Productivity-aware Design and Implementation
of Distributed Tree-based Search Algorithms

Tiago Carneiro! and Nouredine Melab!-?

L INRIA Lille - Nord Europe, Lille, France
2 Université de Lille, CNRS/CRIStAL, Lille, France

tiago.carneiro-pessoa@inria.fr, nouredine.melab@univ-lille.fr

Abstract. Parallel tree search algorithms offer viable solutions to prob-
lems in different areas, such as operations research, machine learning
and artificial intelligence. This class of algorithms is highly compute-
intensive, irregular and usually relies on context-specific data structures
and hand-made code optimizations. Therefore, C and C++ are the lan-
guages often employed, due to their low-level features and performance.
In this work, we investigate the use of Chapel high-productivity language
for the design and implementation of distributed tree search algorithms
for solving combinatorial problems. The experimental results show that
Chapel is a suitable language for this purpose, both in terms of per-
formance and productivity. Despite the use of high-level features, the
distributed tree search in Chapel is on average 16% slower and reaches
up to 85% of the scalability observed for its MPI+OpenMP counterpart.

Keywords: Tree search algorithms - High productivity - PGAS - Chapel
- MPI4+OpenMP.

1 Introduction

Tree-based search algorithms are strategies that implicitly enumerate a solution
space, dynamically building a tree. This class of algorithms is often used for the
exact resolution of permutation combinatorial optimization problems (COP) and
offers viable solutions to problems in different areas, such as operations research,
artificial intelligence, bioinformatics and machine learning [15,19]. As the deci-
sion version of permutation COPs are usually NP-Complete, the size of problems
that can be solved to optimality is limited, even if large-scale distributed com-
puting is used [9,16]. In this sense, it is expected that exascale computers are
willing to allow a significant decrease in the execution time required to solve
COP instances to optimality. However, such large scale systems are going to be
complex to program, and efforts towards programmability are crucial for better
exploiting this future generation of computers [2,13].

Tree-based search algorithms are compute-intensive and highly irregular,
which demands hand-optimized data structures for efficient search and load
balancing [6,14,17]. Thus, high-productivity languages are not often employed

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

within the scope of tree search, as they historically suffer from severe perfor-
mance penalties [11]. Instead, this kind of application is frequently written in
either C or C++4, due to low-level features present in both languages [5,9].

Chapel is a productivity-aware programming language for high-performance
computing that is competitive to both C-OpenMP and C-MPI+OpenMP in
terms of performance, considering different benchmarks [8]. The objective of
the present research is to investigate Chapel’s features to design and implement
distributed tree search algorithms for solving permutation combinatorial prob-
lems. To the best of our knowledge, the present research is the first one that
investigates the use of a high-productivity language for this purpose.

The experimental results show that Chapel is a suitable language for the
design and implementation of distributed tree search algorithms, both in terms
of performance and productivity. It is possible to conceive a distributed tree
search algorithm starting from its multicore counterpart by adding few mod-
ifications. The distributed algorithm performs load balancing among different
computer nodes and also uses all CPU cores that a computer node has. De-
spite the high level of its features, the distributed tree search in Chapel is on
average 16% slower and reaches up to 85% of the scalability achieved by its
C-MPI+OpenMP counterpart. Finally, the distributed load balancing strategies
provided are effective: the dynamic load balancing version is up to 1.5x faster
than its static counterpart.

The remainder of this paper is structured as follows. Section 2 brings back-
ground information and related works. The distributed tree-based search in
Chapel is detailed in Section 3. Section 4 presents a performance evaluation.
Then, Section 5 brings a discussion in terms of performance, programmability,
and limitations of Chapel for programming distributed tree search algorithms.
Finally, conclusions are outlined in Section 6.

2 Background and Related Works

2.1 The Chapel Programming Language

Chapel is an open-source parallel programming language designed to improve
the programmability for high-performance computing. It incorporates features
from compiled languages such as C, C++, and Fortran, as well as high-level
elements related to Python and Matlab. The parallelism is expressed in terms of
lightweight tasks, which can run on several locales or a single one. In this work,
the term locale refers to a symmetric multiprocessing computer in a parallel
system [10].

