
Harmonizing Sequential and Random Access
to Datasets in Organizationally Distributed

Environments

Micha l Wrzeszcz1,2, Lukasz Opio la1,2, Bartosz Kryza2, Lukasz Dutka2,
Renata G. S lota1, and Jacek Kitowski1,2

1 AGH University of Science and Technology, Faculty of Computer Science,
Electronics and Telecommunications, Dep. of Computer Science, Kraków, Poland
{wrzeszcz,lukasz.opiola,bkryza,renata.slota,jacek.kitowski}@agh.edu.pl

2 Academic Computer Centre CYFRONET AGH, Kraków, Poland
lukasz.dutka@cyfronet.pl

Abstract Computational science is rapidly developing, which pushes
the boundaries in data management concerning the size and structure
of datasets, data processing patterns, geographical distribution of data
and performance expectations. In this paper we present a solution for
harmonizing data access performance, i.e. finding a compromise between
local and remote read/write efficiency that would fit those evolving re-
quirements. It is based on variable-size logical data-chunks (in contrast
to fixed-size blocks), direct storage access and several mechanisms im-
proving remote data access performance. The solution is implemented in
the Onedata system and suited to its multi-layer architecture, supporting
organizationally distributed environments – with limited trust between
data providers. The solution is benchmarked and compared to XRootD
+ XCache, which offers similar functionalities. The results show that the
performance of both systems is comparable, although overheads in local
data access are visibly lower in Onedata.

Keywords: random access, variable-size block, distributed file system,
organizationally distributed environment

1 Introduction

Recent years have brought significant advances in computational science and
rapid development of data centers, which keep growing and employing modern,
distributed storage technologies. Big institutions are getting dedicated network
links and the throughput of network infrastructures is increasing. This techno-
logical progress aligns well with the trends in computational science that push
towards globalization and distributed computing. The idea of e-Science [11] al-
lows scientists from different fields and organizations to cooperate without bor-
ders, performing parallel, distributed analysis on large, shared datasets. How-
ever, current data access and sharing solutions can only partly fulfill this vision.
The reason behind the lack of suitable solutions is the challenging nature of

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

2 M. Wrzeszcz, L. Opio la et al.

data access globalization. Some relevant issues are: autonomy of data providers,
geographical distribution of vast datasets, complicated maintenance of network-
based communication, data security and privacy or decentralized authorization.
Among them there is efficient and cost-effective access and processing of distrib-
uted datasets in such decentralized environments.

Analysis of different use-cases show that scientists use very diverse methods
to process their datasets. Quite often the data is stored in giant (sometimes
sparse) files, which are read or written by variable-size chunks in a seemingly
arbitrary order – consider for example the popular HDF5 [9] format that can
hold multi-dimensional data. While sequential access is usually well handled, the
case of random read & write is a pitfall for most of network-based file systems.
When data is located on remote storage systems or distributed, these operations
trigger transfers of whole files or large blocks between storage clusters that can
generate unnecessary costs. Transfer management and optimization can be very
challenging, especially when files are accessed in a random manner.

In this paper we present our solution for harmonizing performance of se-
quential and random access to local and remote datasets in organizationally
distributed environments. The solution was implemented as a part of data ac-
cess system called Onedata [16,17], evaluated and compared to commonly used
XRootD virtual filesystem.

2 Related Work

Below is a summary of existing solutions related to efficient access to large, dis-
tributed datasets: distributed data access systems, solutions optimizing random
access performance of network-based storage and tools for large data transfers.

