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Abstract. A skeletal representation of geometrical objects is widely used in com-
puter graphics, computer vision, image processing, and pattern recognition.  
Therefore, efficient algorithms for computing planar skeletons are of high rele-
vance. In this paper, we focus on the algorithm for computing the Voronoi skel-
eton of a planar object represented by a set of polygons. The complexity of the 
considered algorithm is O(N log N), where N is the total number of polygon’s 
vertices. In order to improve the performance of the skeletonization algorithm, 
we proposed theoretically justified shape optimization heuristics, which are 
based on polygon simplification algorithms. We evaluated the efficiency of such 
heuristics using polygons extracted from MPEG 7 CE-Shape-1 dataset and meas-
ured the execution time of the skeletonization algorithm, computational over-
heads related to the introduced heuristics and the influence of the heuristic onto 
the accuracy of the resulting skeleton. As a result, we established the criteria al-
lowing us to choose the optimal heuristics for Voronoi skeleton construction al-
gorithm depending on the critical system’s requirements. 

Keywords: Voronoi diagram, Voronoi graph, skeleton, optimization, heuristics. 

1 Introduction 
The skeletal representation of the planar object is essential for many problems of com-
puter vision and pattern recognition, image processing, computer graphics and visuali-
zation [1]. Skeletons are widely used for shape matching [2, 3], optical character recog-
nition [4] and image retrieval [2, 5]. In the area of biomedical image processing, skele-
tonization methods are extensively applied to compute the central line of thin objects. 
For example, one can extract the skeletal graph representing the retinal blood vessels 
topology [6, 7]. A similar technique can be applied to segment biological neural net-
works [8]. One can also use skeletonization methods to segment cellular filamentous 
structures using microscopy images [9, 10]. Thus, fast and accurate algorithms for com-
puting the skeleton of the geometrical objects are of high relevance. 

Related work.  Existing algorithms for computing the skeleton can be classified based 
on the type of processed data. For example, morphological thinning techniques are ex-
tensively used for computing the skeleton of a binary image [11-13]. They allow us to 
obtain a pixel-level representation of the thin skeleton. On the next step, such represen-
tation can be converted into a graph using the vectorization methods described [14, 15]. 
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However, the accuracy of the skeleton is bounded by the resolution of the pixel grid. 
Moreover, many of these methods are not rotation-invariant [11,12]. 

Other techniques are based on central line tracing. They are commonly used to seg-
ment thin-line structures on an image (e.g., axons, dendrites of neurons [16], blood 
vessels [17], filamentous structures [17, 18]). These methods can directly represent the 
skeleton as a connected graph. However, due to the iterative nature of these methods, 
the execution time may vary significantly.  

Another class of methods allows us to compute a skeleton of an object, whose shape 
is represented by simple polygons. Such polygons can be either sampled directly from 
a vector graphics data or can be extracted from a binary image using the tracing tech-
niques (e.g., Marching squares [19]). Methods to construct the straight skeleton using 
the polygon shrinking technique with O(N log N) complexity are described in papers 
[20, 21]. A linear complexity method for a simple polygon without holes was intro-
duced in [22]. A more general approach for constructing the skeleton of an arbitrary 
object with holes employs the Voronoi diagram [23, 24], which has computational com-
plexity O(N log N), N is a number of primitives. In comparison to the techniques above, 
this approach allows us to directly compute a rotation-invariant thin skeleton of an ob-
ject as a graph. Moreover, one can also employ the properties of the Voronoi diagram 
to solve the related geometrical problems [25] (e.g., finding fast a convex hull, nearest 
neighbor, maximal inscribed disk). However, due to a large number of the processed 
simple primitives, such method can become computationally costly. Therefore, we fo-
cus on the Voronoi-based skeletonization methods and on heuristic techniques allowing 
us to speed up such methods by employing the shape simplification techniques. 

2 Problem statement 
We assume that a planar object has G1-continuous boundaries (except for a finite 

number of G0-continuous points – see critical points below). The object’s boundaries 
are represented by a set of simple planar polygons	𝒮: = {𝒫',𝒫),… ,𝒫+}, where poly-
gon 𝒫- is defined as an ordered set of its vertices	𝑝)-,𝑝/-,… , 𝑝01

- . Polygon 𝒫'  corre-
sponds to the outer contour of the object. 𝑅 ≔ 𝒫'\⋃ 𝒫6+

67)  defines the object's domain. 
Let’s denote the set of open line segments (LS’) corresponding to the polygon 𝒫- 

by ℒ-:= ℒ(𝒫-) = ;𝑙6- ≔ =𝑝6-,𝑝6>)- ?	|	𝑖 = 1, … ,𝑀-,	𝑝01>)
- = 𝑝)-D and the set of all ver-

tices (line segment’s endpoints) by 𝒬 = ⋃ ⋃ ;𝑝6-D
01
F7)

+
-7' . A set ℒ ≔ ⋃ ℒ-+

-7)   contains 
all line segments of 𝒮. 

