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Abstract. Similarity matrices are 2D representations of the degree of
similarity between points of a given dataset which are employed in dif-
ferent fields such as data mining, genetics or machine learning. How-
ever, their calculation presents quadratic complexity and, thus, it is
specially expensive for large datasets. MPICorMat is able to accelerate
the construction of these matrices through the use of a hybrid paral-
lelization strategy based on MPI and OpenMP. The previous version of
this tool achieved high performance and scalability, but it only imple-
mented one single similarity metric, the Pearson’s correlation. There-
fore, it was suitable only for those problems where data are normally
distributed and there is a linear relationship between variables. In this
work, we present an extension to MPICorMat that incorporates eight
additional metrics for similarity so that the users can choose the one
that best adapts to their problem. The performance and energy con-
sumption of each metric is measured in two platforms: a multi-core
platform with two Intel Xeon Sandy-Bridge processors and a many-
core Intel Xeon Phi KNL. Results show that MPICorMat executes faster
and consumes less energy on the many-core architecture. The new ver-
sion of MPICorMat is publicly available to download from its website:
https://sourceforge.net/projects/mpicormat/

Keywords: Similarity Matrix · High Performance Computing · Intel
Xeon Phi · Performance Evaluation · Energy Consumption

1 Introduction

The construction of similarity matrices is a fundamental step for many appli-
cations of different areas such as bioinformatics, data mining, text mining or
machine learning. For instance, they are usually necessary when constructing
gene co-expression networks, as they can represent the similarity between genes.
However, the calculation of these 2D matrices is highly time-consuming due to
its quadratic complexity. In the Big Data era the size of datasets is continuously
increasing in many fields, and thus finding fast and scalable solutions is a highly
important task.
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We have recently developed the tool MPICorMat [3], a High Performance
Computing (HPC) framework that accelerates the construction of similarity ma-
trices with Message Passing Interface (MPI) and OpenMP routines. It presents
high performance and scalability on multi-core clusters, but has the following
limitations:

– It only includes Pearson’s correlation as similarity metric, as it is suitable
for data with linear relationship (very common in genetic scenarios, the
focus of the previous work). However, there are in literature a number of
metrics to build similarity matrices and the choice of the best one depends
on the application field and the input data. For instance, if the linearity
hypothesis cannot be assumed, Spearman’s or Kendall’s tau-b correlations
may be more useful than Pearson’s because they identify both linear and
non-linear relationships [13].

– The calculation of the similarity metric for each pair of attributes relies on
the GNU Scientific Library [4], which forces the users to install and tune
that library in their systems.

– The experimental evaluation is limited to performance measures in tradi-
tional multi-core clusters, without taking into account energy consumption
and/or the use of many-core platforms.

This work overcomes these limitations by presenting a new version of MPI-
CorMat (v3) that includes eight additional metrics. The choice of the metric is
made by the users through a command line parameter in order to adapt the ex-
ecution to the characteristics of their data. The eight metrics were implemented
using C++, MPI and OpenMP in order to avoid any dependency with external
libraries and thus improve the portability of the tool. We also provide a highly
detailed experimental evaluation that compares the performance of the differ-
ent metrics on a multi-core platform and an Intel Xeon Phi Knights Landing
(KNL) many-core system, not only in terms of performance but also of energy
consumption.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 describes the behavior of the extended application and the met-
rics included. Section 4 shows the results of the experimental evaluation in both
the multi-core and many-core systems. Finally, conclusions are discussed in Sec-
tion 5.

2 Related work

There are in the literature a number of works than compare the behavior of
different similarity measures for the reconstruction of gene co-expression net-
works [5, 15, 17]. These studies show that the choice of the most appropriate
measure depends on the nature of the gene interactions to be analyzed.

On the other hand, similarity matrices also play a crucial role in other fields
such as clustering, image retrieval, or recommending systems. For instances, in
[11] authors compare seven popular similarity measures for the clustering of
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patients. They include the Euclidean distance, as well as the Pearson, Spearman
and Kendall correlations, among others. Authors conclude that an absolute best
similarity measure does not exist, but it strongly depends on data.