The need of unified data access is apparent as more and more initiatives
[22, 25] and products appear, trying to fulfill those requirements. For example,
IBM offers Active File Management (AFM) [12] as an additional layer over their
GPFS storage to achieve caching of data originating from remote sites (home-
and-cache model) with support for data modifications. By creating associations
between data clusters, one can implement a single namespace view across sites
around the world, though this requires full trust between them. XRootD [3] is
a commonly used, open-source alternative to GPFS + AFM, which embraces
a very similar model when coupled with XCache [7]. XRootD can be used to
unify access to different storage systems into a single virtual endpoint, accessible
from anywhere. XCache is essentially an XRootD service employing a caching
plugin, which manages a local cache of data read from remote sites for faster
consecutive reading. Like in IBM’s solutions, XRootD/XCache requires all the
sites to be federated. However, in contrast to AFM, XCache does not support
remote write operations. DataNet Federation Consortium (DFC) [5] aims to
implement a national data management infrastructure to streamline scientific
development. The prototype supports three types of federation mechanisms: (1)
tightly coupled federations, realized by federating iRODS data grids, (2) loosely
coupled federations, i.e. external services offering certain datasets for retrieval

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

Harmonizing Sequential and Random Access to Datasets... 3

and querying and (3) asynchronous federations where queries to external services
are processed in an asynchronous (message queue based) manner. This approach
promotes (read-only) integration with open data services, rather than unifying
data access to distributed data providers. DFC employs iRODS [18] to create a
single federation, but it can be also used to achieve cross-federation data access.
However, it does not implement location transparency of the stored data. The
files must be manually moved/copied between iRODS Zones. It requires cer-
tain administrative effort to set up cross-federation data access – user accounts
pointing to their home Zone must be created in remote Zones.

As mentioned before, random access performance is a weakness of most file
systems, and especially problematic in network-based storage systems. There
have been attempts to overcome these limitations or introduce optimization
mechanisms. For example, in [29] the authors propose three methods to optim-
ize random queries on HDFS [20] and guarantee the performance of sequential
access. All the methods are based on network-level optimizations and yield sat-
isfactory results. Another attempt to adjust HDFS to random access profile is
presented in [15], where the authors introduce some low-level modifications to
make the filesystem better suited for computations in the field of High Energy
Physics (HEP). The next example is VarFS [10] – a filesystem build on Ceph [24]
especially for the purpose of random write operations. The general idea is that
instead of using objects or blocks of fixed-size as most file systems do, this layer
uses variable-size objects while remaining POSIX compatible. This way, ran-
dom write performance can be greatly increased and the overheads of sequential
write operations are acceptable. The conclusion is that it is possible to achieve
reasonable random access performance in a commonly used distributed data ac-
cess systems such as HDFS or Ceph, however these solutions are designed for
federated environments.

Data transfers are an inherent aspect of distributed data access systems.
Whenever a file is accessed remotely, it must be pushed through the network
between data sites. In the great majority of data access systems, fixed-size block
is used as the basic unit of data and only the required blocks are transferred. The
stability and latency of the network link have a significant impact on efficiency
– hence various optimization techniques are employed. They include prefetching
of blocks, caching the data locally, tuning the network etc. Pre-staging used to
be a reasonable choice in some scenarios, but with the growth of data volumes,
replication of whole datasets is becoming unviable. Still, there are many cases
where large files are moved between data clusters as part of the scientific pro-
cess. The choice of tools for managing data transfers is wide, see products from
Signiant [21], Axway [2], IBM [13] or Serv-u [19] as commercial examples. Non-
commercial solutions include mdtmFTP [28], FDT [8] or GridFTP [1], which is
extensively used in scientific communities. A common approach is to embrace
parallel network links between clusters to speed up file moving – this idea was
formalized in the Parallel FTP protocol [4].

The choice of tools for data access and transfers is wide, but there is a lack
of integrated solutions for efficient data access in organizationally distributed

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

4 M. Wrzeszcz, L. Opio la et al.

environments. Such solution should hide away the complexity of manual data
management between autonomous sites and offer a unified, transparent view
on all user’s datasets, at the same time ensuring the performance sufficient for
scientific computing.

3 Data Access in Organizationally Distributed
Environments

Our solution for harmonizing performance of sequential and random access to
local and remote datasets is a part of Onedata – an eventually consistent dis-
tributed data access system. Onedata aims to provide access to distributed data
under a single namespace [27]. Its main goal is to achieve truly transparent,
efficient, scalable and cost-effective data access to autonomous data providers,
despite the inherent lack of trust between them [17].