Definition 1. The Voronoi cell [29] corresponding to an element 𝑢 ∈ ℒ ∪ 𝒬 is de-
fined as a locus of points: 

𝒱𝒞(𝑢) = {𝑝 ∈ ℝ/|𝑑𝑖𝑠𝑡(𝑝, 𝑢) ≤ 𝑑𝑖𝑠𝑡(𝑝, 𝑤),𝑤 ≠ 𝑢,𝑤 ∈ ℒ ∪ 𝒬} (1) 

Definition 2. The Voronoi diagram [29] of a set of line segments ℒ (with endpoints 
𝒬) is defined as a set of all Voronoi cells:  

𝒱𝒟(ℒ,𝒬) = T {𝒱𝒞(𝑢)}
U∈ℒ∪𝒬

 (2) 

Remark 1. The most of the computational algorithms (e.g., "Divide and Conquer" 
[26], Fortune's algorithm [27]) represent the boundaries between neighboring Voronoi 
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cells in terms of the Voronoi graph [28-29] 𝐺𝒮 = (𝑉𝒮, 𝐸𝒮) with a set of the Voronoi 
vertices 𝑉𝒮  and a set of Voronoi edges 𝐸𝒮 ⊆ 𝑉𝒮 × 𝑉𝒮 . 

Definition 3. Let’s assume that a polygon 𝒫 approximates boundary of geometrical 
object and a vertex 𝑝 of 𝒫 corresponds to the point of the boundary, where object is G0-
continouous (but not G1-continouous).  Then vertex 𝑝 is called critical points (vertices) 
of the polygon 𝒫. 

Remark 2. Vertices of polygon 𝒫 corresponding to G1-continouous part of object’s 
boundary, might induce redundant edges of the Voronoi diagram – the bisectors be-
tween consecutive line segments 𝑙6 and 𝑙6>) sharing common non-critical endpoint 𝑝6. 
In order to obtain an approximate Voronoi diagram of an object represented by 𝒮, such 
redundant edges corresponding to all non-critical points of 𝒮 should be removed [29]. 

Definition 4. An approximate Voronoi diagram 𝒱𝒟[(𝒮) [29] for a planar object 
represented by a set of polygons 𝒮 is obtained as a subgraph 𝐺𝒮[ of the Voronoi graph 
𝐺𝒮  by removing the edges of 𝐺𝒮  corresponding to the bisectors between two consecu-
tive line segments 𝑙6 and 𝑙6>) sharing a common non-critical vertex 𝑝6. 

Definition 5. The Voronoi skeleton [23] of a planar object represented by 𝒮 is a 
subset of the approximate Voronoi diagram 𝒱𝒟[(𝒮) located inside object’s region 𝑅. 

Remark 3. Thus, the Voronoi skeleton of 𝒮 is obtained by removing (or trimming) 
the edges of 𝐺𝒮[, which do not locate in 𝑅. 

Problem statement: Given a set of polygons 𝒮, which represent a planar object, 
construct the Voronoi skeleton of 𝒮.  

3 Algorithm 
In this section, we describe the algorithm for computing the Voronoi skeleton. In sub-
section 3.2 we show an algorithm for transforming the Voronoi graph 𝐺𝒮  into the final 
Voronoi skeleton. The complexity analysis of the algorithm is shown in subsection 3.3. 
 
 

 
Fig. 1. Examples of the labeled Voronoi vertices and edges. 

 

3.1 Algorithm description 

Input: 𝒮:= {𝒫),𝒫/,… , 𝒫+} – the set of polygons, each vertex 𝑝6- of the polygon 𝒫- 
has a binary attribute isCritical[𝑝6-] ∈ {True, False}. Polygon 𝒫- is oriented such that 
its interior of the object is to the right for any its line segment (LS) 𝑙 ∈ 𝒫-.  
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Algorithm:  
1. Compute Voronoi diagram of line segments ℒ (with endpoints 𝒬) ⟹ Obtain Voro-

noi graph 𝐺𝒮 = (𝑉𝒮 , 𝐸𝒮) represented as doubly-connected edge list (DCEL) [28]; 
2. Using the breadth-first search (BFS) algorithm to traverse the Voronoi graph 𝐺𝒮  and 

label its edges and vertices (see Subsection 3.2); 
3. Remove the edges 𝐺𝒮   with labels “R” or “O” and vertices with labels “B” or “O”;  
4. Remove isolated vertices of 𝐺𝒮  if any exist; 

3.2 Labeling Voronoi graph 
We traverse the edges and vertices of the Voronoi graph 𝐺𝒮  and label them according 
to their role in a resulting graph of the Voronoi skeleton.  