However, most of the available software tools for the calculation of similarity
matrices on parallel architectures focus on only one similarity metric. For in-
stance, TINGe [20] and CUDA-MPI [12] are parallel approaches based on Mutual
Information (MI) for clusters (implemented with MPI), and GPUs (implemented
with CUDA), respectively. In [8] TINGe is adapted for the first generation of the
Intel Xeon Phi (KNC) architecture. The construction of Pearson’s correlation-
based similarity matrices was addressed for MPICorMat [3], LightPCC [7] and
FastGCN [6] for multicore clusters (implemented with MPI and OpenMP), the
Intel Xeon Phi KNC coprocessor and NVIDIA GPUs, respectively.

MPICorMat v3, in contrast, allows the user to choose among several similar-
ity metrics to better adapt to the characteristics of the problem in hand. More-
over, up to our knowledge, our performance evaluation is the first one focused
on using the KNL generation of Intel Xeon Phi to accelerate the construction of
similarity matrices.

3 MPICorMat version 3

As previously explained, MPICorMat is a parallel tool to accelerate the con-
struction of similarity matrices on HPC systems. It receives as input a file that
contains a 2D matrix with dimensions n×m, where n is the number of attributes
and m the number of samples. It returns a file with an n × n similarity matrix
with the similarity values for each pair of attributes.

The third version of this tool increments its usefulness by including eight
additional similarity metrics (besides the Pearson’s correlation already available
in the previous versions of the tool). The users should indicate its desired metric
using a command line parameter. Information about the input parameters, as
well as installation and execution instructions, are available in the reference
manual of the tool.

The implementations of the nine metrics have been integrated into the par-
allel approach already available in previous versions of MPICorMat, as it was
proved efficient in our previous work [3]. MPICorMat follows a hybrid paral-
lel approach with MPI and OpenMP that is able to exploit the computational
capabilities of multi-core clusters, with hybrid distributed/shared memory archi-
tecture. As will be shown in Section 4, the focus of the experimental evaluation
of this work consists in testing the suitability of this parallel implementation in
the Intel Xeon Phi KNL many-core processor, compared to an Intel multi-core
system. Only the OpenMP parallelization is necessary for both platforms, as
they are shared-memory machines. OpenMP is a parallel programming interface
based on compiler directives that follows a fork-join model, where a master or
parent thread creates a number of slaves or children that are able to access to
the same shared memory and perform different tasks to complete a work.
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Fig. 1. Not efficient distribution of pairs among threads.

As the similarity metric must be calculated for all gene pairs, the MPICorMat
workload can be seen as a 2D matrix, where each point represents one pair of
attributes. Only half of the matrix (upper or lower triangular) must be calculated

as all metrics are symmetric. Concretely n·(n−1)
2 pairs. MPICorMat divides the

workload (pairs) among the threads, which do not need any synchronization
as computation is completely independent among pairs. Pairs are assigned by
rows (the whole row to the same thread) in order to reuse data (one attribute is
repeated in all the pairs of the row). However, due to the triangular nature of the
problem, the most intuitive static block distribution, with the same number of
rows per thread, would lead to unbalanced workload (some rows have more pairs
than other, as can be seen in Figure 1). Instead, MPICorMat uses a dynamic
OpenMP distribution, where each (still not computed) row is assigned to a
thread once it has finished all its previously assigned work. We refer to [3] for
more information.

Algorithm 1 shows the pseudocode of the parallel OpenMP implementation
in MPICorMat, the one tested in the experimental evaluation of Section 4. After
reading the file with the input values for each attribute and sample (Line 1) and
allocating memory for the output similarity matrix (Line 2), several OpenMP
threads are launched to parallelize the loop that traverses the rows (Lines 3 and
4). As previously explained, each thread is in charge of a complete row. The
thread starts calculating the position of the row in the output triangular matrix
(Line 5). Then, it calculates the metric for all the pairs of the row (Lines 6 and
7). Next, the parallel region finishes and the output is written by the master
thread (Line 8).
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Algorithm 1: Pseudo-code of the OpenMP parallelization in MPICor-
Mat.

1 Read input matrix M with the values of the attributes
2 Initialize matrix of scores S
3 #pragma omp parallel for schedule(dynamic)
4 for each row i from 0 to n do
5 rowPos = CalculatePos(i)
6 for each column j from i to n do
7 S[rowPos + j − i] := CalculateMetric(i, j)

end

end
8 Write S in the output file

3.1 Similarity metrics included in MPICorMat v3

A different implementation of CalculateMetric() (Line 7 in Algorithm 1) is
performed for each metric. The following nine similarity metrics are available for
MPICorMat users since its third version.