The Onedata system is based on a multi-layer architecture (see Figure 1).
Onezones provide an Authentication and Authorization Infrastructure, and me-
diate in cooperation of Oneproviders, which realize access to datasets stored
in different organizations. Oneclients, subject to Oneproviders, employ FUSE
(filesystem in userspace [23]) to implement POSIX data access and seamless in-
tegration with filesystems. While Onezones are key to overcome the lack of trust
in organizationally distributed environments, Oneproviders and Oneclients are
responsible for handling data access.

Users access their data through the Oneclient software using logical paths
pointing at logical files. To provide efficient data access without significant over-
heads, Oneclient accesses the data directly on the storage system whenever
possible. Otherwise, proxy mode is used – the data is read/written through
a network connection to Oneprovider. Prior to direct data access, Oneclient
gains knowledge about logical files from metadata managed by Oneprovider.
The metadata includes such information as logical filenames, permissions, ac-
cess types and a registry of data-chunks – as decribed below.

3.1 Data-chunks

Onedata introduces data-chunk as the basic unit of data. The content of each
logical file consists of one or more data-chunks, each representing a range of
bytes. Data-chunks have similar role as blocks in a standard filesystem, although
they can correspond to a series of blocks or other entities (e.g., objects) on
the underlying storage system. Thus, data-chunk handling is a vital factor in
data access scalability, performance and cost-effectiveness. Without appropriate
models for metadata consistency and synchronization [26], file metadata that
includes the registry of data-chunks can become a bottleneck of the whole data
access system (e.g. [6, 14,24]).

Datasets differ in characteristics – in extreme cases the files may be small
and numerous or large and sparse. While small data-chunk size would result
in creation of numerous data-chunks for big files, large data-chunk size would

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

Harmonizing Sequential and Random Access to Datasets... 5

Provider 2
resources

2

Provider N
resources

N

Authentication

Cooperation

coordination

USER

Provider 1
resources

D
ir

e
ct

 d
a

ta
 a

cc
e

ss
D

a
ta

 a
cc

e
ss

1

Onezone 1 Onezone M

Logical File Metadata:

- perms: 644

- ctime: 1512673321

- mtime: 1512675291

...
- registry of datachunks

!le.txt

Oneclient

Figure 1. Multi-layer Onedata architecture and logical file matadata with data-chunks.

cause synchronization of large data pieces even when a single byte is read. Thus,
Onedata uses variable-size data-chunks – in specific cases, a data-chunk can
represent a single byte or the whole file.

Oneprovider services synchronize file metadata including the registry of data-
chunks (see Figure 1). When a data-chunk is overwitten by a Oneprovider, the
remaining Oneproviders mark the modified data-chunk as invalid. As the actual
file content is not exchanged, this is a lightweight mechanism even for large files.
Data transfers are performed only when a data-chunk being read is absent from
the Oneprovider that handles the reading. As needed, data-chunks are split on
the fly to limit the transfer size to the missing data range only. Therefore, the
variable-size data-chunks minimize the cost of remote data access.

All things considered, there are several advantages of variable-size block man-
agement in the context of highly distributed systems, which align well with our
concept of data-chunks:

– universal fit for small and large files,

– limiting the network and storage cost to possible minimum,

– flexibility and ability to dynamically adapt to circumstances,

– seamless integration with different underlying storage systems, no matter
their blocksize or type (file/object-based etc.).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

6 M. Wrzeszcz, L. Opio la et al.

3.2 Models for metadata consistency and synchronization

Metadata access overheads can be related to round trip times, which are of-
ten impossible to reduce. For this reason, the metadata is replicated between
Oneproviders and cached by Oneclients. Whenever possible, it is processed loc-
ally and/or asynchronously. As a result, most of the metadata (including the re-
gistry of data-chunks) is eventually consistent and adopts last-write-wins conflict
resolution. The causal consistency model is applied only to metadata managed
by Onezones that is crucial for cooperation and security.

Since the overheads of synchronization grows with the number of entities that
exchange metadata, only Oneproviders that store parts of the particular dataset
are involved in processing and replication of the corresponding metadata.