Listing 1. Pseudocode of the Voronoi graph labeling step with auxiliary functions 

 

function InitQueue(Q) 
begin 
    Q := EmptyQueue(); 
  for edge e  
    Label[e] = “None”; 
    if isInfinite(e) 
      EnQueue(e, Q); 
      v : = non-null vertex of e; 
      Label[v] := “None”; 

        else 
v1, v2 := non-null vertices of e; 

      Label[v1] := Label[v2] := “None”; 
    return Q;  
end; 

procedure TraverseBFS(Q)  
begin 
  while not Empty(Q) do 
    e := DeQueue(Q); 
    v := Null;  
    if (isInfinite(e)) then 

    v := non-null vertex of e; 
      LabelInfiniteEdge(e); 

    else  
      v := vertex of e with “None” label; 
      LabelFiniteEdge(e); 

    for edge e incident to v do  
      // Add non-labeled edges to queue 
    if (Label[e] = “None”) then 

    EnQueue(e, Q); 
end;  

procedure LabelInfiniteEdge(e) 
begin 
  c1, c2 := cells of e and Twin(e); 
  v := non-null vertex of e; 
  if Type(c1) = “EP” && Type(c2) = “EP” then  
    Label[e] := Label[v] := “O”; // Outer 

  else 
    p := unique EP of line segment; 

    if v coincides with p then 
  Label[v] := (isCritical[p]) ? “C” : “B”; 

        Label[e] := “O”; // Outer 
    else 

  Label[v] := “I”; // Inner 
  if isCritical[p] then 
    Label[e] := “C”; // Critical 
    Trim e to p; 

  else 
    Label[e] := “R”; // Redundant 

end; 

procedure LabelFiniteEdge(e)  
begin 
  v0 := labeled vertex of e; 
  v1 := unlabeled vertex of e; 
  c1, c2 := cells of e and Twin(e); 
  if Label[v0] = “I” || Label[v0] = “O” then 
    if Type(c1) = “LS” && Type(c2) = “LS” then 
      if LS’ of c1 and c2 share endpoint p then 
        if isCritical[p] then 
          Label[v1] := “C”; // Critical 
          Label[e] := (Label[v0]=“I”) ? “C” : “O”; 

  else 
          Label[v1] := “B”; // Boundary 
        Label[e] := (Label[v0]=“I”) ? “R” : “O”; 

      else 
    Label[v1] := Label[v0];  

        Label[e] := Label[v0]; 
        else // Edge between LS and EP 

      if c1 and c2 belong to the same LS then 
        p := line segment’s endpoint; 
        if p coincides with v1 then 
          Label[v1] := (isCritical[p]) ? “C” : “B”; 
          if Label[v0] = “O” then 

Label[e] := “O”; // Outer 
          else 

Label[e] := (isCritical[p]) ? “C” : “R”; 
    else 

    Add new vertex v with position p to GS  
    Replace e by e0 := (v, v0), e1 := (v, v1); 
    Label[v] := (isCritical[p]) ? “C” : “B”; 
    if Label[v0] = “O” then 

    Label[v1] := “I”;  
if isCritical[p] then 
    Label[e1] := “C”; 
else 
    Label[e1] := “R”; 
    Label[e0]  := “O”; 

   else 
    Label[v1] := Label[e1] := “O”; 
     Label[e0] := (isCritical[p]) ? “C” : “R”; 

      else // bisector is a parabolic arc 
        Label[v1] := Label[v0]; 
        Label[e] := (Label[v0]=“O”)?“O”:“I”; 

  else // Critical or Boundary  
    if v1 is located to the right of c1 or c2 then 
      Label[v1] := “Inner”; 
      Label[e] := (Label[v0] = “C”) ? “C” : “R”; 

    else 
      Label[v1] := “Outer”; 
      Label[e] := (Label[v0] = “C”) ? “C” : “O”; 

end; 
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Definition 6. Voronoi vertex (cf., Fig. 1) is called (label abbreviation is in parenthesis): 
• Inner (“I”), if the vertex is located inside the object’s polygon; 
• Outer (“O”), if the vertex is located outside the object’s polygon; 
• Critical (“C”), if it coincides with one of the critical vertices of the object’s polygon; 
• Boundary (“B”), if it coincides with one of the non-critical vertices of the polygon; 