In Chapel, both global view of control flow and global view of data structures
are present [8]. Concerning the first one, the program is started with a single
task and parallelism is added through data or task parallel features. Moreover,
a task can refer to any variable lexically visible, whether this variable is placed
in the same locale on which task is running, or in the memory of another one.
Concerning the second one, indexes of data structures are globally expressed,

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

even in case the implementation of such data structures distributes them across
several locales. Thus, Chapel is a language that realizes the Partitioned Global
Address Space (PGAS) programming model [1].

Finally, indexes of data structures are mapped to different locales using distri-
butions. Contrasting to other PGAS-based languages, such as UPC and Fortran,
Chapel also supports user-defined distributions [7].

2.2 Tree-based Search Algorithms

Tree-based search algorithms are strategies that implicitly enumerate a solution
space, dynamically building a tree [15]. The internal nodes of the tree are incom-
plete solutions, whereas the leaves are solutions. Algorithms that belong to this
class start with an initial node, which represents the root of the tree, i.e., the
initial state of the problem to be solved. Nodes are branched during the search
process, which generates children nodes more restricted than their parent node.
Generated nodes are evaluated, and then, the valid and feasible ones are stored
in a data structure called Active Set.

At each iteration, a node is removed from the active set according to the
employed search strategy [19]. The search generates and evaluates nodes until
the data structure is empty or another termination criterion is reached. If an
undesirable state is reached, the algorithm discards this node and then chooses
an unexplored (frontier) node in the active set. This action prunes some regions
of the solution space, keeping the algorithm from unnecessary computation. The
degree of parallelism of tree-based search algorithms is potentially very high, as
the solution space can be partitioned into a large number of disjoint portions,
which can be explored in parallel.

As these algorithms are compute-intensive, diverse strategies have been used
for improving performance, such as instruction-level parallelism, architecture-
specific code optimizations and problem-specific data structures [6, 12,14, 17].
Thus, parallel tree-based search algorithms are frequently written in C/CH+,
due to their low-level features and supported parallel computing libraries [5].
In the context of distributed algorithms, the same performance-aware strate-
gies are combined with distributed programming libraries for implementing load
balancing and explicit communication between processing nodes [9,16,18]. As a
consequence, programming distributed tree search algorithms can be challenging
and time-consuming.

3 Distributed Tree-based Search Algorithms in Chapel

A major objective of Chapel concerning productivity is allowing distributed pro-
gramming using concepts close to the ones of shared-memory programming [8]. In
this section, a multicore single-locale tree-search algorithm is initially proposed.
Then, it is extended using Chapel’s productivity-aware features for distributed
programming.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

3.1 Algorithm Overview

This work focuses on permutation combinatorial problems, for which an N-sized
permutation represents a valid and complete solution. Permutation combinato-
rial problems are used to model diverse real-world situations, and their decision
versions are often NP-Complete [16,19].

This section presents two backtracking algorithms for enumerating all com-
plete and feasible solutions of the N-Queens problem. Backtracking is a fun-
damental problem-solving paradigm that consists in dynamically enumerating
a solution space in a depth-first fashion. Due to its low memory requirements
and its ability to quickly find new solutions, depth-first search (DFS) is often
preferred [19].

The N-Queens problem consists in placing N non-attacking queens on a
N x N chessboard, and it is often used as a benchmark for novel tree-based search
algorithms [3,12]. The N-Queens is easily modeled as a permutation problem:
position r of a permutation of size N designates the column in which a queen
is placed in row r. Furthermore, the concepts herein presented are similar to
any permutation combinatorial problem and can be adapted for solving other
problems of this class with straightforward modifications [6,14].

3.2 The Single-Locale Multicore Implementation

Algorithm 1 presents a pseudocode for the single-locale backtracking in Chapel.
The algorithm starts receiving the problem to be solved (line 1) and the cutoff
depth (line 2). Then, it is required to generate an initial load for the parallel
search. For this purpose, task 0 performs backtracking from depth 1 (initial
problem configuration) until the cutoff depth cutof f, storing all feasible, valid,
and incomplete solutions at depth cutoff in the active set A (line 4). After
generating the initial load, the parallel search strategy begins through a forall
statement (line 5).