3.3 Data access performance

One of the basic assumptions for Onedata is direct access to storage systems
whenever possible to retain the performance they offer. Scalability is achieved
by handling multiple underlying storage systems in parallel and limiting the
metadata processing overheads as much as possible, by using appropriate con-
sistency and synchronization models (see 3.2).

Data access performance can be further improved by employing specialized
mechanisms that support particular data access patterns when data is not access-
ible directly. However, the sequential and random data access patterns require
different optimization strategies to limit the negative impact of the network and
data access latency.

4 Harmonizing Random and Sequential Access

There are three main factors when considering efficient data access:

– operation: read/write,
– data location: local/remote,
– access pattern: sequential/random.

The write operation on the side of Oneclient works in the same way, regard-
less if local or remote. The data is written directly to the local storage system
and events are produced that update the data-chunk registry asynchronously.
This process is depicted in Figure 2 – initially, the file is stored only in the
second Oneprovider. Oneclient overwrites a part of the file content within the
first Oneprovider, a registry update is broadcasted and the data-chunk is inval-
idated in the second Oneprovider.

Similarly to the write operation, local data read is performed directly on the
storage system. In both cases, the only overheads are caused by fetching the file
metadata, which stays cached for faster consecutive operations. Essentially, the
efficiency of write and local read operations depends roughly on the local storage
system performance. Thus, to harmonize the performance of data access, we
focused mostly on mechanisms that support sequential or random data reading
from remote sites, discussing local operations for reference only.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

Harmonizing Sequential and Random Access to Datasets... 7

1. Initial state

2. Oneclient 1 overwrites

part of the file

3. Data-chunks change is

propagated

21

T
im

e

Figure 2. Remote write causing a data-chunk invalidation.

4.1 Sequential Remote Read

During sequential remote reading, Oneclient requests its Oneprovider to transfer
the missing data-chunks to the local storage as needed and reads the file block
by block. While certain data-chunks of the file may be distributed between many
remote Oneproviders, the key factor of sequential remote read performance is
reduction of the delay in access to non-local data-chunks. It is achieved using
a prefetching mechanism. For each opened file handle, Oneclient continuously
detects the access pattern (sequential vs. random), based on comparing the read
offsets on consecutive read operations. When a file is detected to be accessed
sequentially, Oneclient requests transfer from remote Oneprovider of more data
in advance to be immediately accessible as reading proceeds. Data transfers
are prioritized so that the prefetch requests do not hinder the transfers of data
needed instantly. Moreover, all Oneclients operating on a particular logical file
are asynchronously notified of any prefetched data-chunks in order to minimize
the number of transfer requests. In summary, Onedata employs three mechan-
isms that support sequential remote read: prefetching, prioritization of transfer
requests and broadcasting of information about synchronized data blocks.

4.2 Random Remote Read

Random read performance is cumbersome to optimize in any file system, espe-
cially when data is stored in a remote location. The introduction of data-chunks
greatly limits the network traffic caused by transfers, but reading a file remotely
(especially by small blocks) results in creation of numerous small data-chunks.
This causes the data-chunks registry to grow, increasing the costs of processing
and synchronization between Oneproviders. Moreover, the prefetching mechan-
ism in Oneclient is undesirable during random read, as it hampers the perform-
ance by transferring unneeded bytes. For these reasons, we introduced several
optimizations to data-chunk management and Oneclient behaviour to suite them
to remote data access.

The data-chunks registry includes information about data-chunks stored in
local and remote Oneproviders. The registry is updated whenever one of the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

8 M. Wrzeszcz, L. Opio la et al.

following takes place: an event is received from Oneclient reporting data modi-
fication, an update of certain data-chunks appears from another Oneprovider or
a transfer request is completed. As random read can result in thousands of small
transfer requests per second, the overheads of synchronizing the data-chunks
registry with other Oneproviders become considerable. For this reason, we intro-
duced the distinction of public (instantly advertised) and private (stored only
locally) data-chunks. Public data-chunks are created as a result of data modi-
fications, so that other Oneproviders are quickly informed about any changes in
the file content. Private data-chunks are a result of replicating fragments of data
to the local storage. There is no need to broadcast them quickly – it is done only
after they are merged to a larger data-chunk and made public.