Definition 7. Voronoi edge (cf., Fig. 1)  𝑒 is called (label abbreviation is in parenthesis): 
• Inner (“I”), if it locates in 𝑅 and doesn’t touch (intersect) any polygon from 𝒮;  
⟹ both vertices of 𝑒 are labeled as Inner; 

• Critical (“C”), if it locates in 𝑅 and adjacent to a critical vertex;  
• Outer (“O”), if the edge locates outside 𝑅 ⟹ both vertices of 𝑒 are labeled as Outer; 
• Redundant (“R”), if it locates in 𝑅 and touches polygon’s non-critical vertex; 

The pseudocode illustrating the labeling procedure and the related functions is 
shown in Listing 1. Firstly, we initialize the queue Q of the breadth-first search (BFS) 
algorithm (see function InitQueue(Q)) by all infinite edges of the Voronoi graph 𝐺𝒮 . 
A common data structure Label[•] is used to store labels of Voronoi edges and ver-
tices according to the definitions 6 and 7. Then, starting from infinite edges we label all 
remaining edges and vertices of 𝐺𝒮  in function TraverseBFS(Q).  At each iteration of 
BFS algorithm we label current edge and the adjacent non-labeled vertex. In Listing 1 
(Condition)?Value1:Value2 denotes to the ternary conditional operator.  
3.3 Complexity analysis 

Lemma 1. The complexity of Step 1 of the skeletonizing algorithm is O(N log N), 
where N is a number of points in a polygon.  

Proof. At the Step 1 we construct the Voronoi diagram for polygon’s line segments 
using Fortune’s algorithm. According to [27] the complexity of this step is O(M log M), 
M - number of line segments. Since N~M, Step 1 has complexity O(N log N). ■ 

Lemma 2. The complexity of Step 2 of the skeletonizing algorithm is O(N), where 
N is a number of the points in an input polygon. 

Proof. Step 2 is about labeling the edges and vertices of the Voronoi graph using 
BFS traverse algorithm. Note that the Voronoi graph is a planar connected graph. 
Therefore, Euler’s formula |𝑉| − |𝐸| + 𝑓 = 2 take place, where |𝑉|, |𝐸|, 𝑓 is a number 
of vertices, edges and faces of a graph. If |𝑉| = 𝑁, then the number of edges |𝐸| =
𝑂(𝑁).  The BFS algorithm traverses all edges of the Voronoi graph. Since all operations 
within one BFS iteration can be performed in O(1), the complexity of BFS routine is 
O(|𝐸| + |𝑉|) = O(N). Thus, the complexity of Step 2 is O(N). ■ 

Lemma 3. The complexity of Steps 3-4 of the skeletonizing algorithm is O(N), 
where N is a number of the points in an input polygon. 

Proof. One edge can be removed from DCEL in O(1) by reassigning the pointers 
[25, 28]. According to Lemma 2, the number of edges |𝐸| = 𝑂(𝑁). Therefore, the com-
plexity of Step 3 is 𝑂(𝑁). A single isolated vertex can be removed from DCEL in O(1). 
Therefore, the complexity of Step 4 is 𝑂(𝑁). ■ 

Theorem 1. The complexity of the skeletonizing algorithm is O(N log N), where N 
is a number of the points in an input polygon. 

Proof. According to analysis of the complexities of each algorithm’s step provided 
in Lemmas 1-3, the total complexity of skeletonizing algorithm is O(N log N). ■ 
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4 Optimization and heuristics 
We introduce an optimization heuristic allowing us to compute fast the Voronoi skele-
ton by reducing the number of vertices of input polygons. The main idea behind the 
optimization procedure is illustrated by the following lemma. 

Lemma 4. Let 𝒫 = {𝑝), 𝑝/,… , 𝑝s} be a polygon and 𝑙6 denotes the line segment 
between points 𝑝6 and 𝑝6>) of a polygon 𝒫, 𝑖 = 1, … ,𝑁, (𝑝s>) = 𝑝'). The polygon 𝒫′ 
is obtained by subdividing line segments 𝑙6, 𝑖 = 1, …𝑁 of a polygon 𝒫 such that line 
segment 𝑙6 is replaced by a polyline 𝑝6,), 𝑝6,/ … , 𝑝6,uv  of points on 𝑙6, 𝑖 = 1,2,… , 𝑁 
(𝑝6,) = 𝑝6, 𝑝6,uv = 𝑝6>)). Then the Voronoi skeletons 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) constructed 
using the skeletonizing algorithm above are equal (in terms of the Hausdorff distance 
between the corresponding Voronoi graphs). 