Pearson’s correlation. It measures the strength of the linear relationship
between two random variables. The value of the correlation is between -1 and 1.
A correlation close to 1 or -1 indicates that the relationship is almost perfectly
linear while a value close to 0 indicates that the two variables are uncorrelated.
The Pearson’s correlation assumes the data are normally distributed and there
is a linear relationship between the two variables. It is sensitive to outliers and
requires the data to be measured on interval or ratio scale. Assume that X and
Y are two random variables with n observations (xi, yi with i = 1, 2,..., n) and
x and y are the means of X and Y , respectively. Then, Pearson’s correlation is
defined as: ∑n

i=1(xi − x) · (yi − y)√∑n
i=1(xi − x)2 ·

∑n
i=1(yi − y)2

(1)

Spearman’s correlation. It is equal to the Pearson’s correlation between the
rank values of the variables, being the rank value of an observation its rela-
tive position within all the values of the variable. While Pearson’s correlation
assesses linear relationships, Spearman’s correlation assesses monotonic relation-
ships (whether linear or not). It takes values between -1 and 1. A positive corre-
lation implies that the ranks of both variables increase together, while a negative
correlation implies that the rank of one variable increases as the rank of the other
decreases. A definition of the Spearman’s correlation able to deal with tied ranks
(elements that have the same rank value) is:
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1
n ·

∑n
i=1(R(xi) −R(x)) · (R(yi) −R(y))√

( 1
n ·

∑n
i=1(R(xi) −R(x))2) · ( 1

n ·
∑n

i=1(R(yi) −R(y))2)
(2)

where R(xi) and R(yi) are the ranks of the observation i in the variables
X and Y , respectively, while R(x) and R(y) are the means of the ranks. The
procedure to calculate the ranks usually consists in sorting the observations of
the variable.

Euclidean distance. This is probably the simplest metric, indicating the
straight-line distance between two points in Euclidean space. The Euclidean
distance between two attributes X and Y , with xi and yi denoting their value
for sample i, is measured as: √√√√ n∑

i=1

((xi − yi)2 (3)

Mutual information (MI). It quantifies the amount of information that one
random variable provides about another. MI can only take positive values. High
MI indicates a large reduction in uncertainty, while low MI indicates a small
reduction in uncertainty, and MI equal to 0 means that the variables are inde-
pendent. MI is a metric that only works over discrete values. If the input data
are real values (either in simple or double precision), a preliminary step that dis-
cretizes the values, grouping similar elements into the same bucket, is required.
The number of buckets is indicated by the user as an argument of the application
through the command line. The accuracy of the metric usually increases with
the number of buckets, but also its complexity. Mi is defined as:

n∑
i=1

n∑
i=j

p(xi, yj) log2

p(xi, yj)

p(xi) · p(yj)
(4)

where p(xi) and p(yj) are the probabilities of the buckets that contain the
values xi and yi, and p(xi, yj) is the joint probability of the buckets associated
to xi and yj .

Kendall’s tau-b. It is a non-parametric metric of association based on the
number of concordances and discordances in paired observations. It is an al-
ternative method to Spearman’s correlation, i.e., it also identifies monotonic
relationships. Suppose two pairs (xi,yi) and (xj ,yj), they are concordant if they
are in the same order with respect to each variable. That is, if xi < xj and
yi < yj , or if xi > xj and yi > yj . Otherwise, they are discordant. The value of
this coefficient ranges from -1 (one ranking always reverses the other) to 1 (the
ranks of the two attributes are the same). If the two variables are independent,

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_13

https://dx.doi.org/10.1007/978-3-030-22734-0_13


Several metrics for the construction of similarity matrices 7

the value is approximately equal to 0. Assume that P is the number of concor-
dant pairs, Q is the number of discordant pairs, X0 the number of tied pairs on
X and Y0 the number of tied pairs on Y . Then, Kendall’s tau-be is defined as:

P −Q√
(P + Q + X0) · (P + Q + Y0)

(5)

