
An On-line Performance Introspection
Framework for Task-based Runtime Systems?

Xavier Aguilar1, Herbert Jordan2, Thomas Heller3, Alexander Hirsch2,
Thomas Fahringer2, and Erwin Laure1

1 KTH Royal Institute of Technology,
Department of Computational Science and Technology

and Swedish e-Science Research Center (SeRC),
Lindstedvägen 5, 10044 Stockholm, Sweden

2 University of Innsbruck,
Department of Computer Science,

Technikerstrasse 21a, 6020 Innsbruck, Austria
3 Friedrich-Alexander-University Erlangen-Nuremberg,

Department of Computer Science,
Martenstr. 3 91058 Erlangen

Abstract. The expected high levels of parallelism together with the
heterogeneity and complexity of new computing systems pose many chal-
lenges to current software. New programming approaches and runtime
systems that can simplify the development of parallel applications are
needed. Task-based runtime systems have emerged as a good solution to
cope with high levels of parallelism, while providing software portabil-
ity, and easing program development. However, these runtime systems
require real-time information on the state of the system to properly or-
chestrate program execution and optimise resource utilisation. In this pa-
per, we present a lightweight monitoring infrastructure developed within
the AllScale Runtime System, a task-based runtime system for extreme
scale. This monitoring component provides real-time introspection ca-
pabilities that help the runtime scheduler in its decision-making process
and adaptation, while introducing minimum overhead. In addition, the
monitoring component provides several post-mortem reports as well as
real-time data visualisation that can be of great help in the task of per-
formance debugging.

Keywords: Runtime System · Performance Monitoring · HPX · Perfor-
mance introspection · Real-time Visualisation · AllScale.

1 Introduction

The increase in size and complexity of upcoming High Performance Comput-
ing (HPC) systems pose many challenges to current software. Upcoming, and
already existing, HPC infrastructures contain heterogeneous hardware with mul-
tiple levels of parallelism, deep memory hierarchies, complex network topologies

? Supported by the FETHPC AllScale project under Horizon 2020.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


2 X.Aguilar et al.

and power constrains that impose enormous programming and optimisation ef-
forts. Thus, new high-productivity, scalable, portable, and resilient programming
approaches are needed.

Task-based runtime systems have emerged as a good solution for achieving
high parallelism, performance, improved programmability, and resilience. Proof
of that is the amount of new task-based runtimes that have appeared in the HPC
landscape in recent years, e.g. HPX [11], Legion [3], StarPU [2], or OmpSs [5]
among others.

The AllScale project tries to settle in the HPC runtime landscape as a new
solution that provides a unified programming interface for parallel environments.
One key aspect differentiating AllScale against other existing runtimes is that
it is heavily based on recursive parallelism to diminish the amount of global
synchronisation present in classical parallel approaches. Reducing thereby one
of the main factors that hinders scalability.

In this paper, we give an overview of the AllScale toolchain as well as an
extensive characterisation of one of its key components, the AllScale Monitoring
Component. This monitoring framework provides introspection capabilities such
as real-time performance data visualisation and real-time performance feedback
to the AllScale Runtime Scheduler. In addition, it can also provide several per-
formance reports suited for post-mortem performance debugging. Furthermore,
even though the monitoring component presented in this paper has been espe-
cially designed for the AllScale Runtime, it can easily be decoupled and adapted
to any other task-based runtime system.

The paper is structured as follows: Section 2 provides an overview of the
AllScale project; the AllScale Monitoring Component is described in depth in
Section 3; Section 4 provides a detailed evaluation of the monitoring component;
related work is described in Section 5, and finally, conclusions and future work
are presented in Section 6.