Proof. The Voronoi diagram of line segments of 𝒫 and 𝒫′ consist of the bisectors 
of the following types: a bisector between two line segment’s interiors, a bisector be-
tween a line segment’s interior and an endpoint, bisector between two endpoints. Let’s 
consider these cases separately: 

 
(a) 

 
(b) 

Fig. 2. Examples of the labeled Voronoi vertices and edges. 

Case 1 (see Fig. 2,a). The bisector between two line segment’s interiors 𝑙) and 𝑙/ is 
a line segment 𝑙′ [27, 28]. Let’s suppose that in 𝒫′ line segment 𝑙/ remains the same 
and 𝑙) is subdivided into two parts 𝑙),) and 𝑙),/ connected by a shared endpoint 𝑞. Then, 
the Voronoi cell corresponding to 𝑙) in 𝒱𝒟(𝒫) will be split into two Voronoi cells 
(corresponding 𝑙),) and 𝑙),/) of 𝒱𝒟(𝒫′) by the Voronoi edge 𝑒 such that 𝑒 is a bisector 
between 𝑙),) and 𝑙),/ which passes through 𝑞 and is perpendicular to 𝑙) (and therefore, 
𝑙),) and 𝑙),/). Thus, the Voronoi edge 𝑒 will divide bisector line segment 𝑙′ in 𝒱𝒟(𝒫) 
into two parts 𝑙′) and 𝑙′/ in 𝒱𝒟(𝒫′) such that 𝑙′) is a Voronoi edge of the Voronoi cell 
of 𝑙),) and 𝑙′/ is a Voronoi edge of the Voronoi cell of 𝑙),/. Note that 𝑙′), 𝑙′/ and edge 𝑒 
are connected together by a newly introduced Voronoi vertex 𝑣′. The remaining part of 
the Voronoi diagrams for 𝒫′ and 𝒫 stays the same. The BFS labeling procedure (see 
Step 2 of the algorithm above) for Voronoi edges and vertices of 𝒱𝒟(𝒫′) will split the 
introduced in 𝒱𝒟(𝒫′) Voronoi edge 𝑒 into two parts 𝑒) and 𝑒/: one part will be labeled 
as “Outer” and the other part will be labeled as “Redundant”. Therefore, both parts will 
be removed at Step 3 of the skeletonizing algorithm and the resulting Voronoi skeleton 
𝒱𝒮(𝒫′) will contain the line segment edges 𝑙′), 𝑙′/ connected by 𝑣′.   

Case 2. In case of a line segment’s interior 𝑙 and an endpoint	𝑝, two possible sce-
narios take place. First scenario is when 𝑝 is an endpoint of 𝑙. In this case Voronoi 
diagram contains an edge 𝑒′ coming through 𝑝 and perpendicular 𝑙. The edge 𝑒′ can be 

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8


7 

either removed or not by BFS procedure depending on the type of 𝑝. Subdividing 𝑙 into 
two parts 𝑙[ and 𝑙y which share an endpoint 𝑞 will introduce a new edge 𝑒 parallel to 
𝑒′, which will be classifies as “Redundant” and removed from the final skeleton. The 
second scenario (see Fig. 2,b) is when 𝑝 is not an endpoint of 𝑙. Then the bisector be-
tween 𝑝 and 𝑙 is a parabolic arc 𝑙z, which is subdivided into two parts 𝑙z,), 𝑙z,/ if we 
split 𝑙 into 𝑙[ and 𝑙y. The analysis in this case is the similar to the Case 1 except that 
now 𝑙′) and 𝑙′/ are parabolic arcs 𝑙z,) and 𝑙z,/, respectively. 

Case 3. The bisector between two different endpoints of 𝒱𝒟(𝒫′) or 𝒱𝒟(𝒫) is an 
infinite edge (ray), which is classified at Step 2 of the algorithm above as “Outer” and, 
therefore, removed from both 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) at Step 3. 

The case of single subdivision (𝐿 = 1) of polygon’s line segment for different pos-
sible bisectors of the Voronoi diagram is covered above. The general case for several 
subdivisions 𝐿 can be proved by induction on L. 

Let’s assume that for 𝐿 = 𝑛 subdivisions of 𝒫 holds that 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) are 
equal. The polygon 𝒫′′ is obtained from 𝒫′ by subdividing an arbitrary line segment of 
𝒫′ into two line segments. Therefore, we can apply one of the proved cases for a single 
subdivision above and obtain that Voronoi skeletons 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′′) are equal. 
Thus, by induction 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) are equal for any 𝐿 > 0. ■ 

 
Fig. 3. The Voronoi skeletons (red) for polygon P (blue) and its subdivided version P' (blue) and 
respective Voronoi diagrams (gray). 

