
Transfer Learning for Leisure Centre Energy
Consumption Prediction

P Banda,1 M.A Bhuiyan,1K Zhang1 and A Song1

RMIT University, Melbourne 3000, Australia

Abstract. Demand for energy is ever growing. Accurate prediction of
energy demand of large buildings becomes essential for property man-
agers to operate these facilitates more efficient and greener. Various tem-
poral modelling provides a reliable yet straightforward paradigm for short
term building energy prediction. However, newly constructed buildings
and recently renovated buildings, or buildings that have energy monitor-
ing systems newly installed, do not have sufficient data to develop ac-
curate energy demand prediction models. In contrast, established build-
ings often have vast amounts of data collected which may be lying idle.
The model learned from these buildings with huge data can be useful if
transferred to buildings with little or no data. An ensemble tree-based
machine learning algorithm and datasets from two leisure centres and an
office building in Melbourne were used in this transfer learning investi-
gation. The results show that transfer learning is a promising technique
in predicting accurately under a new scenario as it can achieve similar
or even better performance compared to learning on a full dataset. The
results also demonstrated the importance of time series adaptation as a
method of improving transfer learning.
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1 Introduction

Efficient use of energy is undoubtedly a subject of great importance in sustain-
ability as the increase of world population and economic growth keep adding
pressure on energy supply. One key area of efficient energy management is in
the building sector. According to [23], almost 39% of total energy consumption
in the US is from buildings. China’s energy usage by buildings is expected to
reach as high as 35% by 2030 [5]. In Europe, buildings account for 40% energy
usage which is equivalent to 36% CO2 emissions [18]. Recreational facilities are
attracting attention because of the increased awareness of health and fitness in
modern lifestyle [6]. Sports facilities account for 8% of the total building energy
usage in Europe [8]. Leisure centres, for example in Australia, often offer an array
of different activities under one roof, such as swimming pools (indoor and out-
door), physical fitness centres, spas, and children’s play park. Such arrangement
exhibit complex and high energy use profiles that present energy management
challenges for building managers. Accurate prediction of energy use at these
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leisure centres is of paramount importance for the building managers or owners
as it enables them to make informed decisions to manage better and optimise
the operational performances of their buildings.

Widely used techniques in the literature for building energy consumption pre-
diction, are broadly classified under engineering methods (white box methods
such as EnergyPlus by [7], and DOE-2 by [3], statistical methods, and artificial
intelligence (black box) methods [1]. Comprehensive discussions on the above
techniques and their advantages and disadvantages can be found in recent re-
views [9], [10] and [22]. In this study, we introduce transfer learning to facilitate
the prediction process. The main thrust of transfer learning is the notion that
it ignores the condition that training and testing data must obey the same dis-
tribution. Just like human beings can acquire knowledge while learning tasks
and leverage that knowledge to solve related tasks. Transfer learning operates
intuitively on the same principles. Thus, by utilising knowledge gained from one
task, transfer learning overcomes the isolated learning limitation in the tradi-
tional machine and deep learning methods [20],[21] and [14].

In another work [16], investigated energy forecasting in the context of cross-
building transfer with limited historical data by leveraging data from other build-
ings. In this work, reinforcement learning algorithms were combined with a deep
belief network to improve the former’s continuous state estimation capabilities.

In another research, [12] developed a transfer learning methodology for res-
idential buildings climate control. They developed a generalized online transfer
learning algorithm which leveraged forecasting knowledge from the source data
to enhance the prediction of the target house. Their work utilised simulated
residential houses created in EnergyPlus, as a test bed for the developed online
transfer methodology and yielded positive results in the period within the first
five weeks of the target dataset.

Recently, [19] proposed an inductive transfer learning algorithm that is sen-
sitive to seasonality and trends present in electricity consumption data. The
algorithm is applicable in a supervised transfer learning setting, that is, it re-
quires limited data from the target building, and its extent of operation is bound
only to similar buildings. A prediction accuracy increase of up to 11.2% using
data from additional schools was reported on the target school with only one
month of data.