To minimize the costs of processing and synchronizing the data-chunks re-
gistry, it is based on a tree structure with fast offset-based access. Consequently,
the registry processing time grows logarithmically with size, and upon any modi-
fication, only the changed parts of the tree are broadcasted to other Onepro-
viders.

In case Oneclient determines that the file is not read in sequential access pat-
tern, it assumes that the file is accessed randomly and the prefetching algorithm
works differently. Rather than requesting consecutive parts of data, it discovers
which fragments (if any) of the logical file are accessed frequently and prefetches
them (see Figure 3). Such behavior is beneficial for two reasons. Firstly, it is
probable that further read operations will appear within such fragment and will
be handled much faster. Secondly, such aggregation merges several data-chunks
into a larger public one, decreasing the overall data-chunks number and trigger-
ing a broadcast of the aggregated data-chunk.

1. Initial state

2. Oneclient 1 reads blocks

randomly

3. Fragment is prefetched and

private data-chunks are merged

21

T
im

e

Public datachunk Private datachunk

Figure 3. During random read, private data-chunks are merged into a bigger one,
prefetched and published.

To summarize, the following mechanisms support random remote read in
Onedata: private data-chunks, data-chunk merging, selective tree-based pro-
cessing and broadcasting of the data-chunk registry, automatic discovery of ran-

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

Harmonizing Sequential and Random Access to Datasets... 9

dom access pattern and frequently accessed fragments of logical files that trigger
prefetching of the whole fragment.

4.3 Influence of Random and Sequential Read on One Another

Due to their nature, sequential and random read require different optimizations.
Some of the mechanisms dedicated for one read type have an opposite effect
on the other. For this reason, Oneclient performs continuous detection of data
access pattern and adjusts its behaviour accordingly.

Besides access pattern recognition, Onedata harmonizes random and sequen-
tial access when many Oneclients operate on logical files sequentially and ran-
domly in parallel. In such case, randomly reading Oneclients trigger merging of
smaller data-chunks into larger ones, which makes certain fragments of files bet-
ter suited to sequential read. On the other hand, sequentially reading Oneclients
trigger prefetching, which does not block random read (due to lower priority) but
increases the chances of hitting already prefetched data during further reading.

5 Evaluation

We have performed benchmarks to verify the read and write performance and
estimate overheads introduced by the Onedata software. For reference, an in-
stallation of XRootD and XCache with standard settings has been tested using
the same underlying storage and benchmarks. The environment consisted of two
identical virtual machines: 12 CPU x 2GHz and 40GB RAM. All test cases were
based on a 64KB block and the test file size was 200GB. The network link
between the machines yielded about 5.2 Gb/s. The presented results have been
obtained from several runs with repeatable measurements.

5.1 Local Data Access

The purpose of testing local data access was mainly to estimate the overheads
of virtualization. Data was read or written to a test file by one process on one
host in three cases:

– directly on the storage system,
– via Oneclient connected to the Oneprovider on the host and with direct

access to the storage,
– via XRootDFS (FUSE-based client for XRootD) connected to the XRootD

server on the host.

Results of the tests are presented in Figures 4 and 5. Thanks to the fact
that Oneclient operates directly on the storage system and communicates with
Oneprovider only to fetch the required metadata, the measurements are close to
the underlying file system performance. XRootDFS uses a network link to the
XRootD server to read/write file data and yields lower results, despite the fact
that both client and server were located on the same machine. As a consequence,
when scalability is concerned, XRootDFS depends on the network capacity, and
Oneclient depends on the underlying storage scalability.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

10 M. Wrzeszcz, L. Opio la et al.

1,960.78

606.06

1,769.91

547.95

1,333.33

373.83

IO
PS

0.00

500.00

1,000.00

1,500.00

2,000.00

sequential random

storage Oneclient XRootDFS

Figure 4. Local read performance.

5,814.65

1,255.62

5,770.53

1,208.781,051.95 1,103.63

IO
PS

0.00

2,000.00

4,000.00

6,000.00

sequential random

storage Oneclient XRootDFS

Figure 5. Local write performance.