Remark. It follows from Lemma 4 that the Voronoi skeleton 𝒱𝒮(𝒫′) for a subdi-
vided polygon 𝒫′ is the same (w.r.t. Hausdorff distance) as the Voronoi skeleton 𝒱𝒮(𝒫) 
for the original polygon 𝒫 (see Fig. 3). However, in comparison to 𝒱𝒮(𝒫), 𝒱𝒮(𝒫′) is 
represented with a larger number of Voronoi edges and vertices. Therefore, the concept 
of the Voronoi skeleton with a minimal number of vertices/edges take place. Applying 
Lemma 4 in the reverse direction allows us to reduce the number of vertices and edges 
of the Voronoi skeleton. This in turn reduces the execution time of skeletonization al-
gorithm and compresses the resulting graph representation of a skeleton. 

Therefore, our aim is to design a heuristic based on simplification operation (reverse 
to subdivision) and obtain polygon 𝒫 from 𝒫′. According to Lemma 4 simplification 
procedure (algorithm) should meet the following requirement: 

Simplification requirement (SR):  The polygon simplification heuristic removes 
the points corresponding to colinear connected line segments of the polygon represent-
ing such line segments by a single line segment.  
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Table 1. The overview of polygon (polyline) simplification algorithms. 

Thus, we introduce Step 0 of the skeletonizing algorithm: simplify each polygon of 
a set 𝒮 by reducing the points associated with colinear connected line segments (SR). 
This operation can be performed using one of the existing polygon simplification algo-
rithms satisfying the simplification requirement (SR). 

Table 2. Suitable polygon simplification algorithms, their parameter and heuristics. 

Algorithm Parameter(s) Heuristics for 2nd parameter 
DP 𝜀 > 0 – tolerance parameter; No 
VW 𝐴 > 0 – minimum triangle area; No 
RW 𝜀 > 0 – distance tolerance; No 
OP 𝜀+6� , 𝜀+[� > 0  – tolerances; 𝜀+[� = +∞ (large number) 

LA 𝜀 > 0 – distance tolerance; 
𝑅 ∈ ℕ – size of search region; 

𝑅 = 𝜃 ∙ 𝑁, 	𝑁 – number of points; 
𝜃 ∈ {0.05,0.1,0.2,0.25, 0.5, 1.0}. 

ZS 𝜀 > 0 – sector bound error; No 
PD 𝜀 > 0 – distance tolerance; 

𝐾 ∈ ℕ – number of repetitions; 
𝑅 = 𝜃 ∙ 𝑁, 	𝑁 – number of points; 
𝜃 ∈ {0.05,0.1,0.2,0.25, 0.5, 1.0}. 

Analysis of simplification algorithms. We have analyzed the most commonly used 
algorithms for polygon (polyline) simplification and summarized the results in Table 1. 

However, certain simplification strategies do not agree with the simplification re-
quirement (SR). For example, a naive Nth point [38] method merely removes every Nth 
point from a polygon ignoring its geometry. Circle simplification [38] method groups 
together points forming spatial clusters based on the distance threshold. Then, a single 
representative point replaces each such cluster. Li-Openshaw [37] and Rapso [36] al-
gorithms simplify polyline based on spatial pixel (or hexagon-based) grid. These algo-
rithms instead solve the problem of polyline digitization (useful for solving the problem 
of optimal map rescaling). Therefore, we consider only the algorithms fulfilling SR (see 
Table 2). Most of the analyzed algorithms have complexity O(N) except DP [30] and 

Name of algorithm (Abbr.) Average complexity Worst-case complexity SR 
Ramer-Douglas-Peucker (DP) [30] O(N log N) O(N2) yes 
Visvalingam-Whyatt (VW)  [31] O(N log N) O(N log N) yes 
Reumann-Witkam (RW) [32] O(N) O(N) yes 
Opheim (OP) [33] O(N) O(N) yes 
Lang (LA) [34] O(NK) O(NK2) yes 
Zhao-Saalfeld (ZS) [35] O(N) O(N) yes 
Rapso (RA) [36] O(N) O(N) no 
Li-Openshaw (LO) [37] O(N) O(N) no 
Nth point (NP) [38] O(N) O(N) no 
Circle (CI) [38] O(N) O(N) no 
Perpendicular distance (PD) [38] O(NK) O(N) yes 
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VW [31] algorithms with O(N log N) complexity. In order to select the algorithm, which 
shows the best performance improvement, has the smallest computational overhead and 
influences the resulting skeleton the least, we investigated these algorithms empirically 
as described in the evaluation section. 

