
Optimization heuristics for computing the Voronoi
skeleton

Dmytro Kotsur1[0000-0003-0230-8095] and Vasyl Tereshchenko2[0000-0002-0139-6049]

1 Software Competence Center Hagenberg (SCCH), Softwarepark 21, 4232 Hagenberg, Austria
2 Taras Shevchenko National University of Kyiv, Volodymyrska Str. 60, 01033 Kyiv, Ukraine

 {dkotsur,vtereshch}@gmail.com

Abstract. A skeletal representation of geometrical objects is widely used in com-
puter graphics, computer vision, image processing, and pattern recognition.
Therefore, efficient algorithms for computing planar skeletons are of high rele-
vance. In this paper, we focus on the algorithm for computing the Voronoi skel-
eton of a planar object represented by a set of polygons. The complexity of the
considered algorithm is O(N log N), where N is the total number of polygon’s
vertices. In order to improve the performance of the skeletonization algorithm,
we proposed theoretically justified shape optimization heuristics, which are
based on polygon simplification algorithms. We evaluated the efficiency of such
heuristics using polygons extracted from MPEG 7 CE-Shape-1 dataset and meas-
ured the execution time of the skeletonization algorithm, computational over-
heads related to the introduced heuristics and the influence of the heuristic onto
the accuracy of the resulting skeleton. As a result, we established the criteria al-
lowing us to choose the optimal heuristics for Voronoi skeleton construction al-
gorithm depending on the critical system’s requirements.

Keywords: Voronoi diagram, Voronoi graph, skeleton, optimization, heuristics.

1 Introduction
The skeletal representation of the planar object is essential for many problems of com-
puter vision and pattern recognition, image processing, computer graphics and visuali-
zation [1]. Skeletons are widely used for shape matching [2, 3], optical character recog-
nition [4] and image retrieval [2, 5]. In the area of biomedical image processing, skele-
tonization methods are extensively applied to compute the central line of thin objects.
For example, one can extract the skeletal graph representing the retinal blood vessels
topology [6, 7]. A similar technique can be applied to segment biological neural net-
works [8]. One can also use skeletonization methods to segment cellular filamentous
structures using microscopy images [9, 10]. Thus, fast and accurate algorithms for com-
puting the skeleton of the geometrical objects are of high relevance.

Related work. Existing algorithms for computing the skeleton can be classified based
on the type of processed data. For example, morphological thinning techniques are ex-
tensively used for computing the skeleton of a binary image [11-13]. They allow us to
obtain a pixel-level representation of the thin skeleton. On the next step, such represen-
tation can be converted into a graph using the vectorization methods described [14, 15].

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

2

However, the accuracy of the skeleton is bounded by the resolution of the pixel grid.
Moreover, many of these methods are not rotation-invariant [11,12].

Other techniques are based on central line tracing. They are commonly used to seg-
ment thin-line structures on an image (e.g., axons, dendrites of neurons [16], blood
vessels [17], filamentous structures [17, 18]). These methods can directly represent the
skeleton as a connected graph. However, due to the iterative nature of these methods,
the execution time may vary significantly.

Another class of methods allows us to compute a skeleton of an object, whose shape
is represented by simple polygons. Such polygons can be either sampled directly from
a vector graphics data or can be extracted from a binary image using the tracing tech-
niques (e.g., Marching squares [19]). Methods to construct the straight skeleton using
the polygon shrinking technique with O(N log N) complexity are described in papers
[20, 21]. A linear complexity method for a simple polygon without holes was intro-
duced in [22]. A more general approach for constructing the skeleton of an arbitrary
object with holes employs the Voronoi diagram [23, 24], which has computational com-
plexity O(N log N), N is a number of primitives. In comparison to the techniques above,
this approach allows us to directly compute a rotation-invariant thin skeleton of an ob-
ject as a graph. Moreover, one can also employ the properties of the Voronoi diagram
to solve the related geometrical problems [25] (e.g., finding fast a convex hull, nearest
neighbor, maximal inscribed disk). However, due to a large number of the processed
simple primitives, such method can become computationally costly. Therefore, we fo-
cus on the Voronoi-based skeletonization methods and on heuristic techniques allowing
us to speed up such methods by employing the shape simplification techniques.