5.2 Remote Data Access

The environment for remote data access tests consisted of two machines, hosting
one of the following setups:

– Oneprovider on the first host, Oneprovider + Oneclient (with direct storage
access) on the second host,

– XRootD server on the first host, XCache + XRootDFS on the second host.

The tests included only remote read benchmarking. Remote write was not
tested, because it is not supported by XCache, and in Oneclient it works the
same way as local write and yields the same performance – the data is written
locally and overwritten data-chunks are invalidated in remote providers.

The test file was placed on the first host, and read by the client software on the
second host, via the caching layer (second Oneprovider / XCache). Effectively,
reading the file caused data trasfers between the Oneproviders or XRootD and
XCache. The file was read following three different patterns: sequential, random
and hybrid (starting from a random offset every time, a 20MB fragment was
read). The results are shown in Figure 6.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

Harmonizing Sequential and Random Access to Datasets... 11

Figure 6. Remote read performance – (a) sequential, (b) random, (c) hybrid.

Figure 6a shows that the prefetching mechanism in Oneclient works effect-
ively. The chart adopts a stairstep-like shape, depicting where the prefetching or
reading proceeded ahead of each other – the data is transferred by Oneprovider
to the local storage and then read directly by Oneclient. XCache was configured
with prefetching enabled and served the file in a slower, but stable manner.

Random remote read (Figure 6b) is the most pessimistic case for any filesys-
tem, as no prediction-based optimizations can be done when the access is com-
pletely random. This is where XCache is faster, thanks to its simpler architecture.
The data is fetched from remote XRootD, served to the client and cached locally
at the same time. On the other hand, Oneprovider transfers the data and writes
it to the storage before informing the client that it is ready to be read. Never-
theless, consecutive reading of the same blocks (if required) would be faster via
Oneclient (as shown in local read tests), and the total transfer size is about 15
times less for Oneclient thanks to variable-size data-chunks (64KB vs. 1MB de-
fault block size in XRootD). In this case, prefetching in XCache was disabled – it
is worth mentioning that while Oneclient detects the reading pattern automat-
ically, XCache needs to be restarted when prefetching settings change, making it

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

12 M. Wrzeszcz, L. Opio la et al.

less universally applicable. Moreover, the case of complete random read is quite
rare, usually there is a pattern that causes some file fragments to be read more
frequently than others.

Considering the above-mentioned, we have tested the two solutions in a more
likely scenario when the file is read by bigger fragments (20MB), but randomly
chosen every time (Figure 6c). Here, Oneclient and XRootDFS yielded similar
measurements – a result of a compromise between prefetching and random read
performance.

5.3 Discussion

The presented tests were performed on an elementary environment, where both
systems were running on default settings and without any tuning. The pur-
pose was to assess the impact of using variable-size data-chunks in comparison
to a fixed-size block approach in XRootD, as well as the mechanisms intro-
duced in Onedata in order to harmonize sequential and random data access.
That said, these benchmarks should not be perceived as an absolute compar-
ison of Onedata and XRootD + XCache performance. The results show that
our data-chunk based solution achieves performance comparable to a state-of-
the-art virtual filesystem based on a fixed block size, while offering additional
features such as remote write and ensuring lower overheads in local data access.
These tests should be treated as a proof-of-concept and their satisfying results
are our incentive to further refine and optimize the proposal. We plan to perform
tests in larger scale, on more complex environments, taking into account various
parameters and other state-of-the-art filesystems for reference.

6 Conclusions and Future Work

In this paper we present our approach for harmonized data access in organiza-
tionally distributed environments. The solution has been implemented in a data
access system called Onedata. The purpose is to provide a universal solution for
data access that offers a satisfactory compromise between sequential and random
read/write performance. It is achieved by combining a multi-layer architecture
with Onezones with a novel approach to logical mapping of distributed file con-
tent – variable-size data-chunks, a layer over physical file blocks, objects etc.
The system achieves good performance owing to support for direct storage ac-
cess, which minimizes overheads during local data read and write, and a series of
optimizations and mechanisms for efficient data-chunk management that boost
remote data access: prefetching, prioritization of data transfers, event-based no-
tifications of data-chunk registry changes, reading pattern recognition, detection
of popular file fragments and data-chunks merging.