2 AllScale Overview

2.1 Vision

The AllScale project pursues the development of an innovative programming
model supported by a complete toolchain: an API, a compiler, and a runtime
system. AllScale is strongly based on recursive programming in order to over-
come inherent limitations that nested flat parallelism presents, for example, the
use of global operations and synchronisation points that limit the scalability of
parallel codes. Moreover, AllScale aims to provide a unified programming model
to express parallelism at a high level of abstraction using C++ templates. In
that way, problems imposed by the use of multiple programming models can be
mitigated, for example, the need of expertise in complementary models such as
MPI, OpenMP, or CUDA. Furthermore, by using a high level of abstraction to
express parallism, problems such as the need to design the algorithm based on
the underlying hardware can be mitigated too.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


On-line Performance Introspection for Task-based Runtimes 3

2.2 Architecture

The AllScale toolchain is divided into three major components: an API, a com-
piler, and a runtime system. The AllScale API, based on the prec operator [10],
provides a set of C++ parallel operations such as stencils, reductions, and paral-
lel loop operations, as well as a set of data structures (arrays, sets, maps, etc.) to
express parallelism in an unified manner. AllScale applications can be compiled
with standard C++ tools, however, in order to take advantage of all the bene-
fits of the AllScale environment, the code has to be compiled with the AllScale
Compiler. The compiler, based on the Insieme source-to-source compiler [8],
interprets the API and generates the necessary code to execute the applica-
tion in the most optimal manner by the AllScale Runtime System. Finally, the
AllScale Runtime System [9] manages the execution of the application follow-
ing customisable objectives that can be defined by the user. This multi-objective
optimisation combines execution time, energy consumption, and resource utilisa-
tion, and thus, improves classical approaches where self-tuning during execution
is mainly based in execution time. In addition, the AllScale Runtime provides
transparent dynamic load balancing and data migration across nodes, and it is
the basis for the resilience, scheduler and performance monitoring components.
The AllScale Runtime System builds on top of the High Performance ParalleX
(HPX) runtime [11].

3 AllScale Monitor Component

The AllScale environment includes a monitoring framework with real-time in-
trospection capabilities. Its main purpose is to support the AllScale Scheduler in
the management of resources and scheduling of tasks. To this end, the AllScale
Monitor Component has been designed to introduce minimum overhead while
being able to continuously monitor the system and provide in real time the per-
formance information collected. In addition, the AllScale Monitoring Component
can also generate several post-mortem reports to help developers in the process
of performance debugging.

3.1 Performance Data

The AllScale Monitor Component collects several performance metrics on the
execution of tasks (WorkItems [8, 9] in AllScale jargon). These WorkItems, which
can be hierarchically nested, are entities that describe the work that has to
be performed by the runtime system. The AllScale Monitor Component takes
control at the beginning and end of a WorkItem, and collects performance data
such as execution time or WorkItem dependencies (what WorkItems have been
spawned from within the current one). From these raw metrics, the monitoring
component is also able to compute multiple derived metrics: execution time
of a WorkItem and all its children; percentage of exclusive and inclusive time
per WorkItem over total execution time; average execution time of all children

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


4 X.Aguilar et al.

of a WorkItem; or standard deviation of the execution time for all children of
a WorkItem, among others. These derived metrics are computed on demand to
minimise the amount of overhead introduced into the application when collecting
the data. In other words, they are computed only if the scheduler requests them
or if a performance report that includes them has to be generated.

The metrics described above are collected in an event action basis, that is, the
collection is triggered by an event such as WorkItem start or stop for example.
However, the AllScale Monitor Component also samples many other metrics on
a per-node basis4, for instance, WorkItem throughput, memory consumption,
runtime idle rate, or CPU load, among others. The runtime idle rate is defined
as the percentage of time spent by the runtime in scheduling actions against the
time spent executing actual work. In addition, the AllScale Monitor Component
is able to sample HPX counters (HPX internal metrics) and PAPI counters.

Power is becoming an important constraint in HPC, and therefore, the AllScale
Monitoring Component can also provide power and energy consumed on x86
platforms, Power8, and Cray systems. If power and energy measurements are
not available, the monitoring component is able to provide simple estimates.

3.2 Data Collection

The AllScale Monitor Component has been designed to introduce as minimum
overhead as possible. When an application starts, the AllScale Runtime system
creates a pool of worker threads that execute tasks as they are generated. These
WorkItems, which are then monitored by the AllScale Monitor, are very small
and thousands of them are executed in every run. Therefore, solutions where
each thread collects and writes its data to shared data structures do not work
due to heavy thread contention.