Task 0
Centralized Active Set

e8P

AR

Task 1 Task 2 Task n-1
Local Active Set Local Active Set Local Active Set

@@@@ @ee8)
L%J » LQ{;J

Fig. 1. Task 0 is responsible for managing the centralized active set A and performing
load balancing. The searches are independent, and metrics are reduced using the Reduce
Intents of Chapel (Own representation adapted from [9]).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

@ Task 0
I\ J

BRPBR

Forall a in Active Set

Aset? Aset! Aset?
BB B DS
Locale O Locale 1 Locale 2

Fig. 2. Task 0 is responsible for distributing the active set across several locales. The
distributed active set Aq consists of several sets Ay, € {0,...,l — 1}, where [is the
number of locales on which the application is going to run.

As one can see in Fig. 1, nodes in the centralized active set A are assigned to
tasks in chunks. Each task has its active set and executes a backtracking search
strategy. In turn, nodes are used to initialize the backtracking, which enumerates
the solution space rooted by a node. The load balancing is done through the
iterator (DynamicIters) used to assign indexes of A to tasks, like in OpenMP.
Metrics are reduced through Reduce Intents. In Chapel, it is possible to use the
Tuple data type (equivalent to C-structs) and reduce all metrics at once (line 6).
Differently from OpenMP, it is not required to define a tuple reduction. Finally,
the parallel search finishes when the active set A is empty.

Algorithm 1: The multicore tree-based search algorithm.

I + get_problem()

cutof f <+ get_cutof f-depth()

A0

A <+ generate_initial_active_set(cutof f, I)

forall node in A with(+ reduce metrics) do
| metrics+ = tree_search(node, cutof f, I)

end

N o s W e

3.3 The Multi-locale Distributed Implementation

One can see in Algorithm 2 a pseudocode for the distributed tree-based search
algorithm in Chapel. Thanks to Chapel’s global view of control flow, the search
also starts serially, with task 0 generating the initial load to populate the active
set A (line 4). To make it possible to distribute A, it is required to define a
domain (line 5) and define how this domain it is going to be distributed across
different locales (line 6) [7]. In this work, only standard distributions are used 3.
Finally, the distributed active set A4 of type Node is defined over the domain D
(line 8).

After the initial load generation, the nodes of A are distributed across several
locales by using a parallel forall (line 9), which generates the distributed active

3 https://chapel-lang.org/docs/modules/layoutdist.html

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

set Ag. Thanks to Chapel’s global view of A4, the indexes of both active sets are
directly accessed in line 9. The compiler is responsible for the communication
code. Moreover, as shown in Fig. 2, A4 is an abstraction. The distributed active
set A, consists of several sets Af17i € {0,...,1 — 1}, where [is the number of
locales on which the application is going to run.

The parallel search takes place in line 12. As one can see in Algorithm 2, its
forall is similar to the one of Algorithm 1. However, distributed iterators are
used instead (DistributedIters). Additionally, the distributed search exploits
two levels of parallelism, and the compiler is also responsible for generating the
code that exploits all CPU cores a locale has. Finally, the metrics are reduced
in the same way as in the single-locale algorithm.

Algorithm 2: The multilocale tree-based search algorithm.

I + get_problem()
cutof f < get_cpu_cutof f_depth()
A+ 0
A <+ generate_initial_active_set(cutof f, I)
Range + 0..(|A| — 1)
D + Range mapped according to a standard distribution
Ag + 0
Ag « [D] : Node
forall s in Range do
‘ Agls] + Als]
end

® N oo AN

T
H O ©

o
N

forall node in Aq following the iterator with(+ reduce metrics) do
| metrics+ = tree_search(node, cutof f, I)
end

B
oW

3.4 Search Procedure and Data Structures

The kernel of both parallel algorithms previously presented is based on a serial
and hand optimized backtracking for solving permutation combinatorial prob-
lems, originally written in C [6]. The serial backtracking was then adapted to
Chapel, obeying the handmade optimizations, instruction-level parallelism, data
structures, and C-types. The data structure Node is similar to any permuta-
tion combinatorial problem. It contains an unsigned 8-bit integer vector of size
cutof f, identified by board, and an unsigned integer variable. The vector board
stores the feasible and valid incomplete solution. In turn, the integer variable,
identified by bitset, keeps track of board lines by setting its bit n to 1 each time
a queen is placed in the n-th line.