This work is the first to explore transductive transfer learning for building
energy studies, using different building types (leisure centres and office buildings)
in a supervised learning setting. The most skilful of the five machine learning
methods developed and evaluated on the task of building energy consumption
prediction at two leisure centres and an office building is selected for transfer
learning. The work investigates the application feasibility of transfer learning and
how to improve its performances for improved energy consumption prediction
using limited measured data. An ensemble tree based algorithm is tested in the
transfer learning task to transfer knowledge amongst buildings with different
energy consumption distributions. The work presents some of the initial results
of the ongoing transfer learning experiment with a much broader scope.
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2 Transductive Transfer Learning

Given a source domain, a target domain and a learning task, energy consump-
tion prediction in our case, transfer learning aims to help improve the learning
of the target predictive function in a new leisure center (Don Tatnell) using the
knowledge in another leisure center (Waves) and an office building. In the tradi-
tional machine learning, to ensure the accuracy and high reliability of the model
obtained by training, there are two basic assumptions: (1) the training sample
used for learning and the new test sample satisfy the condition of independent
and identical distribution; (2) There must be enough training samples available
to learn a good model. While in transfer learning these assumptions are no longer
necessary.

2.1 Predictive Algorithms

This section gives a brief overview of the adopted predictive algorithms for the
energy consumption prediction exercise. A total of five predictive algorithms that
is, decision trees, random forest(RF), lightGBM, k nearest neighbour(k-NN)and
ensemble extra trees(EET) are considered for the input-output mapping task.

Random forest is an ensemble based learning algorithm used for both regres-
sion and classification problems [4].RF is an ensemble of models which uses the
decision tree approach to data collection. Initially, an individual tree is trained
by taking note of a random subset of observations. A random subset of the vari-
able is then considered to split the decision thus creating a diverse set of trees
essential for improving overall prediction performance of the ensemble model.

LightGBM is a recently launched algorithm, which by using histogram-based
algorithms buckets continuous feature values into discrete bins. This enhances
training and results in reduced memory usage. While most decision tree algo-
rithms grow their trees by level (depth)-wise, LightGBM instead grows trees
leaf-wise (best-first). The leaf with max delta loss is chosen to grow. However,
when data is small. Leaf-wise often results in over-fitting. More details on the
model performance are found in [15].

The k-nearest neighbour algorithm is one of the most straightforward super-
vised learning regression algorithms to implement but gives highly competitive
results. The k-NN algorithm’s primary assumption is that similar things exist
nearby. The algorithm computes a distance value between the output and each
item in the training data-set. The k-NN then picks the items with the k lowest
distances and conduct a “majority vote” among those data points. The value
of k is determined by either by trial and error or by cross-validation to find an
optimal value [2].

Decision tree takes the form of a tree-like structure where numerous aspects
and attributes are considered to predict the electrical energy demand. For eval-
uation, a recursive algorithm is used to identify the attributes with the highest
information [13].

Ensemble extra trees (extremely randomised trees) implement a meta esti-
mator that fits randomised decision trees on various dataset sub-samples and
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then averages them to have improved predictive accuracy and at the same time
to control over-fitting. Ensemble extra trees differentiate itself from other tree-
based ensembles, in that it splits nodes by selecting cut-points entirely at random
and incorporates the whole learning sample as opposed to a bootstrap replica to
grow the trees. The individual tree predictions are aggregated to give the final
prediction, by arithmetic average in regression type of problems and a majority
vote in classification type of problems. Tree complexity and size is controlled by
adjusting two parameters namely, maxdepth(Dmax) and minsampleleaf [11].

2.2 Evaluation Metrics

Assessment of the models’ performance was done using standard evaluation met-
rics namely, the mean square error(MSE), mean absolute error (MAE) and
R-squared (R2). The MSE is the mean of the square of the errors. The closer
the MSE is to zero the more ideal. The larger the MSE, the larger the error.
The MSE’s basic value is in selecting one prediction model over another. R2

describes the proportion of variance of the dependent variable that is explained
by the regression model. A low R2 value shows a low level of correlation, mean-
ing a regression model that is not valid, but not in all cases. MAE gives the
mean error (positive) for all test data. Note one cannot look at these metrics
in isolation in sizing up the model. These performance evaluation metrics are
calculated using Equations (2 to 5) as follows:

R2 = 1−
∑

(y − y′)2∑
(y − ȳ′)2,

(1)

RMSE =

√
Σ

(y′ − y)2

N
, (2)

MAE =
1

n

n∑
i=1

|y′ − y| (3)

MSE =
1

n

n∑
i=1

(y′ − y)2 (4)

where y is the measured energy consumption value, y′ is the energy con-
sumption predicted value, ȳ represents the average values of the corresponding
variables, N is the number of data points considered, CV is the coefficient of
variation, σ is the standard deviation and µ is the population mean.

