluate the effectiveness of our method, we focus on clustering purity.
The clustering purity is defined as the average percentage of the dominant class
label in each cluster [3]. To calculate the purity, each cluster is assigned to the
category which is most frequent in the cluster. The definition of clustering purity
is shown in Eq. (12).

P (C, S) =
1

|D|

k∑
i=1

max
j

|ci ∩ sj | (12)
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Fig. 3: Class distribution of the dataset

where k is the number of clusters, C = {c1, c2, ..., ci} is the set of clusters and
S = {s1, s2, ..., sj} is the set of classes.

6 Performance Results

In this section, we first compare our feature extraction method with tradi-
tional approaches to explain why we use deep embedding. Secondly, we prove
the effectiveness of the modified PCKMeans. Finally, we present and discuss the
comprehensive experiments. To evaluate the effectiveness of the method, we use
labeled data to simulate unknown traffic. In the experiment, the number of clus-
ters is the only input parameter, which ranges from 10 to 100. Every experiment
is repeated 100 times to ensure the reliability of the results.

6.1 Why We Use Deep Embedding

To show the validity of deep embedding, we used the k-means algorithm
to identify unknown traffic traces based on three kinds of feature sets: initial
statistical features [20], log transformation features [15], and deep embedding
features. For each k, we repeat the clustering with different random seeds. Fig.
4(a) and Fig. 4(b) illustrate the purity of clustering on the ISP-data and WIDE-
data, respectively.

Our clustering target is to obtain high clustering purity with small cluster
number. The results indicate that when the number of clusters is 10, that deep
embedding outperforms initial features and log transformation features cluster-
ing purity on two datasets. This satisfies the original intention of our algorithm
design. Besides, with the increase of cluster number, the clustering purity of deep
embedding is almost always higher than that of the other two methods on two
datasets.
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Fig. 4: Clustering Purity Comparison of Different Data Preprocessing Methods

6.2 Benefits of Modified PCKMeans

To show the ability of MPCKMeans, we perform the following experiments.
In the case bottleneck features as the original input, we compare the effectiveness
of the MPCKMeans algorithm and the k-means algorithm for unknown traffic
identification.
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The experimental results are shown in the Fig. 5. Viewing the trend as a
whole, the experimental results of DePCK are almost always better than the
results of k-means. Individually, Fig. 5(a) shows the results on the ISP-data. No
matter how the parameter changes, the clustering purity of DePCK is always
higher than that of k-means by about 5%. In Fig. 5(b), although the advantage
of DePCK is not as obvious as in Fig. 5(a), the overall result is that our method
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is superior to the k-means. The results show that the MPCKMeans algorithm
can get more pure clusters and is stable in different datasets.

6.3 Performance of DePCK

We perform a series of experiments on real-world traces to evaluate the pro-
posed framework and the state-of-the-art methods (k-means [20]and log k-means
[15]). All methods use the same datasets and parameters. The parameter ranges
from ten to one hundred: k = 10,20,...,50,60,...,100. Table 3 shows the exper-
imental results. When the parameters are the same, our method DePCK can
always get the best experimental results on both datasets. The DePCK achieves
over 94.81% clustering purity on the ISP-data and 91.48% clustering purity on
the WIDE-data, which is obviously superior to other methods.

Table 3: Experiment Results (The Best Results Are in Bold)

K
ISP-data WIDE-data

k-means log k-means DePCK k-means log k-means DePCK
10 29.50% 78.60% 85.64% 50.82% 63.12% 82.02%
20 37.80% 84.63% 88.74% 68.35% 80.26% 82.02%
30 63.19% 85.75% 90.49% 70.79% 84.36% 87.49%
40 79.21% 86.59% 91.50% 72.89% 85.98% 88.74%
50 80.79% 87.09% 94.09% 73.91% 87.68% 88.83%
60 83.97% 87.23% 94.18% 75.42% 88.43% 89.09%
70 84.18% 88.59% 94.27% 77.29% 87.94% 90.59%
80 85.40% 88.12% 94.52% 78.43% 88.96% 90.88%
90 86.66% 89.09% 94.81% 78.69% 89.39% 91.22%
100 86.44% 89.73% 94.73% 79.22% 89.44% 91.48%

7 Related Work

How to classify network traffic into known protocols and applications was ex-
tensively focused in past studies, but few discussed the identification of unknown
traffic. We briefly review the work related to the unknown traffic identification.

In previous studies, (N+1)-Class traffic classification model was proposed
to solve the problem of unknown traffic. N represents the number of known
classes, and one represents all unknown classes. Erman et al. [9] proposed a
semi-supervised classification method that can accommodate both known and
unknown applications. Then Casas et al. [7] use the ensemble clustering tech-
nique to improve the semi-supervised method. Later, Erman’s work is introduced
to classify encrypted traffic by using the composite feature set and combining
the first 40-B payload with statistical features of the flow level [14]. Besides, Fu
et al. construct multiple one-class classifiers to divide traffic into N classes and
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an unknown class [10]. Although the way that all unknown traffic is identified as
one class helps to increase the accuracy of a traffic classification system, the sys-
tem’s ability to efficiently achieve fine-grained identification of unknown traffic
is feeble.

In theory, unsupervised methods can solve network traffic identification prob-
lem. Unsupervised methods have been widely applied in the network traffic
classification, which deserves our reference. In [19], Zander et al. presented a
classification method based on AutoClass program that uses the Expectation-
Maximization (EM) algorithm and mixture models. Then Erman et al. [8] ap-
plied two unsupervised clustering algorithms, namely k-means and DBSCAN,
to classify network traffic and compare them to the previously used AutoClass
algorithm. The experimental results showed that both k-means and DBSCAN
work very well and much more quickly than AutoClass. Similarly, in Liu et al.
[15], the author adopted feature selection to find an optimal feature set and
log transformation to improve the k-means accuracy. The report of this method
showed that overall accuracy was up to 80%, and, after a log transformation, the
accuracy was improved to 90% or more. This approach is superior to the previous
methods. Zhang’s work [20] is based on Erman’s semi-supervised classification
method. For fine-grained unknown traffic, an update module, based on k-means
algorithm, is proposed to finely classify unknown traffic in the system. Besides,
some other well-known unsupervised algorithms, such as Fuzzy C-means [13] and
hierarchical clustering [4], were also used for traffic classification.

8 Conclusion and Future Work

In this paper, we proposed a robust scheme, the DePCK, for unknown traffic
identification based on deep auto-encoder and modified pairwise constrained k-
means. To the best of our knowledge, this is the first application of bottleneck
features and pairwise constrained k-means in this area. Extensive experimental
results reveal that DePCK achieves better performance compared to the state-of-
the-art methods on real-world datasets. In addition, the DePCK can deal with
textual protocols and binary protocols. To further solve the unknown traffic
identification problem, our future research will focus on how to automatically
determine the number of traffic clusters.
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