For this reason, the AllScale Monitor Component has been implemented fol-
lowing a multiple producer-consumer model with a double buffering scheme. All
runtime worker threads measure and keep their raw performance data locally.
Once their local buffers are full, they transfer the data to specialised monitor-
ing threads that process and store such data into per-process global structures.
The data have to be stored at a process level in order to facilitate the perfor-
mance introspection later on. Only the specialised monitoring threads write into
global data structures, and thereby, the contention is very low. Furthermore,
producers and consumers utilise a double buffering scheme, that is, while pro-
ducers create data in their buffers, consumers process data from an exclusive
buffer that nobody else accesses. When a consumer finishes processing its data,
it switches buffers with the next producer waiting to send data, and the process
starts again. Even though our system has the possibility to have more than one
consumer thread, we have seen in our experiments than one specialised thread
per node is enough to process the amount of data generated.

The monitoring infrastructure also has another specialised thread responsible
for collecting metrics sampled on a per-node basis. This thread awakes at fixed

4 Node defined as compute or cluster node

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


On-line Performance Introspection for Task-based Runtimes 5

time intervals and collects performance metrics such as WorkItem throughput,
node idle rate, memory consumption, or energy consumed, among others.

The AllScale Monitor Component is also able to select the type of tasks mon-
itored, thereby, further reducing its overhead and memory footprint. In AllScale,
there are two types of WorkItems derived from the recursive paradigm exploited
in the runtime: splittable and processable. Splittable WorkItems are tasks that
are split and generate more tasks, they correspond to the inductive case of the re-
cursion. Processable WorkItems correspond to the base case of the recursion, and
are WorkItems that are not split anymore. The user can configure the monitor-
ing component to monitor only Splittable WorkItems, Processable WorkItems,
or both. In addition, the AllScale Monitor can also monitor WorkItems to a
certain level of recursion.

3.3 Execution Reports

The AllScale Monitor Component can generate text reports at the end of pro-
gram execution. These reports include raw measurements per WorkItem such as
exclusive time, i.e. execution time of the WorkItem, as well as several derived
metrics such as inclusive time per WorkItem, or mean execution time for all
children of a WorkItem.

The AllScale Monitoring Component can also generate task dependency
graphs, in other words, graphs with all the WorkItems executed by the runtime
and their dependencies. WorkItem dependencies are created when a WorkItem is
spawned from within another WorkItem due to the recursive model used. In our
task graphs, each node represents a WorkItem and contains WorkItem name,
exclusive execution time, and inclusive execution time. WorkItem graphs are
coloured by exclusive time from yellow to red, being yellow shorter execution
time and red longer execution time.

In addition, the monitoring framework can also generate heat maps with
processes in the Y-axis and samples in the X-axis. These plots allow the user to
inspect the evolution of certain metrics across processes and time, for example,
the node idle rate, the WorkItem throughput, or the power consumed.

3.4 Introspection and Real-time Visualisation

The AllScale Monitor Component provides an API to access the collected per-
formance data in real time, while the application runs. As previously explained,
some performance measurements can be accessed directly whereas more com-
plex metrics are calculated on-demand to reduce the overhead introduced into
the application. Several of these on-demand metrics are computed recursively,
taking advantage of the task dependency graph stored in memory, for example,
the total time of a WorkItem and all its children, or the average execution time
of the children for a certain WorkItem.

The AllScale Monitor Component provides a distributed global view of the
performance, that is, there is an instance of the monitoring component per node,
and each one of these instances can be directly asked for its performance data.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


6 X.Aguilar et al.

The introspection data can also be pipelined in real time via TCP to a web-server
based dashboard, the AllScale Dashboard. This dashboard can be accessed with
any available web browser.

The AllScale Dashboard provides two views as shown in Fig. 1, a global view
of the system, and a more detailed view per node. Fig. 1a shows the overview
page of the system performance. In the upper part of the picture, the dashboard
presents the system wide total speed, efficiency, and power for all nodes. The
speed is the ratio of time doing useful work (executing WorkItems) against total
time at maximum processor frequency. Efficiency is the ratio of useful time
against the time at the current CPU speed and number of nodes used. Finally,
power is the ratio of current power consumed against total power at the highest
CPU frequency. Under each metric there is a slider bar that allows the user to
change the weight of each objective in the multi-objective optimiser, thereby,
being able to change the behaviour of the runtime in real time. The global score
in the right part of the frame indicates how well the three customisable objectives
(time, resource, power) are fulfilled. Finally, the frame also contains information
of the system task throughput.