3 Development of Prediction Models

3.1 Building Description

The office building and two leisure centres namely, Waves and Don Tatnell leisure
centres are in Melbourne and are both run and managed by Kingston municipal-
ity. Waves leisure centre generally comprises of a standalone Aquatic and Leisure
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Centre situated along longitude and latitude 145.0577 ◦E and 37.9516 ◦S respec-
tively. The centre comprises an aquatic area, the health and fitness areas and
ancillary facilities comprise of male and female toilet and change rooms, staff
rooms, school change, family change, creche, retail store, kiosk with associated
food and storage areas, Mezzanine floor party hire area, general administration,
reception area and foyerentry area. The building area sits on approximately
5500m2 of land on a concrete slab base, with rendered masonry walls and cov-
ered with a pitched tin roof and fitted with aluminium framed windows and
doors.

Don Tatnell leisure centre also houses various indoor leisure activities under
one roof including, a fitness centre, a spa, indoor swimming pool, a formal pool
and an occasional day-care centre. Don Tatnell leisure centre location is to the
northeast corner of the site, with the main entrance facing east. It is constructed
from a concrete slab base, with rendered masonry walls and covered with a
pitched tin roof and fitted with aluminium framed windows and doors. The
longitude and latitude of the site are approximately 145.0924 ◦E and 37.9911 ◦S
respectively. Both leisure centres are open every day of the week, from 6am-9pm
weekdays and 7am-6pm weekends.

The longitude and latitude of the office building site are approximately 145.0
◦E and -37.8 ◦S respectively. True north is about -57◦ from the front elevation
(Nepean Highway or North Eastern side) of the building. The building is rect-
angular and comprises approximately 10,500m2 floor area with seven stories of
office space. The building facade primarily comprises painted precast concrete
panels of 200mm thickness. Within the panels are vision glass window and span-
drel combination sets. The glazing height varies from 2450mm for the ground
level to 1950mm for levels 1 to 6. The width of glazing varies from 1980mm to
3280mm, while the front and rear have feature combinations on the centre of the
facade.

3.2 Dataset Description

The electrical energy consumption datasets of the three buildings do not con-
tain missing values. All data points correspond with correct timestamp values.
However, the datasets did include some outliers. The system on few instances
recorded a series of zero values then suddenly sums up the total power usage
for that given period (with zero readings) with a very high value which would
not typically be consumed in 15 minutes. A total of 20 potential input variables
were investigated to test their impact on electrical power demand prediction
at the two leisure centres and the office building. These inputs are: maximum
and minimum temperature (Tmax, Tmin), dry bulb air temperature (T ◦C),
mean temperature (Tmean ◦C), dew temperature (DewT ◦C), maximum and
minimum wind (Umax, Umin), prevailing wind speed (U), gusty winds (Ug),
relative humidity (RH%), wind direction (Ud), average wind speed (Umean),
average wind direction (Udmean), year, week of the year, weekday, day of the
year, month of the year, hour of the day, and 15 minute. The climatic variables
of a nearby weather station were obtained from the Bureau of Meteorology with
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a 15-minute resolution. The two leisure centres’ training and validation datasets
contain data from 01/05/2017 00:00 to 24/09/2018 09:30 while the office building
dataset ranges from 01/06/2011-24/03/2018. Melbourne is classified according
to the Köppen climate classification as a temperate oceanic climate. The city
warms up in summer with mean temperatures between 14 - 25.3◦C and winters
averaging between 6.5 - 14.2◦C.