5 Evaluation 
We evaluate the performance of the skeletonization algorithm in terms of the execution 
time and measure the influence of the introduced heuristics onto the accuracy, execu-
tion time of the overall algorithm. We also estimate the computational overheads re-
lated to the line simplification algorithms. 

Dataset.  In order to evaluate the perfor-
mance of the skeletonization algorithm and 
individual optimization heuristics, we used 
polygons obtained from MPEG 7 CE-Shape-
1 dataset. These polygons were extracted 
from binary images using the Marching 
Squares algorithm [19]. In total the dataset 
consists of 1282 polygons (see Fig. 4). 

Measures. We have measured the following quantities: 
1. Execution time (ms) of each simplification algorithm, skeletonizing algorithm with 

(without) the mentioned heuristics and overall execution time. The experiments were 
carried on Intel Core i7, 2.2GHz, 16Gb RAM.  

2. Hausdorff distances 𝑑�  (errors) [39] between the simplified and original polygons 
and also between the ground truth skeleton and one obtained using the skeletoniza-
tion with heuristics; 

3. Simplification rate (%) of the polygon is computed as follows: 

𝑆𝑅(𝑃, 𝑃�) =
|𝑃| − |𝑃′|

|𝑃| ∙ 100% (3) 

where 𝑃 and 𝑃� are original and simplified polygons, respectively. |𝑃| is the number of 
vertices of 𝑃 (large values of 𝑆𝑅(𝑃, 𝑃�) correspond to small |𝑃′| w.r.t. |𝑃|).  

Parameters. The parameters of the simplification algorithms (see Table 2) were chosen 
using the line search method such that the maximum simplification rate is achieved for 
a given threshold value of Hausdorff distance 𝑑�  between the simplified polygon 𝑃� 
and an original polygon 𝑃. This allows us to compare different simplification algorithm 
with respect to the maximum tolerable error. The established parameters of the simpli-
fication algorithms for the respective values of 𝑑�  are shown in Table 3. 

For the algorithms with two parameters we applied additional heuristics to choose 
the value of the second parameter (see Table 2). These heuristics were devised to 
achieve the maximum simplification rate for a given Hausdorff error threshold 𝑑� . It 
was established that for LA and PD algorithms the optimal value of 𝜃 is 0.25 (for	𝜃 >
0.25 the simplification rate does not increase, but the execution time of these simplifi-
cation algorithms rises). 

 
Fig. 4. Distribution of polygon’s sizes 
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Table 3. Parameters of the simplification algorithms. 
Hausdorff 

distance 𝑑� 
Algorithm parameters 

DP VW RW OP LA (0.25) ZS PD (0.25) 
0.001 0.001 0.0007 0.001 0.001 0.001 0.001 0.001 
0.005 0.005 0.0025 0.005 0.005 0.005 0.005 0.005 
0.01 0.01 0.005 0.009 0.009 0.01 0.01 0.01 
0.05 0.05 0.025 0.04 0.04 0.05 0.05 0.05 
0.1 0.1 0.05 0.08 0.08 0.1 0.1 0.1 
0.5 0.5 0.25 0.4 0.4 0.5 0.5 0.5 
1.0 1 0.5 0.8 0.8 1 1 1 

Evaluation results. We have measured the execution time of each suitable simplifica-
tion algorithm for fixed values of Hausdorff error thresholds 𝑑�  (see Fig. 5a). These 
measurements show the computational overheads related to the optimization step of the 
skeleton algorithm. In order to compare the quality of the simplification algorithms, we 
measured the respective simplification rates for given values of 𝑑� . 

 
(a) Average execution time (ms) (b) Simplification rates (%), RW≈OP 

Fig. 5. Execution time (ms), simplification rates (%) of optimization heuristics 

Fig. 5b shows that the algorithms of LA and ZS have the most substantial extent of 
polygon simplification (compression) for a given 𝑑�  having nearly identical depend-
ency curves. PD, VW, and PD algorithms achieve slightly smaller simplification rates 
showing almost undistinguishable behavior for most of the cases. However, VW algo-
rithm overperforms other algorithms for small values of 𝑑� < 0.002. OP and RW al-
gorithms have the lowest simplification rates with nearly identical dependency curves. 

In Fig. 5 one notices that despite being the fastest, algorithms of OP and RW have 
the smallest simplification rate and, therefore, might not guarantee the fastest execution 
of the skeletonization algorithm. Therefore, we measured the total execution time of 
the skeletonization algorithm depending on the value of 𝑑�  taking into account the 
overhead time of the simplification heuristics (see Fig. 6a). 