The global view also contains plots that depict the speed, efficiency, and
power per node across time. Remember that this dashboard presents live infor-
mation so all these plots evolve in real time while the application runs. In the
right lower quadrant of the dashboard, we have a view on how the work is dis-
tributed across the system. Its dropdown menu allows the user to change in real
time the policy used by the runtime to distribute such work. Thereby, allowing
the user to observe how the work (and data) gets redistributed by changing the
scheduling policy. The distribution of data within the runtime is unfortunately
beyond the scope of this paper. This topic is covered in detail in [9].

Fig. 1b shows the detailed view where performance data is depicted per node.
For every node we have the CPU load, the memory consumption, the amount
of data transferred through the network (TCP and MPI), speed, efficiency and
power, the task throughput, and the amount of data owned by the node.

The AllScale Dashboard is a very powerful and convenient tool that can
speed up the development process, because it allows developers to see as soon as
they run the code the effect of source code changes. Furthermore, it also allows
developers to change in real time the behaviour of the runtime to explore how
the system behaves when changing different parameters.

The current version of the AllScale Dashboard uses one server that collects
information from all the nodes involved in the execution. We are currently work-
ing on more scalable solutions to be able to tackle high node counts, for example,
collecting the data in a tree manner, or having several hierarchically distributed
servers. We also want to explore how to improve the graphical interface for high
node counts, for instance, showing clusters of nodes instead of individual ones
in the dashboard.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


On-line Performance Introspection for Task-based Runtimes 7

(a) Dashboard global system view.

(b) Dashboard view with detailed metrics per node.

Fig. 1. The AllScale Dashboard showing performance data in real time while the ap-
plication runs. ICCS Camera Ready Version 2019

To cite this paper please use the final published version:
DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


8 X.Aguilar et al.

(a) Overhead with the stencil benchmarks (b) Overhead with iPIC3D

Fig. 2. Overhead introduced by the AllScale Monitoring Component. Naive is an early
implementation in which all threads process their own performance data. DB is the
producer-consumer model with double buffering.

4 Evaluation

4.1 Overhead

The AllScale Monitoring Component has been designed with focus on having as
minimum footprint in the system as possible to allow continuous performance
introspection. We evaluated its overhead with several experiments. In the first
set of experiments, we used a node with two 12-core E5-2690v3 Haswell and
512 GB of RAM memory, and run two benchmarks executing parallel loops
that perform a simple stencil. The first benchmark (chain test) is a sequence
of parallel loops where each loop waits for the completion of the previous one.
The second benchmark (fine grain test), on the other hand, computes loops in
parallel by only waiting for the part of the previous loop it actually depends on.
Both benchmarks were run with a grid of 128 × 1024 × 1024 elements and for
100 time steps.

Figure 2a shows the overhead introduced by the monitoring framework into
the stencil benchmarks running in 12, 24, and 48 logical cores (24 physical cores
with hyper threading). Overhead is computed as the percentage difference in
total execution time of the benchmark with and without the performance mon-
itoring. In the experiments, the monitoring component collected execution time
and dependencies for each WorkItem as well as node metrics every second. The
picture depicts the overhead for two different versions of the monitoring com-
ponent. First, an early naive implementation that we wrote where all threads
process their own performance data and write it into per-process data struc-
tures. And second, our current producer-consumer implementation using a dou-
ble buffering scheme.

As can be seen in the picture, the overhead increases as we increase the
number of cores, especially in the naive implementation due to its high thread
contention. It is particularly bad for the chain benchmark, going from less than

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


On-line Performance Introspection for Task-based Runtimes 9

0.5% to around 40%. In contrast, the overhead introduced when using our double
buffering implementation is much lower, being always less than 1%. We can also
see in the plot that there is a difference in the overhead between both bench-
marks. This difference is caused by the nature of each benchmark. While the
fine grain benchmark executes all the iterations in parallel, the chain bench-
mark imposes threads to wait for the previous iteration to be finished. This
synchronisation prevents the updates to the shared information to spread out,
increasing the contention in global data structures.