3.3 Statistical Description of the Data

This section provides a brief insight into the energy consumption of the three
datasets used for experimentation. Table 1 gives the statistical description of
the energy consumption profiles at the sites. The office building has the highest
number of historical energy consumption observations followed by Waves, and
then Don Tatnell has the least observations recorded. On average, Waves leisure
has the highest energy consumption rate followed by Don Tatnell and then the
office building.

Parameter Waves Centre Don Tatnell Office building

Count 48998 48050 236268
Mean 55.702233 23.84 19.79

Standard deviation 11.71 8.71 16.53
Min 0 6.50 0.00
25% 45 14.03 7.42
50% 60 24.84 9.79
75% 65 30.63 33.64
Max 94 53.97 176.54

Table 1: Statistical summary of energy consumption profiles at the three cites

The energy consumption distribution patterns for the Don Tatnell leisure
centre, Waves leisure centre and the office building are shown in Fig 2.

The two leisure centres show a seemingly similar electrical consumption dis-
tribution shape relative to the office building. Don Tatnell leisure centre has a
somewhat almost symmetric distribution while Waves leisure centre shows some
skewness to the left and the office building being skewed to the right. The major-
ity of the office building energy consumption readings fall within the 0-35 kWh
range while Waves leisure centre has a range between 60-70kWh. It is worth men-
tioning that leisure centres tend to consume more energy than office buildings;
however, little building research exists in building energy performance literature
regarding these leisure centres.

3.4 Selection of candidate inputs

Among the 20 potential inputs, Temperature, Tmean, Tmax and Tmin showed
high correlation and the same is true with Umean, Umax, Ugust. This means
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Don Tatnell distribution Waves distribution

Office distribution

Fig. 2: Energy consumption histograms of the three buildings

that they have a similar effect on the dependent variables (energy consumption)
as such, choosing only one as an input in the model is equally effective than using
all. Following this explanation, Tmean and Umean were adopted to represent
temperature and wind-related inputs respectively, bringing the number of input
variables down from 20 to 13 inputs.

3.5 Data Transformation

Due to the vast differences in numerical ranges between the input and output val-
ues standardisation of the inputs values was carried out. Standardisation scales
each feature such that the distribution is centred around 0, with a standard
deviation of 1. Standardisation allows comparability among inputs and it also
enhances the training process since the numerical condition of optimisation is
improved as opposed to without standardisation. As such, the mean and stan-
dard deviation for each feature is calculated, and then the feature is scaled using
equation 5 :

z − score = (xi − µ)/σ. (5)

where xi is the observed value, µ is the population mean and σ is the popu-
lation standard deviation.
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3.6 Transfer Learning Experiment Set-up

The most skilful of the five machine learning algorithm described in section 2.1
are selected in the transfer learning investigation. Initially, the models are de-
veloped and fine-tuned from scratch on the office building (DO), Don Tatnell
(DC) and Waves leisure centres (DW). For comparison purposes models devel-
oped using Don Tatnell dataset will act as the baseline models to test transfer
learning effect. During the development of all models, the training set sizes are
varied gradually from 1% (to simulate the lack of data) to 80% (enough data).
The earlier developed office building (DO)and Waves leisure centre (DW) models
are then retrained using data from Don Tatnel for predicting energy consump-
tion at Don Tatnell centre using a similarly sized training dataset of between
1% to 80%. The results are then compared using the evaluation metrics already
described in section 2.2.

All learning algorithms were implemented using Python programming lan-
guage. The development of machine learning models was done using the scikit-
learn ( Python programming language library) [17]. All model development
and experimental tasks were conducted on a Windows machine (Intel Core i5
2.40GHz 8GB RAM).

4 Results and Discussion

4.1 Model Selection for Transfer Learning

Four evaluation metrics that are RMSE, MAE, MSE and R2 are used for eval-
uation of the skill of prediction models. The performance of the five models in
energy consumption prediction for Waves Leisure Centre is summarized in Ta-
ble 2. All ensemble based tree models had equally good performance with slight
variations amongst themselves. The decision tree algorithm has the least perfor-
mance followed by the k-NN algorithm. The EET model with the least amount
of error is adopted for the transfer learning task having MSE, MAE, RMSE and
R2 values of 12.89, 2.52, 3.59 and 0.913 respectively. Following this result, the
EET model became the model of choice in the transfer learning experimentation.