The search performed by the kernel is a non-recursive backtracking that
does not use dynamic data structures, such as stacks. Initially depth receives the
value of cutof f. Next, board and bitset are initialized with Node [i] .board and
Node[i] .bitset, respectively. The semantics of a stack is obtained by trying
to increment the value of the vector board at position depth. If this increment
results in a feasible and valid incomplete solution, the depth variable is then
incremented, and the search proceeds to the next depth. After trying all config-
urations for a given depth, the search backtracks to the previous one.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

4 Performance Evaluation of a Multi-locale Backtracking

The objective of this section is to show that it is possible to use a high-productivity
language for programming distributed tree-based search algorithms and achieve
metrics similar to MPI4X.

4.1 Protocol

The following programs were conceived for enumerating all valid and complete
configurations of the N-Queens problem.

— Chapel: implementation of the multi-locale backtracking search algorithm
described in Algorithm 2, written in Chapel.

— MPI+X: single program - multiple data (SPMD) counterpart written in C
of the program above introduced. This program uses MPI for communication
and X means the use of OpenMP for exploiting all cores/threads a locale
has.

Both implementations use the data structures and search procedure detailed
in Section 3.4. In this section, it is investigated how the application scales ac-
cording to the number of locales. Furthermore, the influence of the PGAS data
structure distribution on the application execution time is also studied. Tree
search algorithms for solving combinatorial problems are usually highly irregular
applications. Therefore, the influence of the distributed load balancing strate-
gies on the overall performance of the application is also investigated. Finally,
all metrics collected for the implementation in Chapel are compared to the ones
achieved by its MPI+X counterpart.

4.2 Parameters Settings

Problems of size (N) ranging from 15 to 20 are considered. The experiments take
from few seconds to several hours of parallel processing. The number of locales
ranges from 1 to 32, and the application is the same for either one or more than
one computer node(s). The number of locales is passed to the application using
Chapel’s built-in command line parameter -nl 1 (-np 1 for MPI), where [is
the number of locales on which the application is executed.

All computer nodes are symmetric and operate under Debian 4.9.130 — 2,
64 bits. They are equipped with two Intel Xeon X5670 @ 2.93 GHz (a total of
12 cores/24 threads), and 96 GB RAM. Thus, up to 384 cores/768 threads are
used in the experiments. All locales are interconnected through an Infiniband
network: Mellanox Technologies MT26428 (ConnectX VPI PCle 2.0 5GT/s - IB
QDR / 10GigE).

Concerning the MPI+X implementation, OpenRTE 2.0.2 along with gcc 6.3.0
and OpenMP 4.5 were used for compilation and execution. The Chapel imple-
mentation was programmed in its current version (1.18), and the default task
layer (qthreads) is the one employed. Chapel’s multi-locale code runs on top of

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

Table 1. Summary of the environment configuration for multi-locale execution and
compilation.

Variable Value
CHPL_RT_NUM_THREADS_PER_LOCALE 24
CHPL_TARGET_ARCH native
CHPL_COMM gasnet
CHPL_COMM_SUBSTRATE ibv
GASNET_IBV_SPAWNER mpi

GASNet, and several environment variables should be set with the character-
istics of the system the multi-locale code is supposed to run. One can see in
Table 1 a summarization of the runtime configurations for multi-locale execu-
tion. The Infiniband GASNet implementation is the one used for communication
(CHPL_COMM_SUBSTRATE) along with MPI, which is responsible for getting the ex-
ecutables running on different locales (GASNET_IBV_SPAWNER).