We also evaluated the overhead of the monitoring component using a real-
world application: iPIC3D [13], a Particle-in-Cell code for space plasma sim-
ulations that simulates the interaction of Solar Wind and Solar Storms with
the Earth’s Magnetosphere. In our evaluation we used sets of 8 × 106 particles
uniformly distributed, and run 100 time steps of the simulation.

Figure 2b shows the overhead introduced by both implementations of the
AllScale Monitoring Component. As can be seen in the picture, the naive imple-
mentation has a high overhead that increases rapidly with the number of threads
used. This naive implementation introduces more than 90% of overhead with 48
logical cores. Thus, demonstrating that classical implementations where each
thread processes its own data do not work in a scenario where lots of threads
execute a huge amount of small tasks. For the double buffering implementation,
the overhead is always smaller than 1%.

Figure 3 shows three different Paraver timelines of iPIC3D where we can see
how the monitoring infrastructure interacts with the application. Figure 3a de-
picts two time steps of the application with the AllScale Monitoring turned off.
We can see in Fig. 3b how our current AllScale Monitor Component implemen-
tation does not affect the application. In contrast, figures 3c serves to expose
how the first naive approach we implemented affects the application execution
a lot.

We also performed distributed experiments in a Cray XC40 equipped with
two Intel Xeon E5-2630v4 Broadwell at 2.2 GHz and 64GB of RAM per node.
Nodes were connected with an Intel OmniPath interconnect. Fig. 4 shows the
running time of iPIC3D for different number of particles per node up to 64 nodes.
The graph contains for each number of particles the simulation time with and
without the monitoring infrastructure. The monitoring component used is the
producer-consumer version with double buffering. As can be seen in the picture,
the overhead of our monitoring component is negligible. It can also be observed
that in some cases the execution time with the monitoring component activated
is shorter than without monitoring. This can be explained by the fact that the
overhead is so small that it gets absorbed by the natural execution noise and
job execution time variability present in HPC systems.

4.2 Use Case

As previously explained, the AllScale Runtime can optimise the execution of ap-
plications regarding three different weighted objectives: time, resource, and en-
ergy. The runtime contains a prototype of an optimiser module that implements

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


10 X.Aguilar et al.

(a) WorkItem execution in iPIC3D without the AllScale Monitoring (24 cores)

(b) WorkItem execution in iPIC3D with the AllScale Monitoring using double
buffering (24 cores)

(c) WorkItem execution in iPIC3D with the naive implementation of the AllScale
Monitoring (24 cores)

Fig. 3. Paraver timelines for two iterations of iPIC3D. Y-axis contains threads and
X-axis time. Green is WorkItem execution. Black is outside WorkItem execution.

the Nelder-Mead method [14] to search for the best set of parameters that fulfil
the objectives set. There are several parameters that the runtime can tune while
trying to fulfil such objectives, for instance, number of threads and frequency
of the processors used. The multi-objective optimiser uses the performance data
provided by the AllScale Monitor Component to guide this parameter optimi-
sation. It uses power consumed, system idle rate and task throughput among
others.

In this section, we demonstrate how the AllScale Runtime uses in real time
the introspection data collected by the AllScale Monitor Component to run an
application as energy efficient as possible. To that aim, we run iPIC3D with three
different tests cases: one with a uniformly distributed set of particles in a nebula
(uniform case), one with a non-uniformly statically distributed set of particles
(cluster case), and finally, one with a non-uniformly dynamically changing set

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


On-line Performance Introspection for Task-based Runtimes 11

Fig. 4. Execution times for different configurations of particles per node with and
without the AllScale Monitor Component. Columns with the suffix -mon are the runs
with the monitoring infrastructure activated.

of particles in an explosion (explosion case). We run the experiments in a node
with 2 Intel Xeon Gold processors (36 cores in total), and 16 × 106 particles.