Goodman & Kruskal gamma coefficient (G&K). It is another widely-used
rank-based coefficient that ranges between -1 and 1. As Kendall’s tau-b, a value
-1 indicates 100% perfect inversion, value 1 indicates 100% perfect agreement,
and value 0 indicates the absence of association. It is defined as:

P −Q

P + Q
(6)

Maximal information correlation (MIC). It is based on the idea that if a
relationship between two variables exists, then a grid that partitions the data
to encapsulate that relationship can be drawn on the scatterplot of the two
variables [10]. Its value ranges between 0 and 1 and it takes the value 0 if the
variables are independent. The MIC for two attributes X and Y is defined as:

MI(X,Y )

H(X)
(7)

where MI(X,Y ) is the mutual information between the variables X and Y
and it can be obtained from Equation 4, and H(X) is the entropy of the attribute
X, which can be calculated as follows (being p(xi) the probability of the bucket
that contains the variable xi):

−
n∑

i=1

p(xi) · log2(p(xi)) (8)

Hoeffding D test. This metric approximates a weighted sum over observations
in order to test the independence of two datasets. In this work, each attribute is
seen as a dataset. The statistic D is defined as:

30 · (n− 2) · (n− 3) ·D1 + D2 − 2 · (n− 2) ·D3

n · (n− 1) · (n− 2) · (n− 3) · (n− 4)
(9)

where:

D1 =

n∑
i=1

(Qi − 1) · (Qi − 2) (10)

D2 =

n∑
i=1

(R(xi) − 1) · (R(xi) − 2) · (R(yi) − 1) · (R(yi) − 2) (11)
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D3 =

n∑
i=1

(R(xi) − 2) · (R(xi) − 2) · (Qi − 1) (12)

being R(xi) and R(yi) the ranks as in Spearman’s correlation and Qi the
bivariate rank, which refers to the number of points j (j = 1, 2, ..., n) with both
xj and yj values lower than the ith point. Hoeffding’s D lies on the interval
[-0.5,1], with larger values indicating a stronger relationship.

Weighted rank correlation. It is a variation of the Spearman’s rank corre-
lation but giving weight to the distance between two ranks by using a linear
function of those ranks (more weight to higher ranks than to lower ones). As-
sume that R(xi) and R(yi) are the ranks as in Spearman’s correlation, then the
weighted rank correlation metric can be calculated as:

1 − 90

g(n)
·

n∑
i=1

(R(xi) −R(yi))
2 · (2 · (n + 1) − (R(xi) + R(yi)))

2 (13)

where:

g(n) = n · (n− 1) · (n + 1) · (2 · +1) · (8 · n + 11) (14)

4 Experimental evaluation

Three datasets, with a different number of attributes and samples, were used
in the evaluation of the nine metrics included in the third version of MPICor-
Mat. The datasets were downloaded from the Geo Expression Omnibus (GEO)
Dataset Browser available at the National Center for Biotechnology Information
(NCBI) website [9]. Table 1 shows their characteristics. As they contain genetic
information, the attributes represent genes of a population.

Although MPICorMat includes support for MPI parallelization, all the ex-
periments were carried out with only one MPI process and several OpenMP
threads, as the two platforms are shared memory architectures. The scalability
of the hybrid MPI/OpenMP parallel approach has not been tested again in a
multi-core cluster as it has not been modified since [3].

4.1 Performance evaluation on an Intel Xeon Phi KNL

Knights Landing (KNL) is the code name for the second-generation Intel Xeon
Phi product family [14]. It is a many-core processor that delivers massive thread
and data parallelism with high memory bandwidth. Concretely, it provides fea-
tures such as four threads per core, deeper out-of-order buffers, higher cache
bandwidth, new instructions, better reliability, larger translation look-aside buffers
(TLBs), and larger caches. Additionally, it introduces the new Advanced Vec-
tor Extensions instruction set, AVX-512 [19], in order to fully exploit its 512-bit
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vector registers, which can hold 16 single precision or 8 double precision floating-
point numbers. In this project, we used the Intel Xeon Phi KNL processor 7210.
It has 64 active cores at 1.30 GHz, allows up to four threads per core (256 total
threads) and it is configured in the quadrant clustering [16] and the flat memory
modes [1]. MPICorMat has been compiled with the Intel ICPC compiler version
18.0.3 activating the automatic vectorization with Intel AVX-512 instructions
(-xMIC-AVX512 flag). Remark that all the runtimes shown in this section were
obtained with the many-core system in exclusive mode, i.e., no other works were
executed at the same time.