The universal character of Onedata means that it will not perform better
than solutions dedicated for certain use-cases. Nevertheless, scientific computing
is constantly developing, along with the diversity of datasets and data access
patterns, which promotes integrated solutions that can cover various use-cases

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://dx.doi.org/10.1007/978-3-030-22734-0_22

Harmonizing Sequential and Random Access to Datasets... 13

with sufficient performance. Furthermore, the sizes of datasets are ever-growing,
which gradually makes pre-staging and full data replication obsolete, and en-
courages data access based on smaller file fragments. The proposed data-chunks
are well suited to those needs, and have the great advantage of minimizing net-
work and storage costs. The performance is comparable to the state-of-the-art
XRootD virtual filesystem, coupled with XCache, at the same time the Onedata
system offers more features, such as support for organizationally distributed en-
vironments and remote write, which are desired in scientific collaboration.

The future work includes further tests in larger scale and comparing more
filesystems, following further optimizations: lowering the overheads of data trans-
fer management, better access pattern recognition and increasing adaptability of
the prefetching mechanisms to minimize the idle time during sequential reading.

Acknowledgments

This work has been partially supported by the funds of Polish Ministry of Science
and Higher Education assigned to AGH University of Science and Technology
and 2018-2020’s research funds in the scope of the co-financed international pro-
jects framework (projects no. 3958/H2020/2018/2 and no. 3905/H2020/2018/2).

References

1. Allcock, W., Bester, J., Bresnahan, J., et al.: GridFTP: Protocol Extensions to
FTP for the Grid. Global Grid Forum, GFD-RP 20, 1–21 (2003)

2. Axway AMPLIFY, https://www.axway.com/en/products/amplify
3. Bauerdick, L., Benjamin, D., Bloom, K., Bockelman, B., Bradley, D., Dasu, S.,

Ernst, M., Gardner, R., Hanushevsky, A., Ito, H., et al.: Using Xrootd to Federate
Regional Storage. In: Journal of Physics: Conference Series. vol. 396 (4), p. 042009.
IOP Publishing (2012)

4. Bhardwaj, D., Kumar, R.: A Parallel File Transfer Protocol for Clusters and Grid
Systems. In: e-Science and Grid Computing, 2005. First International Conference
on. pp. 7–254. IEEE (2005)

5. DataNet Federation Consortium, http://datafed.org/
6. Dong, D., Herbert, J.: FSaaS: File System as a Service. In: IEEE 38th Annual

Computer Software and Applications Conference (2009)
7. Fajardo, E., Tadel, A., Tadel, M., Steer, B., Martin, T., Würthwein, F.: A Federated

Xrootd Cache. In: Journal of Physics: Conference Series. vol. 1085, p. 032025. IOP
Publishing (09 2018)

8. Fast Data Transfer, http://monalisa.cern.ch/FDT/
9. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An Overview of the

HDF5 Technology Suite and Its Applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases. pp. 36–47. AD ’11, ACM, New York,
NY, USA (2011). https://doi.org/10.1145/1966895.1966900, http://doi.acm.org/
10.1145/1966895.1966900

10. Gong, Y., Hu, C., Xu, Y., Wang, W.: A Distributed File System with Variable Sized
Objects for Enhanced Random Writes. The Computer Journal 59(10), 1536–1550
(2016)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://www.axway.com/en/products/amplify
http://datafed.org/
http://monalisa.cern.ch/FDT/
https://doi.org/10.1145/1966895.1966900
http://doi.acm.org/10.1145/1966895.1966900
http://doi.acm.org/10.1145/1966895.1966900
https://dx.doi.org/10.1007/978-3-030-22734-0_22

14 M. Wrzeszcz, L. Opio la et al.

11. Hinrich, P., Grosso, P., Monga, I.: Collaborative Research Using eScience Infra-
structure and High Speed Networks. Future Generation Computer Systems 45(C),
161 (2015)

12. IBM Active File Management, https://www.ibm.com/support/knowledgecenter/
en/STXKQY 4.1.1/com.ibm.spectrum.scale.v4r11.adv.doc/bl1adv afm.htm