Model MSE MAE RMSE R2

Decision tree 28.83 3.72 5.37 0.805
K-Nearest Neighbour 22.87 3.52 4.78 0.85

Random forest 14.41 2.67 3.79 0.903
Ensemble Extra trees 12.89 2.52 3.59 0.913

LightGBM 13.58 2.64 3.68 0.908

Table 2: Waves leisure centre energy consumption prediction results

The optimum number of trees (M), maximum tree depth (Dmax), the min-
imum number of samples needed for splitting a node (nmin) and the attribute
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selection strength parameter (K) are 260, 8, 10 and 9 respectively for the best
performing model.The (EET) algorithm was again selected and fine-tuned for
office building energy consumption prediction. The EET model obtained MSE,
MAE, RMSE and R2 values of 0.48, 0.43, 0.69 and 0.97 respectively. Overall
the EET model demonstrated better performance on office building relative to
the leisure centre. This result is as expected and demonstrates the complexity
of the leisure centre prediction exercise and also the larger dataset available at
the office building.

4.2 Transfer learning results

Following a series of investigations, this section outlines the finding and gives
discussion around the results. The performances of the developed EET models
in the transfer learning exercise are summarised in Table 3 and 4. Initially, the
EET models are developed using historical data and fine-tuned for the energy
consumption prediction of the three buildings before selection for transfer learn-
ing. After that, the most skilful models according to the discussed evaluation
metrics, are then set aside for the task of transfer learning.

Office building prediction has seven years worth of historical data, while both
leisure centres have only sixteen months worth of available historical data. To test
the effect of transfer learning on models the training data for all models is varied
between 0.1%(simulating data shortage scenario) to 80% (simulating enough
data situation) and the performance of the models is monitored consequently by
tracking the evaluation metrics adopted. Particular importance is given to the
instances were models are trained with few data as that represents the primary
motivation for the investigation.

As seen in Table 3, it is evident that both instances of pre-trained models
(with transfer learning) do have superior performances relative to the cases where
the models are trained from scratch (no transfer learning). This phenomenon
is observable at all training data sizes under consideration with the weakest
performance being for training data sizes less than 10%. It is also noted that
while pre-trained models do perform better than training from scratch, models
pre-trained on Waves centre dataset have lower error metrics as opposed to those
pre-trained on office buildings. This may be because of the similarities in building
operations, location and building form. Overall, on average, models pre-trained
on Waves centre relative to those that are trained from scratch, have lower
MSE, MAE and RMSE values by 19%,14% and 10% respectively. On the other
hand, those models pre-trained on the office building have lower MSE, MAE and
RMSE values by 7%, 5% and 4% respectively compared to Don Tatnell models.
This shows that pre-trained models did have better performance than models
developed from scratch with the models pre-trained on waves having the most
superior performance.

In the last section of the investigation, differenced (lag=1) time-series data
is considered under the same investigation conditions above, and the results do
show a similar trend as observed earlier. As expected, pre-trained models show
superior performance relative to the one trained from scratch. While in the earlier
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With transfer Without transfer (Direct don) With transfer
Pre-trained with Office (DO) Direct Don (DC) Pre-trained with Waves (DW)

Training % MSE MAE RMSE R2 MSE MAE RMSE R2 MSE MAE RMSE R2

80 7.45 1.87 2.73 0.89 8.55 2.0 2.92 0.87 6.85 1.76 2.62 0.9
50 8.62 2.1 2.94 0.88 9.55 2.2 3.1 0.87 7.76 1.92 2.79 0.89
20 9.91 2.25 3.15 0.87 11.19 2.41 3.35 0.85 8.62 2.06 2.94 0.89
10 10.6 2.4 3.26 0.86 11.56 2.5 3.4 0.85 8.96 2.13 2.99 0.88
8 10.38 2.35 3.22 0.86 11.59 2.49 3.41 0.85 9.08 2.14 3.01 0.88
5 10.24 2.27 3.2 0.87 11.67 2.45 3.42 0.84 9.34 2.11 3.06 0.88
3 10.43 2.3 3.23 0.86 11.49 2.45 3.39 0.85 9.68 2.16 3.11 0.87
1 13.13 2.66 3.62 0.83 13.92 2.78 3.73 0.82 11.4 2.42 3.38 0.85