Table 1. Characteristics of the datasets used for evaluation.

Name Number of attributes Number of samples

GDS5037 41,000 108
GDS3795 61,170 160
GDS3244 54,675 200

Figure 2 shows the runtime for the three datasets, the nine metrics and
different number of threads (from 64 threads or one thread per core to 256
threads or four threads per core). 32 buckets are used for MI and MIC. The
first conclusion that can be obtained is that the runtime heavily depends on the
metric. Pearson’s correlation and Euclidean distance are the simplest metrics,
while Kendall’s tau-b is the most complex one. The results shown in these graphs
also indicate that hyperthreading is beneficial for MPICorMat. Using two threads
per core reduces the runtime on average 1.41, 1.47 and 1.45 times compared to
the single-thread execution with the GDS5037, GDS3795 and GDS3244 datasets,
respectively. This average speedup increases to 1.71, 1.77, 1.80 if fully exploiting
the hyperthreading, with four threads per core. 256 threads will be used from
now on for all the experiments in the Intel Xeon Phi KNL, as this configuration
obtains the best runtime for all scenarios (combination of dataset and metric).

As previously mentioned, the runtimes shown in the graphs of Figure 2 were
obtained by activating the automatic vectorization with the Intel AVX-512 in-
structions. Table 2 shows the speedups compared to an execution with 256
threads but without vectorization (-no-vec flag in the compiler). Its impact
depends on the characteristics of the metrics, being especially beneficial for the
ranking procedure necessary for Spearman’s correlation, Hoeffding D test and
weighted rank correlation (see Section 3.1).

4.2 Performance and energy consumption comparison between
Intel architectures

The experimental evaluation has also been performed in an Intel multi-core plat-
form in order to compare its performance to the Intel Xeon Phi KNL many-core.
Concretely, a machine with two eight-core Intel Xeon E5-2660 Sandy Bridge-EP
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Fig. 2. Runtime of MPICorMat v3 on the Intel Xeon Phi KNL for different metrics
and number of threads. Automatic vectorization with Intel AVX-512 instructions has
been used.
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Table 2. Speedup obtained thanks to the use of automatic vectorization with Intel
AVX-512 instructions in the Xeon Phi KNL, compared to not vectorized versions of
the metrics. All executions are carried out with 256 threads.

GDS5037 GDS3795 GDS3244

Pearson 1.50 1.43 1.41
Spearman 10.59 14.65 13.63
Euclidean 1.36 1.31 1.30

MI 3.66 4.36 4.26
Kendall 1.46 1.49 1.49
G&K 1.56 1.90 1.81
MIC 3.55 4.27 4.15

Hoeffding 7.33 9.52 9.06
Weighted rank 10.59 14.71 13.66

Table 3. Speedup of the execution of MPICorMat v3 in the Xeon Phi KNL for each
metric (with 256 threads and automatic vectorization using Intel AVX-512 instructions)
compared to the execution on the Sandy Bridge-based multi-core platform (with 16
threads and automatic AVX 256-bit vectorization).

GDS5037 GDS3795 GDS3244

Pearson 1.54 1.13 1.15
Spearman 3.92 4.94 4.74
Euclidean 1.73 1.07 1.34

MI 5.63 6.79 6.59
Kendall 2.97 2.91 2.82
G&K 1.56 1.50 1.47
MIC 5.41 6.58 6.36

Hoeffding 4.36 5.56 5.39
Weighted rank 3.93 4.96 4.75

processors (i.e., a total of 16 cores) and 64 GB of memory. The Intel ICPC com-
piler has also been used in this machine (in this case, version 18.0.1) activating
the automatic vectorization with AVX instructions. Remark that the impact of
vectorization should be lower than in the Intel Xeon Phi KNL as the length of
the vector registers is 256 bits, instead of 512 bits as in the many-core.