2 Problem statement
We assume that a planar object has G1-continuous boundaries (except for a finite

number of G0-continuous points – see critical points below). The object’s boundaries
are represented by a set of simple planar polygons	𝒮: = {𝒫',𝒫),… ,𝒫+}, where poly-
gon 𝒫- is defined as an ordered set of its vertices	𝑝)-,𝑝/-,… , 𝑝01

- . Polygon 𝒫' corre-
sponds to the outer contour of the object. 𝑅 ≔ 𝒫'\⋃ 𝒫6+

67) defines the object's domain.
Let’s denote the set of open line segments (LS’) corresponding to the polygon 𝒫-

by ℒ-:= ℒ(𝒫-) = ;𝑙6- ≔ =𝑝6-,𝑝6>)- ?	|	𝑖 = 1, … ,𝑀-,	𝑝01>)
- = 𝑝)-D and the set of all ver-

tices (line segment’s endpoints) by 𝒬 = ⋃ ⋃ ;𝑝6-D
01
F7)

+
-7' . A set ℒ ≔ ⋃ ℒ-+

-7) contains
all line segments of 𝒮.

Definition 1. The Voronoi cell [29] corresponding to an element 𝑢 ∈ ℒ ∪ 𝒬 is de-
fined as a locus of points:

𝒱𝒞(𝑢) = {𝑝 ∈ ℝ/|𝑑𝑖𝑠𝑡(𝑝, 𝑢) ≤ 𝑑𝑖𝑠𝑡(𝑝, 𝑤),𝑤 ≠ 𝑢,𝑤 ∈ ℒ ∪ 𝒬} (1)

Definition 2. The Voronoi diagram [29] of a set of line segments ℒ (with endpoints
𝒬) is defined as a set of all Voronoi cells:

𝒱𝒟(ℒ,𝒬) = T {𝒱𝒞(𝑢)}
U∈ℒ∪𝒬

 (2)

Remark 1. The most of the computational algorithms (e.g., "Divide and Conquer"
[26], Fortune's algorithm [27]) represent the boundaries between neighboring Voronoi

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

3

cells in terms of the Voronoi graph [28-29] 𝐺𝒮 = (𝑉𝒮, 𝐸𝒮) with a set of the Voronoi
vertices 𝑉𝒮 and a set of Voronoi edges 𝐸𝒮 ⊆ 𝑉𝒮 × 𝑉𝒮 .

Definition 3. Let’s assume that a polygon 𝒫 approximates boundary of geometrical
object and a vertex 𝑝 of 𝒫 corresponds to the point of the boundary, where object is G0-
continouous (but not G1-continouous). Then vertex 𝑝 is called critical points (vertices)
of the polygon 𝒫.

Remark 2. Vertices of polygon 𝒫 corresponding to G1-continouous part of object’s
boundary, might induce redundant edges of the Voronoi diagram – the bisectors be-
tween consecutive line segments 𝑙6 and 𝑙6>) sharing common non-critical endpoint 𝑝6.
In order to obtain an approximate Voronoi diagram of an object represented by 𝒮, such
redundant edges corresponding to all non-critical points of 𝒮 should be removed [29].

Definition 4. An approximate Voronoi diagram 𝒱𝒟[(𝒮) [29] for a planar object
represented by a set of polygons 𝒮 is obtained as a subgraph 𝐺𝒮[of the Voronoi graph
𝐺𝒮 by removing the edges of 𝐺𝒮 corresponding to the bisectors between two consecu-
tive line segments 𝑙6 and 𝑙6>) sharing a common non-critical vertex 𝑝6.

Definition 5. The Voronoi skeleton [23] of a planar object represented by 𝒮 is a
subset of the approximate Voronoi diagram 𝒱𝒟[(𝒮) located inside object’s region 𝑅.