Based on Fig. 6a we can choose the fastest optimization heuristics. However, dif-
ferent values of 𝑑�  threshold might affect the accuracy of the final skeleton. Therefore, 
we investigated the influence of 𝑑�  on the result of the skeletonization algorithm. We 
calculated the skeletonization error as Hausdorff distance between the ground truth 
skeleton and the result of optimized skeletonization algorithm (see Fig. 6b). 
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(a) Total execution time (ms) (b) Skeletonization error (Hausdorff), RW≈OP 

Fig. 6. Total average execution time (ms) and skeletonization errors; 
 
6 Discussion 
Fig. 6a shows that DP- and VW-based heuristics reduce the computational time to the 
greatest extent. Only these two heuristics overperform the optimization-free approach 
(NO) for small values of 𝑑� ≤ 0.001. The optimization based on OP and RW algo-
rithms shows the smallest skeletonization error among the other approaches (see 
Fig. 6b). However, for 𝑑� < 0.002 these algorithms have outsized computational over-
heads eliminating the whole effect of the optimization. Therefore, it is reasonable to 
use OP and RW algorithm only for 𝑑� > 0.002. Note that the variance of skeletoniza-
tion error for different heuristics decreases as 𝑑� → 0 (see Fig. 6b).  

We computed 2-sample t-test to validate the hypothesis that DP- and VW-based op-
timizations produce different average skeletonization errors. The test showed that the 
errors produced by DP and VW optimizations are undistinguishable (p-value ≈ 0.24).  

Another hypothesis testing was performed to distinguish the execution time between 
DP and VW heuristics. It showed that for the most of the cases (except 𝑑� = 0.001) 
DP algorithm overperforms VW (p-value < 0.001). 

Speed-accuracy trade-off. Fig. 6 shows that none of the tested algorithms minimizes 
the accuracy and execution time of the skeletonizing method at the same time. There-
fore, the choice of the heuristics is a trade-off between accuracy and the execution time. 
Based on the performed computational experiments the following conclusions are 
drawn: 
1. If accuracy of the resulting skeleton is critical, then for 𝑑� > 0.002 the optimization 

can be performed using OP or RW algorithms. However, for 𝑑� < 0.002 the only 
reasonable optimization is using the DP or VW algorithms; 

2. If execution time of the algorithm is more critical than the accuracy, then optimiza-
tion can be performed using DP or VW algorithms, which according to the provided 
experiments give 1.7 times less accurate result then RW and OP heuristics; 

Pruning effect of polygon simplification. It was experimentally discovered, that the 
introduced optimization heuristics influences the skeleton in a similar way as pruning 
methods [40]. Fig. 7 shows that for large values of 𝑑�  (see bottom row) simplification 
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heuristics tends to regularize shape of the object in a way that the branches of the skel-
eton corresponding to small shape perturbation disappear (cf., Fig. 7, top row). There-
fore, such optimization allows us not only to speed-up the execution of the skeletoniza-
tion, but also to achieve a pruning effect and remove the noisy branches of the skeleton. 
 

 
Fig. 7. Examples of the optimized Voronoi skeletons for shapes from MPEG 7 CE-Shape-1 da-
taset. Optimization heuristics is DP. For d� = 0.001 (top row of images) skeletons contain re-
dundant branches in comparison to d� = 1.0 (the bottom row of images). 

7 Conclusion 
We proposed optimization heuristics for computing the Voronoi skeleton of the polyg-
onal data. This topic is of relevance due to its direct relation to efficient processing of 
the vectorized geometrical representations (e.g., for image processing, computer vision, 
computer graphics). We illustrated in detail the main steps of the Voronoi-based skel-
etonization algorithm and determined that its complexity is O(N log N), where N is the 
number of vertices in a polygon. We also established an optimization criterion (require-
ment) and proposed theoretically justified optimization heuristics based on the polygon 
simplification algorithms. In order to evaluate the efficiency of the proposed heuristic, 
a series of computational experiments were conducted using the polygons from MPEG 
7 CE-Shape-1 dataset. Seven state-of-the-art simplification algorithms were evaluated 
to determine the most suitable optimization heuristic fulfilling the established criterion. 
We measured the execution time of the skeletonization algorithm with and without the 
heuristic optimizations and determined the computational overheads related to such 
heuristics. We also determined the accuracy of the skeleton produced by the optimized 
algorithm based on the proposed heuristics. As a result, we established the criteria, 
which allow us to choose the optimal heuristics depending on the system’s requirement. 
For example, DP- and VW-based heuristics allow us to speed up the skeleton compu-
tation at least by 30%. It was discovered experimentally, that the optimization heuristics 
have a pruning effect onto the resulting skeleton. 
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