Chapel provides several standard distributions to map data structures onto
locales. Different tests were also carried out to identify the best option in the
context of this work. The one chosen was the one-dimension BlockDist, which
horizontally maps elements across locales. For instance, in case | = 3 and |A4| =
8, elements 0, ..., 2 are on locale [y, 3,..,5 on locale I, and 6,7 on locale [5. In
the scope of the present research, choosing a different standard distribution does
not lead to performance improvements.

Experiments were carried out to choose a suitable cutoff depth. This parame-
ter directly influences the size of A4, and therefore the time spent in distributing
the active set across locales. As observed in Fig. 3, the fastest data structure
distribution is observed for cutof f = 3. However, such a cutoff value limits par-
allelism, resulting in a slow distributed search. In contrast, when the cutoff is
set to 6, the distribution of Ag becomes 10x slower than the search procedure
itself. This behavior happens due to the combinatorial nature of N-Queens: a
cutoff depth twice deeper results in an active set 725x bigger. When choosing
cutof f = b5, the search takes the same time as for cutof f = 4. Despite that,
the distribution of A4 is on average 9x slower for cutof f = 5. Thus, the cutoff
depth chosen is 4. Preliminary experiments also show that cutoff = 4 is the
best value for the MPI+X implementation.

Chapel also provides two different distributed load balancing iterators: guided
and dynamic, which are also similar to OpenMP’s schedules of the same name.
Experiments were carried out to identify the best chunk for both guided and
dynamic multi-locale load balancing strategies. Both strategies present the best
performance using the default chunk size.

4.3 Results

First of all, concerning the distributed load balancing strategies provided by
Chapel, using the dynamic iterator is from 1.17x to 1.51x times faster than using
no load balancing (static version). Moreover, the guided iterator does not seem a
suitable load balancing in the scope of this work: it shows benefits compared to

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

Search 3 Data Structure Distribution &3

—_
[%2] T T T T
$100 1
Q e
u et
K k
80 Ssosarssosasesy i
[} R
RS
IS R
= o R q
[B8
1033021
C [R50
. tatesoreteted| 4
o B
kel (s
=] (s
3 105258620221
O F esssssssssen 4
]
] — 3 R
g 0

3(.002) 4(.027) 5(.21) 6(1.
Cutoff Depth(Aq Size)

[
D
w

Fig. 3. Influence of the cutoff choice on the execution time. Values are for the N-
Queens of size N = 17 and 32 locales (384 cores). On the X axis: the cutoff depth and
the distributed active set size in parentheses (in 10° nodes).

Search =2 Data Structure Initialization B2

100

80 |

X
)

60

otetelets

X%
3%
tetetetets

-
55

AR

s
totetetotetstotets

3

XX

20

%
s

25
o
XX

S

..
2
%
XK

8

SRS

Normalized time (in %)

s

15 16

17 18 19 20
Problem Size

Fig. 4. Proportion of the initialization and distribution of Ay compared to the whole
execution time. Results are for the N-Queens of sizes (V) ranging from 15 to 20 and
executed on 32 locales (384 cores).

the static version only for sizes ranging from 18 to 20. For these problem sizes,
using the guided iterator makes the search up to 1.21x faster than its static
counterpart. In turn, using the dynamic distributed iterator results in a search
from 1.21x to 1.25x faster than using the guided one.

The benefits of using load balancing are not observed for the smallest solu-
tion space, i.e., for the problem of size N = 15. In such a situation, the static
search performs better because there is no communication among locales dur-
ing the search. As shown in Fig. 4, the overhead of data structure initialization
and distribution becomes less detrimental as the solution space grows, and the
benefits of using distributed load balancing can be observed.

It is shown in Fig. 5 how the distributed search scales according to the number
of locales. The worst scalability is observed for the smallest size (N = 15). In
such a situation, the initialization and distribution of A; amount for almost the
whole execution time (see Fig. 4). For problem sizes ranging from 17 to 20, the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOIJ 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

dynamic version scales up to 20.5x (N = 19), whereas guided and static scale up
to 16.8x and 16.9x, respectively (also for N = 19). The MPI+X version scales
up to 25.4x (N = 18). Therefore, the distributed search in Chapel achieves up
to 80% of the scalability observed for its MPI+X counterpart.