Remark 3. Thus, the Voronoi skeleton of 𝒮 is obtained by removing (or trimming)
the edges of 𝐺𝒮[, which do not locate in 𝑅.

Problem statement: Given a set of polygons 𝒮, which represent a planar object,
construct the Voronoi skeleton of 𝒮.

3 Algorithm
In this section, we describe the algorithm for computing the Voronoi skeleton. In sub-
section 3.2 we show an algorithm for transforming the Voronoi graph 𝐺𝒮 into the final
Voronoi skeleton. The complexity analysis of the algorithm is shown in subsection 3.3.

Fig. 1. Examples of the labeled Voronoi vertices and edges.

3.1 Algorithm description

Input: 𝒮:= {𝒫),𝒫/,… , 𝒫+} – the set of polygons, each vertex 𝑝6- of the polygon 𝒫-
has a binary attribute isCritical[𝑝6-] ∈ {True, False}. Polygon 𝒫- is oriented such that
its interior of the object is to the right for any its line segment (LS) 𝑙 ∈ 𝒫-.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

4

Algorithm:
1. Compute Voronoi diagram of line segments ℒ (with endpoints 𝒬) ⟹ Obtain Voro-

noi graph 𝐺𝒮 = (𝑉𝒮 , 𝐸𝒮) represented as doubly-connected edge list (DCEL) [28];
2. Using the breadth-first search (BFS) algorithm to traverse the Voronoi graph 𝐺𝒮 and

label its edges and vertices (see Subsection 3.2);
3. Remove the edges 𝐺𝒮 with labels “R” or “O” and vertices with labels “B” or “O”;
4. Remove isolated vertices of 𝐺𝒮 if any exist;

3.2 Labeling Voronoi graph
We traverse the edges and vertices of the Voronoi graph 𝐺𝒮 and label them according
to their role in a resulting graph of the Voronoi skeleton.

Listing 1. Pseudocode of the Voronoi graph labeling step with auxiliary functions

function InitQueue(Q)
begin
 Q := EmptyQueue();
 for edge e
 Label[e] = “None”;
 if isInfinite(e)
 EnQueue(e, Q);
 v : = non-null vertex of e;
 Label[v] := “None”;

 else
v1, v2 := non-null vertices of e;

 Label[v1] := Label[v2] := “None”;
 return Q;
end;

procedure TraverseBFS(Q)
begin
 while not Empty(Q) do
 e := DeQueue(Q);
 v := Null;
 if (isInfinite(e)) then

 v := non-null vertex of e;
 LabelInfiniteEdge(e);

 else
 v := vertex of e with “None” label;
 LabelFiniteEdge(e);

 for edge e incident to v do
 // Add non-labeled edges to queue
 if (Label[e] = “None”) then

 EnQueue(e, Q);
end;

procedure LabelInfiniteEdge(e)
begin
 c1, c2 := cells of e and Twin(e);
 v := non-null vertex of e;
 if Type(c1) = “EP” && Type(c2) = “EP” then
 Label[e] := Label[v] := “O”; // Outer

 else
 p := unique EP of line segment;

 if v coincides with p then
 Label[v] := (isCritical[p]) ? “C” : “B”;

 Label[e] := “O”; // Outer
 else

 Label[v] := “I”; // Inner
 if isCritical[p] then
 Label[e] := “C”; // Critical
 Trim e to p;

 else
 Label[e] := “R”; // Redundant

end;

procedure LabelFiniteEdge(e)
begin
 v0 := labeled vertex of e;
 v1 := unlabeled vertex of e;
 c1, c2 := cells of e and Twin(e);
 if Label[v0] = “I” || Label[v0] = “O” then
 if Type(c1) = “LS” && Type(c2) = “LS” then
 if LS’ of c1 and c2 share endpoint p then
 if isCritical[p] then
 Label[v1] := “C”; // Critical
 Label[e] := (Label[v0]=“I”) ? “C” : “O”;

 else
 Label[v1] := “B”; // Boundary
 Label[e] := (Label[v0]=“I”) ? “R” : “O”;

 else
 Label[v1] := Label[v0];