In the experiments we gave the maximum weight to the energy objective, that
is, the runtime will try to optimise only by the energy consumed. To this end, the
runtime will dinamically tune the number of threads and the frequency of the
processors used. Fig. 5 shows the power consumed for the three test cases while
running with and without the optimiser. The green line (label Power) shows
the power when running without any self-tuning using the ondemand governor
for the CPU frequencies. With the ondemand governor the operating system
manages the CPU frequencies. The purple line (label Power-opt) represents the
power consumed when using the optimiser with the energy objective. The blue
line shows the number of threads the runtime is using when the optimiser is
tuning the run.

We can see several things in the figure. First, we can see how the optimiser
starts always with the maximum number of threads and changes it until it finds
an optimal value. Second, it is noticeable that even though the runs without
optimisation (green line) consume much more power, they are much shorter.
In terms of total energy consumed, in the explosion case, the version using the
optimiser consumes a total of 4,066.97 J compared to 5,400.48 J without it. For
the cluster case the numbers are 3,758.3 J with the optimiser against 3,696.75
J without it. Finally, for the uniform case, the run with the optimiser consumes
3,197.12 J against 2,064.93 J without it. As can be seen from the numbers, the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


12 X.Aguilar et al.

 0

 5

 10

 15

 20

 25

 30

 35

 5

 10

 15

 20

 25

 30

 35

 40

P
o
w

er
 (

W
)

T
h
re

ad
s

Time (ms)

Power-opt

Power

Threads

(a) iPIC3D explosion case

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5

 10

 15

 20

 25

 30

 35

 40

P
o
w

er
 (

W
)

T
h
re

ad
s

Time (ms)

Power-opt

Power

Threads

(b) iPIC3D cluster case

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5

 10

 15

 20

 25

 30

 35

 40

P
o
w

er
 (

W
)

T
h
re

ad
s

Time (ms)

Power-opt

Power

Threads

(c) iPIC3D uniform case

Fig. 5. Power consumed by iPIC3D when running with (power-opt line) and without
(power line) the AllScale Multi-objective Optimiser.

current optimiser prototype does not find an optimal configuration for the cluster
and uniform cases. Fig. 5c for example, shows how the optimiser does not find
an optimal thread number and keeps changing it during the whole execution.
Thus, further investigation on why the current optimiser prototype does not find
optimal solutions for these two test cases is needed. It is important to remark
however that thanks to the AllScale Monitor Component we have been able to
detect the bad behaviour of the optimiser module, thereby, being able to warn
their developers and helping them to improve it.

5 Related Work

Performance observation and analysis is a topic extensively explored in HPC.
There are many tools that can be used for post-mortem performance analysis of
parallel applications, e.g. Paraver [15], Score-P [12], Scalasca [6], or TAU [17].
These tools are really useful to detect and optimise performance problems, how-
ever, they were designed for post-mortem analysis and are not sufficient for

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


On-line Performance Introspection for Task-based Runtimes 13

continuous monitoring introspection. In contrast, our monitoring component is
not a stand-alone tool but a runtime system component, which cannot provide
the same level of performance detail as the previous tools, but allows continuous
monitoring introspection with very low overhead.

Most state-of-the-art runtime systems include means to generate performance
reports for post-mortem analysis. StarPU [2] uses the FXT library [4] to gen-
erate Pajé traces and graphs of tasks. Legion [3] provides profiles and execu-
tion timelines with performance data of the tasks executed by the runtime.
OmpsSs [5] generates Paraver [15] traces with Extrae. It also provides task de-
pendency graphs in pdf format. APEX [7] generates performance profiles that
can be visualised with TAU [17].

Nevertheless, classical post-mortem techniques will not suffice in the Exas-
cale era. Real-time introspection capabilities are a requirement for performance
tuning and adaptation. Thus, several performance tools and task-based runtimes
implement introspection strategies. Tools such as the work of Aguilar et al. [1]
or Score-P [12] include online introspection capabilities. However, these tools
are mainly designed for MPI monitoring. The runtime Legion [3] contains task
mappers that can request performance information to the runtime while the ap-
plication runs. OmpSs has an extension to use introspection data to guide the
process of task multi-versioning [16]. StarPU provides an API to access perfor-
mance counters from the runtime.