As shown in Fig. 4, running the Chapel program on multiple locales comes
with the overhead of distributing A4 across several nodes. However, the scalabil-
ity results previously discussed take into account the search running on 1 locale
(-n1 1). In such a situation, the active set is not distributed across different
nodes, and the search works similarly to a multicore and single locale one. One
can see in Fig. 6 the best speedup reached for 4 to 32 locales compared to the
search running on 2. Results closer to the linear speedup are observed: for 32
locales (16 x more nodes) all three variations of the search written in Chapel and
the MPI implementation reach a speedup of almost 13x, which corresponds to
81% of the linear speedup.

It is worth to mention that the time spent on distributing A, does not grow
linearly according to the number of locales. As one can see in Fig. 7, the time
required to distribute Ay grows up to size N = 16, then it becomes almost
constant. This behavior comes from the fact that the size of Ay is the same
for one or more locale(s). Thus, as the number of locales grows, the number of
messages sent grows as well, but their size decreases. Moreover, the A, distribu-
tion is performed in parallel (Algorithm 2, line 9), and the Infiniband GASNet
implementation supports one-sided communication.

In terms of wall-clock time, Chapel is equivalent to MPI4+OpenMP when
running on one locale. For the smaller solution space (i.e., N = 15), Chapel
stands out and it is up to 256% faster than MPI+X. In such a situation, A4 is
not distributed, and the program behaves like a single-locale and multicore one.
Moreover, MPI implements the SPMD programming model. This way, MPI is
started, and its functions are called even for one locale. Additionally, it is worth
to mention that Chapel is a compiled language and it is possible to program in

Linear — Guided19 —A- MPI18 -
Dynamicl9 = Static19 ¢

T T T T

30 1
25+
Q

320+ g
el

D15t
Y10 1

12 4 8 16 32
Number of Locales

Fig. 5. The highest speedup achieved by Chapel and MPI+X implementations when
executed on 2 (24) to 32 locales (384 cores).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

Linear — Guided19 - MPI18 -©-
Dynamicl9 -A- Static19 >

4 8 16 32

Number of Locales
Fig. 6. The highest speedup achieved by Chapel and MPI+X implementations when
executed on 4 (48) to 32 locales (384 cores) and compared to the execution on 2 (24).

queensl5 -&- queensl9 &

6 T T T
2s|
E
T 4+ -,
4 E—
N
© 3+
E
221

1 . .

2 4 8 16 32

Number of Locales

Fig. 7. Normalized time required to initialize and distribute Aq. Results are for 2 (24)
to 32 locales (384 cores).

Chapel both search strategy and data structures equivalent to the ones present in
its counterpart written in C. In contrast, for multiple locales and bigger problem
sizes, the Chapel distributed search is on average 16% slower than its MPI+X
counterpart.

5 Discussion

Chapel’s high-productivity features make it straightforward to design and imple-
ment a distributed backtracking based on a multicore and single-locale version.
There is no need for dealing with communication, metrics reduction, or dis-
tributed load balancing. Moreover, differently from the classic MPI+X, there is
no need for using a different parallel library for each level of parallelism.
Thanks to Chapel’s global view of the control flow and data structures, the
main difference between the multi- and single-locale versions lies mainly in the
use of the PGAS data structures and distributed iterators for load balancing.
As a consequence, the multi-locale version is only 8 lines longer than its single-
locale counterpart, which results in a code 33% bigger. In contrast, it is required

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

to add 24 lines to the backtracking written in C-OpenMP to use MPI, which
almost doubles the program size.

Chapel also shows to be competitive to MPI4+OpenMP regarding perfor-
mance. It is possible to program the search and data structures in a way equiv-
alent to C, resulting in efficient single-core use. Additionally, the compiler also
generates code for exploiting all cores a locale has, and the load balancing pro-
vided by Chapel is effective. One would argue that it could be possible to program
an MPI+X version faster than the one used, and the results of the last section
could have been more advantageous for MPI+X. However, that is also the case
for Chapel.