 Label[e] := Label[v0];
 else // Edge between LS and EP

 if c1 and c2 belong to the same LS then
 p := line segment’s endpoint;
 if p coincides with v1 then
 Label[v1] := (isCritical[p]) ? “C” : “B”;
 if Label[v0] = “O” then

Label[e] := “O”; // Outer
 else

Label[e] := (isCritical[p]) ? “C” : “R”;
 else

 Add new vertex v with position p to GS
 Replace e by e0 := (v, v0), e1 := (v, v1);
 Label[v] := (isCritical[p]) ? “C” : “B”;
 if Label[v0] = “O” then

 Label[v1] := “I”;
if isCritical[p] then
 Label[e1] := “C”;
else
 Label[e1] := “R”;
 Label[e0] := “O”;

 else
 Label[v1] := Label[e1] := “O”;
 Label[e0] := (isCritical[p]) ? “C” : “R”;

 else // bisector is a parabolic arc
 Label[v1] := Label[v0];
 Label[e] := (Label[v0]=“O”)?“O”:“I”;

 else // Critical or Boundary
 if v1 is located to the right of c1 or c2 then
 Label[v1] := “Inner”;
 Label[e] := (Label[v0] = “C”) ? “C” : “R”;

 else
 Label[v1] := “Outer”;
 Label[e] := (Label[v0] = “C”) ? “C” : “O”;

end;

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

5

Definition 6. Voronoi vertex (cf., Fig. 1) is called (label abbreviation is in parenthesis):
• Inner (“I”), if the vertex is located inside the object’s polygon;
• Outer (“O”), if the vertex is located outside the object’s polygon;
• Critical (“C”), if it coincides with one of the critical vertices of the object’s polygon;
• Boundary (“B”), if it coincides with one of the non-critical vertices of the polygon;

Definition 7. Voronoi edge (cf., Fig. 1) 𝑒 is called (label abbreviation is in parenthesis):
• Inner (“I”), if it locates in 𝑅 and doesn’t touch (intersect) any polygon from 𝒮;
⟹ both vertices of 𝑒 are labeled as Inner;

• Critical (“C”), if it locates in 𝑅 and adjacent to a critical vertex;
• Outer (“O”), if the edge locates outside 𝑅 ⟹ both vertices of 𝑒 are labeled as Outer;
• Redundant (“R”), if it locates in 𝑅 and touches polygon’s non-critical vertex;

The pseudocode illustrating the labeling procedure and the related functions is
shown in Listing 1. Firstly, we initialize the queue Q of the breadth-first search (BFS)
algorithm (see function InitQueue(Q)) by all infinite edges of the Voronoi graph 𝐺𝒮 .
A common data structure Label[•] is used to store labels of Voronoi edges and ver-
tices according to the definitions 6 and 7. Then, starting from infinite edges we label all
remaining edges and vertices of 𝐺𝒮 in function TraverseBFS(Q). At each iteration of
BFS algorithm we label current edge and the adjacent non-labeled vertex. In Listing 1
(Condition)?Value1:Value2 denotes to the ternary conditional operator.
3.3 Complexity analysis

Lemma 1. The complexity of Step 1 of the skeletonizing algorithm is O(N log N),
where N is a number of points in a polygon.

Proof. At the Step 1 we construct the Voronoi diagram for polygon’s line segments
using Fortune’s algorithm. According to [27] the complexity of this step is O(M log M),
M - number of line segments. Since N~M, Step 1 has complexity O(N log N). ■

Lemma 2. The complexity of Step 2 of the skeletonizing algorithm is O(N), where
N is a number of the points in an input polygon.