The execution in the Intel Xeon Phi KNL is faster than in the Sandy Bridge-
based multi-core system using 16 threads (one per core) for all combinations of
dataset and metric. Table 3 shows the speedup for each scenario. The highest the
speedup, the fastest the execution in the many-core compared to the multi-core
systems (speedup equal to 1 would mean same execution time). The magnitude
of the benefit thanks to running on the Intel Xeon Phi KNL depends again
on the metric. Speedups are higher for those metrics that require a ranking of
the data (such as Spearman’s correlation, Hoeffding D test and weighted rank
correlation, with average speedups of 4.53, 5.10 and 4.55, respectively), as well
as for those based on probabilities (MI and MIC, with average speedups of 6.34
and 6.12, respectively).
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Nowadays, reduction of energy consumption is key in order to develop and
maintain large HPC infrastructures. In this sense, many-core systems are ex-
pected to accelerate the execution at the same time that save energy. The Per-
formance API (PAPI) analysis library [2, 18], together with the Running Average
Power Limit (RAPL) of the Intel architectures, has been used to measure and
report energy values on both platforms when calculating the similarity matri-
ces with different metrics. Figure 3 shows the energy consumption (in Joules)
for each metric and platform using the GDS5037 dataset. On average, the Intel
Xeon Phi KNL consumes 4.46 times less energy than the multi-core platform,
reaching factors of 5.31 and 5.85 for MI and MIC, respectively.
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Fig. 3. Energy consumed by MPICorMat v3 on the Intel Xeon Phi KNL (with 256
threads and automatic vectorization using Intel AVX-512 instructions) and the Sandy
Bridge-based multi-core machine (with 16 threads and automatic AVX 256-bit vector-
ization) for different metrics.

5 Conclusions

The construction of similarity matrices is a bottleneck for many algorithms of
different areas due to its quadratic complexity with the number of attributes.
MPICorMat is a publicly available tool that helps to alleviate this problem
by efficiently exploiting HPC resources. However, previous versions of this tool
were only able to calculate similarity matrices based on Pearson’s correlation,
which limited its interest for many researchers. In this work, we have presented
a new version of MPICorMat that includes a total of nine different similarity
metrics so that the users can choose the one most suitable for their applications.
The implementations of the new metrics were integrated into the framework of
MPICorMat so all of them can benefit from the parallel implementation.
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The experimental evaluation has focused on testing the adequacy of the met-
ric implementations to the hardware characteristics of the Intel Xeon Phi KNL,
as the scalability in multi-core clusters had been effectively tested in a previ-
ous work [3]. The use of this and other kind of many-core accelerators (such as
GPUs) is gaining popularity in the last years as they provide high performance at
low power consumption. Our experimental evaluation using three datasets from
genetic scenarios with different characteristics has led to several conclusions:

– The best performance is obtained in all cases with four threads per core
(256 threads per Intel Xeon Phi KNL). For instance, the runtime of apply-
ing Kendall’s tau-b metric to the GDS3422 dataset is reduced from around
29 minutes with only one thread per core, to around 15 minutes when hy-
perthreading with four threads per core is used.

– Automatic vectorization with Intel AVX-512 instruction should be applied
in order to improve performance. The magnitude of this performance im-
provement depends on the metric, varying from an overall speedup of 1.32
for Euclidean distance to 12.99 for weighted rank correlation.

– Execution times in the Intel Xeon Phi KNL are lower than in a multi-core
platform with two octa-core Sandy Bridge processors for every combination
of metric and dataset. The overall performance improvement is 3.74, being
more significant for metrics based on probabilities such as MI and MIC, with
an overall speedup of 6.34 and 6.12, respectively.

– The energy consumption is lower in the many-core architecture for all the
experiments, needing on average 4.46 times less energy.

As future work, we plan to implement a GPU version of the code and compare
the results with the ones obtained in the Intel Xeon Phi architecture.

Acknowledgments

This work was supported by the Ministry of Economy, Industry and Compet-
itiveness of Spain and FEDER funds of the European Union [grant TIN2016-
75845-P (AEI/FEDER/UE)], as well as by Xunta de Galicia (Centro Singular
de Investigacion de Galicia accreditation 2016-2019, ref. EDG431G/01).

References

1. Asai, R.: MCDRAM as High-Bandwidth Memory (HBM) in Knights Landing Pro-
cessors: Developers Guide. Colfax Research (2016)

2. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable Programming
Interface for Performance Evaluation on Modern Processors. The International
Journal of High Performance Computing Applications 14(3), 189–204 (2000)
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