The multicore portion of the MPI+X implementation was programmed by
hand, differently from its counterpart written in Chapel. Therefore, a first im-
provement in the Chapel implementation is programming the code for using all
CPU cores a locale has. Additionally, It is worth to mention that Chapel also
supports MPI and ZeroMQ libraries for programming inter-locale communica-
tion and the distributed load balancing. However, it does not seem necessary,
as the use of high-productivity features resulted in performance competitive to
MPI+OpenMP.

Concerning limitations, it took much more time to configure the GASNet
library for running on a cluster than programming the multi-locale code itself.
Moreover, Chapel’s documentation is restricted to a few system configurations,
e.g., Infiniband network with Slurm for job spawning. In our case, GASNet could
not run on an MXM network with a non-default partition key, and a modification
in the GASNet code was necessary. This problem would keep a not so enthusiastic
user from Chapel. The bright side is that it was not a Chapel-only effort, as other
PGAS libraries, such as UPC, Fortran, SHMEM use GASNet as communication
layer.

Finally, graphics processing units are crucial for solving big and challeng-
ing combinatorial optimization problems [5,14]. The adoption of Chapel by the
parallel optimization community, besides performance and productivity, also de-
pends on the support of GPUs. According to Chapel’s official documentation, the
Xeon Phi accelerator is supported. However, there is no information concerning
the support of GPUs.

5.1 Future Works

Permutation combinatorial optimization problems are commonly solved to op-
timality by using Branch-and-Bound search algorithms (B&B) [9]. Therefore, a
first future research direction is to extend the proposed multi-locale backtrack-
ing into a distributed B&B. This way, it will be possible to solve challenging
optimization problems, such as the Quadratic Assignment and the Flow-shop
Scheduling Problem. Additionally, this future work will aim at larger scale clus-
ters. Thus, it will be possible to investigate the limits of the productivity-aware
features of Chapel concerning performance and scalability. A final future work
is to compare Chapel to other PGAS-based libraries and high-productivity lan-
guages, such as SHMEM, UPC, and Julia.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

6 Conclusion

This work investigated the use of Chapel high-productivity language for the
design and implementation of distributed tree search algorithms. A distributed
backtracking for enumerating all valid solutions of the N-Queens problem was
conceived. The concepts herein presented can be adapted for solving other per-
mutation combinatorial problems by performing straightforward modifications.

Programmers familiarized with OpenMP can easily conceive a distributed
tree-based search in Chapel. Despite the high level of its features, the dis-
tributed search written in Chapel scales well and the distributed load balancing
schemes are effective. Experimental results show that Chapel is competitive to
C-MPI+OpenMP in terms of performance and scalability. The most significant
drawbacks found do not concern performance nor scalability. Instead, they are
related to the configuration of the communication layer, which can be more time
consuming than programming the distributed application itself.

It is worth to point out that the parallel optimization community already
possesses legacy code mainly written in C, C++. Therefore, programmers may
be resistant to learn another language and translate programs to Chapel. The
capacity of Chapel to include C code can be a partial solution for this situation.
One can reuse C code for node bounding and search procedure, whereas Chapel
distributed programming features are employed for load balancing and commu-
nication. Finally, the lack of support for accelerators may also limit the adoption
of Chapel by the parallel optimization community.

Acknowledgments

The experiments presented in this paper were carried out on the Grid’5000
testbed [4], hosted by INRIA and including several other organizations *. We
thank Bradford Chamberlain, Elliot Ronaghan (from Cray inc.) and Paul Har-
grove (Berkeley lab.) for helping us to run GASNet on GRID5000. Moreover,
we also thank Paul Hargrove for the modifications in GASNet InfiniBand imple-
mentation necessary to run GASNet on GRID’5000 MXM InfiniBand networks.