13. IBM MFT, https://www.ibm.com/customer-engagement/supply-chain/managed-
file-transfer

14. Leong, D.: A new revolution in enterprise storage architecture. IEEE Potentials
28(6), 32–33 (2009)

15. Li, Q., Sun, Z., Wei, Z., Sun, G.: A New Data Access Mechanism for HDFS. In:
Journal of Physics: Conference Series. vol. 898, p. 062018. IOP Publishing (10
2017)

16. Onedata, https://onedata.org
17. Opio la, L., Dutka, L., S lota, R.G., Kitowski, J.: Trust-driven, Decentralized Data

Access Control for Open Network of Autonomous Data Providers. In: 16th Annual
Conference on Privacy, Security and Trust (PST). pp. 1–10. IEEE (Aug 2018).
https://doi.org/10.1109/PST.2018.8514209

18. Röblitz, T.: Towards Implementing Virtual Data Infrastructures – a Case Study
with iRODS. Computer Science (AGH) 13(4), 21–34 (2012), http://dblp.uni-
trier.de/db/journals/aghcs/aghcs13.html#Roblitz12

19. Serv-u, https://www.serv-u.com
20. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File

System. In: Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on. pp. 1–10. Ieee (2010)

21. Signiant, https://www.signiant.com
22. S lota, R., Dutka, L., Wrzeszcz, M., Kryza, B., Nikolow, D., Król, D., Kitowski,

J.: Storage Management Systems for Organizationally Distributed Environments
PLGrid PLUS Case Study. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) Parallel Processing and Applied Mathematics. pp. 724–733.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

23. Szeredi, M.: Fuse: Filesystem in Userspace. http://fuse. sourceforge. net (2010)
24. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C.: Ceph: a Scalable,

High-performance Distributed File System. In: Proceedings of the 7th Symposium
on Operating Systems Design and Implementation. pp. 307–320. USENIX Associ-
ation (2006)

25. Wrzeszcz, M., Kitowski, J., S lota, R.: Towards Trasparent Data Access with Con-
text Awareness. Computer Science 19(2), 201–221 (2018)

26. Wrzeszcz, M., Nikolow, D., Lichoń, T., S lota, R., Dutka, L., S lota, R.G., Kitowski,
J.: Consistency Models for Global Scalable Data Access Services. In: International
Conference on Parallel Processing and Applied Mathematics. pp. 471–480. Springer
(2017)

27. Wrzeszcz, M., Trzepla, K., S lota, R., Zemek, K., Lichoń, T., Opio la, L., Nikolow,
D., Dutka, L., S lota, R., Kitowski, J.: Metadata Organization and Management
for Globalization of Data Access with Onedata. In: International Conference on
Parallel Processing and Applied Mathematics. pp. 312–321. Springer (2015)

28. Zhang, L., Wu, W., DeMar, P., Pouyoul, E.: mdtmFTP and its Evaluation on
ESNET SDN Testbed. Future Generation Computer Systems 79, 199–204 (2018)

29. Zhou, W., Han, J., Zhang, Z., Dai, J.: Dynamic Random Access for Hadoop Dis-
tributed File System. In: Distributed Computing Systems Workshops (ICDCSW),
32nd International Conference on. pp. 17–22. IEEE (2012)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_22

https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.1.1/com.ibm.spectrum.scale.v4r11.adv.doc/bl1adv_afm.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.1.1/com.ibm.spectrum.scale.v4r11.adv.doc/bl1adv_afm.htm
https://www.ibm.com/customer-engagement/supply-chain/managed-file-transfer
https://www.ibm.com/customer-engagement/supply-chain/managed-file-transfer
https://onedata.org
https://doi.org/10.1109/PST.2018.8514209
http://dblp.uni-trier.de/db/journals/aghcs/aghcs13.html#Roblitz12
http://dblp.uni-trier.de/db/journals/aghcs/aghcs13.html#Roblitz12
https://www.serv-u.com
https://www.signiant.com
https://dx.doi.org/10.1007/978-3-030-22734-0_22