0.8 11.78 2.53 3.43 0.84 12.77 2.6 3.57 0.83 10.65 2.34 3.26 0.86
0.5 12.4 2.59 3.52 0.84 14.01 2.81 3.74 0.82 11.02 2.35 3.32 0.85
0.3 12.28 2.57 3.5 0.84 14.56 2.86 3.82 0.81 11.49 2.38 3.39 0.85
0.1 33.97 4.57 5.82 0.55 31.03 4.44 5.57 0.59 25.6 3.9 5.06 0.66

Table 3: Transfer learning results using an undifferenced time-series

example models pre-trained on waves leisure centre had superior performance
to that training on the office building, results show almost similar performance
on training set sizes greater and 10%. On average, both pre-trained models(DO

and DW) show lower MSE, MAE and RMSE values of 19%, 16% and 10% as
compared to those trained from scratch (Dc) models. However, of particular note
is the rather seemingly equal performance by pre-trained models from Waves
centre and the office building.

With transfer Without transfer (Direct don) With transfer
Pre-trained with Office (DO) Direct Don (DC) Pre-trained with Waves (DW)

Training % MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

80 8.75 1.8 2.96 11.03 2.18 3.32 8.73 1.8 2.95
50 8.83 1.81 2.97 11.14 2.19 3.38 8.82 1.81 2.97
20 9.5 1.88 3.08 12.14 2.32 3.48 9.54 1.88 3.09
10 9.56 1.91 3.09 12.25 2.33 3.5 9.6 1.92 3.1
8 9.61 1.92 3.1 12.12 2.32 3.48 9.66 1.92 3.11
5 9.72 1.93 3.12 12.08 2.32 3.48 9.78 1.94 3.13
3 9.75 1.94 3.12 11.8 2.31 3.44 9.81 1.95 3.13
1 10.19 2.01 3.19 12.5 2.39 3.54 10.33 2.04 3.21

0.8 10.3 2.03 3.21 12.95 2.44 3.6 10.38 2.06 3.22
0.5 10.22 2.03 3.2 12.32 2.38 3.51 10.34 2.05 3.22
0.3 10.42 2.05 3.23 12.77 2.41 3.57 10.51 2.08 3.42
0.1 11.15 2.25 3.34 13.37 2.55 3.66 11.15 2.25 3.34

Table 4: Transfer learning results using a differenced time-series

Nonetheless models trained on differenced time-series show lower error values
in general across all training data sizes and models (pre-trained and direct).Thus,
transfer learning with differenced time series recorded lower error values (Table
4) as compared to instances were the time-series is undifferenced (Table 3).
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5 CONCLUSION

The need for fast and accurate models for building energy consumption predic-
tion continues to increase particularly with the rise in the need for renewable
energy sources and ever-changing smart grid networks. Data acquisition is a
costly exercise concerning both time and financial resources. Due to the gen-
eral problem of inadequate training data, the authors try to show the benefits of
the well-known transfer learning paradigm. The knowledge learnt from buildings
with vasts amount of data was leveraged for use in the building with little data.
This study investigated the applicability of transfer learning and ways of max-
imising its benefits in the task of building energy consumption prediction. To
exemplify the transfer learning problem case three buildings comprising an of-
fice building and two leisure centres, are analysed and machine learning models,
based on mainly ensemble decision trees, are developed and tested. The bene-
fits of this approach are evident in our experimental results. Transfer learning
demonstrated advantage, in terms of prediction accuracy, even comparing with
models with adequate training data sets. The study also concluded that differ-
encing a time series improves transfer learning. This advantage is independent of
underlying learning methods. Hence we conclude that transfer learning is valid
and a useful method for building energy consumption prediction in complex fa-
cilities like leisure centres. With this approach, extensive data collection prior to
the learning becomes less essential.

The authors are currently investigating ways of improving transfer learning
on these time-series related problems using deep learning models as an exten-
sion of this current research work. Unlike classical machine learning models,
deep learning techniques have abilities to learn the temporal dependence au-
tomatically and naturally handle temporal structures found within time series
data.
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