References

1. Almasi, G.: Pgas (partitioned global address space) languages. In: Encyclopedia of
Parallel Computing, pp. 1539-1545. Springer (2011)

2. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., et al.: The landscape
of parallel computing research: A view from berkeley. Tech. rep., Technical Report
UCB/EECS-2006-183, EECS Department, University of (2006)

3. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens.
Discrete Mathematics 309(1), 1-31 (2009)

4 http://www.grid5000.fr

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Bolze, R., Cappello, F., Caron, E., Dayde, M., Desprez, F., Jeannot, E., Jégou, Y.,
Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quétier, B.,
Richard, O., Talbi, E.G., Touche, I.: Grid’5000: A Large Scale And Highly Recon-
figurable Experimental Grid Testbed. International Journal of High Performance
Computing Applications 20(4), 481-494 (2006)

Carneiro, T., de Carvalho Junior, F.H., Arruda, N.G.P.B., Pinheiro, A.B.: Um
levantamento na literatura sobre a resolugao de problemas de otimizagao com-
binatéria através do uso de aceleradores gréaficos. In: Proceedings of the XXXV
Ibero-Latin American Congress on Computational Methods in Engineering (CIL-
AMCE), Fortaleza-CE, Brasil (2014)

Carneiro Pessoa, T., Gmys, J., de Carvalho Junior, F.H., Melab, N., Tuyt-
tens, D.: GPU-accelerated backtracking using CUDA dynamic parallelism. Con-
currency and Computation: Practice and Experience pp. e4374-n/a (2017).
https://doi.org/10.1002/cpe.4374

Chamberlain, B.L., Choi, S.E., Deitz, S.J., Navarro, A.: User-defined parallel zip-
pered iterators in chapel. In: Proceedings of Fifth Conference on Partitioned Global
Address Space Programming Models. pp. 1-11 (2011)

Chamberlain, B.L., Ronaghan, E., Albrecht, B., Duncan, L., Ferguson, M., Harsh-
barger, B., Iten, D., Keaton, D., Litvinov, V., Sahabu, P., et al.: Chapel comes of
age: Making scalable programming productive. In: Cray User Group (2018)
Crainic, T., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms. Par-
allel combinatorial optimization pp. 1-28 (2006)

Cray Inc.: Chapel language specification v.986. Cray Inc. (2018)

Da Costa, G., Fahringer, T., Gallego, J.A.R., Grasso, 1., Hristov, A., Karatza, H.D.,
Lastovetsky, A., Marozzo, F., Petcu, D., Stavrinides, G.L., et al.: Exascale machines
require new programming paradigms and runtimes. Supercomputing frontiers and
innovations 2(2), 6-27 (2015)

Feinbube, F., Rabe, B., von Lowis, M., Polze, A.: Nqueens on cuda: Optimization
issues. In: Parallel and Distributed Computing (ISPDC), 2010 Ninth International
Symposium on. pp. 63-70. IEEE (2010)

Fiore, S., Bakhouya, M., Smari, W.W.: On the road to exascale: Advances in high
performance computing and simulationsan overview and editorial. Future Genera-
tion Computer Systems 82, 450 — 458 (2018)

Gmys, J., Mezmaz, M., Melab, N., Tuyttens, D.: Ivmn-based parallel branch-and-
bound using hierarchical work stealing on multi-gpu systems. Concurrency and
Computation: Practice and Experience 29(9), e4019 (2017)

Grama, A.Y., Kumar, V.: A survey of parallel search algorithms for discrete opti-
mization problems. ORSA Journal on Computing 7 (1993)

Mezmaz, M., Melab, N., Talbi, E.G.: A grid-enabled branch and bound algorithm
for solving challenging combinatorial optimization problems. In: IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. pp. 1-9.
IEEE (2007)

San Segundo, P., Rossi, C., Rodriguez-Losada, D.: Recent developments in bit-
parallel algorithms. INTECH Open Access Publisher (2008)

Tschoke, S., Lubling, R., Monien, B.: Solving the traveling salesman problem with
a distributed branch-and-bound algorithm on a 1024 processor network. In: 9th In-
ternational Parallel Processing Symposium, 1995. Proceedings. pp. 182-189. IEEE
(1995)

Zhang, W.: Branch-and-bound search algorithms and their computational com-
plexity. Tech. rep., DTIC Document (1996)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_19 |

https://dx.doi.org/10.1007/978-3-030-22734-0_19