6 Conclusions and Future Work

The path to Exascale brings new challenges to scalability, programmability, and
performance of software. Future systems will have to include performance in-
trospection to support adaptivity and efficient management of resources. In this
paper we have presented the AllScale Monitor Component, the monitoring in-
frastructure included within the AllScale Runtime. This monitoring framework
provides real-time introspection to the AllScale Scheduler with minimum over-
head as we have demonstrated. We have also shown that real-time introspec-
tion capabilities are very useful to orchestrate application execution as well as
to analyse the performance of the system in real time. Thus, speeding up the
development process because performance deficiencies can be detected almost
instantly, without the need to wait until the end of a long running job for exam-
ple. In addition, the monitoring framework is self-contained, so it can be easily
decoupled and used in other runtimes.

As future work, we want to further investigate the use of historical perfor-
mance data together with real-time introspection data to help in the decision-
making process of the scheduler. We are also working in improving the scalability
of the dashboard server as well as the scalability of its graphical interface.

References

1. Aguilar, X., Laure, E., Furlinger, K.: Online performance introspection with IPM.
In: High Performance Computing and Communications & 2013 IEEE International

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18


14 X.Aguilar et al.

Conference on Embedded and Ubiquitous Computing (HPCC EUC), 2013 IEEE
10th International Conference on. pp. 728–734. IEEE (2013)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23(2), 187–198 (2011)

3. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: Proceedings of the international conference
on high performance computing, networking, storage and analysis. p. 66. IEEE
Computer Society Press (2012)

4. Danjean, V., Namyst, R., Wacrenier, P.A.: An efficient multi-level trace toolkit for
multi-threaded applications. In: European Conference on Parallel Processing. pp.
166–175. Springer (2005)

5. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: Ompss: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Processing Letters 21(02), 173–193 (2011)

6. Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The scalasca
performance toolset architecture. Concurrency and Computation: Practice and Ex-
perience 22(6), 702–719 (2010)

7. Huck, K.A., Porterfield, A., Chaimov, N., Kaiser, H., Malony, A.D., Sterling, T.,
Fowler, R.: An autonomic performance environment for exascale. Supercomputing
frontiers and innovations 2(3), 49–66 (2015)

8. Jordan, H.: Insieme: A compiler infrastructure for parallel programs. Ph.D. thesis,
Ph. D. dissertation, University of Innsbruck (2014)

9. Jordan, H., Heller, T., Gschwandtner, P., Zangerl, P., Thoman, P., Fey, D.,
Fahringer, T.: The Allscale Runtime Application Model. In: 2018 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). pp. 445–455. IEEE (2018)

10. Jordan, H., Thoman, P., Zangerl, P., Heller, T., Fahringer, T.: A Context-Aware
Primitive for Nested Recursive Parallelism, pp. 149–161. Springer International
Publishing (2017)

11. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: Hpx: A task based
programming model in a global address space. In: Proceedings of the 8th Inter-
national Conference on Partitioned Global Address Space Programming Models.
p. 6. ACM (2014)

12. Knüpfer, A., Rössel, C., Mey, D.a., Biersdorff, S., Diethelm, K., Eschweiler, D.,
Geimer, M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Philip-
pen, P., Saviankou, P., Schmidl, D., Shende, S., Tschüter, R., Wagner, M., Wesarg,
B., Wolf, F.: Score-P: A Joint Performance Measurement Run-Time Infrastructure
for Periscope, Scalasca, TAU, and Vampir, pp. 79–91. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

13. Markidis, S., Lapenta, G., et al.: Multi-scale simulations of plasma with iPIC3D.
Mathematics and Computers in Simulation 80(7), 1509–1519 (2010)

14. Nelder, J.A., Mead, R.: A simplex method for function minimization. The computer
journal 7(4), 308–313 (1965)

15. Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and
analyze parallel code. In: Proceedings of WoTUG-18: Transputer and occam De-
velopments. vol. 44, pp. 17–31 (1995)

16. Planas, J., Badia, R.M., Ayguade, E., Labarta, J.: Self-adaptive ompss tasks in
heterogeneous environments. In: Parallel & Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium on. pp. 138–149. IEEE (2013)

17. Shende, S.S., Malony, A.D.: The TAU parallel performance system. International
Journal of High Performance Computing Applications 20(2), 287–311 (2006)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_18

https://dx.doi.org/10.1007/978-3-030-22734-0_18