Proof. Step 2 is about labeling the edges and vertices of the Voronoi graph using
BFS traverse algorithm. Note that the Voronoi graph is a planar connected graph.
Therefore, Euler’s formula |𝑉| − |𝐸| + 𝑓 = 2 take place, where |𝑉|, |𝐸|, 𝑓 is a number
of vertices, edges and faces of a graph. If |𝑉| = 𝑁, then the number of edges |𝐸| =
𝑂(𝑁). The BFS algorithm traverses all edges of the Voronoi graph. Since all operations
within one BFS iteration can be performed in O(1), the complexity of BFS routine is
O(|𝐸| + |𝑉|) = O(N). Thus, the complexity of Step 2 is O(N). ■

Lemma 3. The complexity of Steps 3-4 of the skeletonizing algorithm is O(N),
where N is a number of the points in an input polygon.

Proof. One edge can be removed from DCEL in O(1) by reassigning the pointers
[25, 28]. According to Lemma 2, the number of edges |𝐸| = 𝑂(𝑁). Therefore, the com-
plexity of Step 3 is 𝑂(𝑁). A single isolated vertex can be removed from DCEL in O(1).
Therefore, the complexity of Step 4 is 𝑂(𝑁). ■

Theorem 1. The complexity of the skeletonizing algorithm is O(N log N), where N
is a number of the points in an input polygon.

Proof. According to analysis of the complexities of each algorithm’s step provided
in Lemmas 1-3, the total complexity of skeletonizing algorithm is O(N log N). ■

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

6

4 Optimization and heuristics
We introduce an optimization heuristic allowing us to compute fast the Voronoi skele-
ton by reducing the number of vertices of input polygons. The main idea behind the
optimization procedure is illustrated by the following lemma.

Lemma 4. Let 𝒫 = {𝑝), 𝑝/,… , 𝑝s} be a polygon and 𝑙6 denotes the line segment
between points 𝑝6 and 𝑝6>) of a polygon 𝒫, 𝑖 = 1, … ,𝑁, (𝑝s>) = 𝑝'). The polygon 𝒫′
is obtained by subdividing line segments 𝑙6, 𝑖 = 1, …𝑁 of a polygon 𝒫 such that line
segment 𝑙6 is replaced by a polyline 𝑝6,), 𝑝6,/ … , 𝑝6,uv of points on 𝑙6, 𝑖 = 1,2,… , 𝑁
(𝑝6,) = 𝑝6, 𝑝6,uv = 𝑝6>)). Then the Voronoi skeletons 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) constructed
using the skeletonizing algorithm above are equal (in terms of the Hausdorff distance
between the corresponding Voronoi graphs).

Proof. The Voronoi diagram of line segments of 𝒫 and 𝒫′ consist of the bisectors
of the following types: a bisector between two line segment’s interiors, a bisector be-
tween a line segment’s interior and an endpoint, bisector between two endpoints. Let’s
consider these cases separately:

(a)

(b)

Fig. 2. Examples of the labeled Voronoi vertices and edges.

Case 1 (see Fig. 2,a). The bisector between two line segment’s interiors 𝑙) and 𝑙/ is
a line segment 𝑙′ [27, 28]. Let’s suppose that in 𝒫′ line segment 𝑙/ remains the same
and 𝑙) is subdivided into two parts 𝑙),) and 𝑙),/ connected by a shared endpoint 𝑞. Then,
the Voronoi cell corresponding to 𝑙) in 𝒱𝒟(𝒫) will be split into two Voronoi cells
(corresponding 𝑙),) and 𝑙),/) of 𝒱𝒟(𝒫′) by the Voronoi edge 𝑒 such that 𝑒 is a bisector
between 𝑙),) and 𝑙),/ which passes through 𝑞 and is perpendicular to 𝑙) (and therefore,
𝑙),) and 𝑙),/). Thus, the Voronoi edge 𝑒 will divide bisector line segment 𝑙′ in 𝒱𝒟(𝒫)
into two parts 𝑙′) and 𝑙′/ in 𝒱𝒟(𝒫′) such that 𝑙′) is a Voronoi edge of the Voronoi cell
of 𝑙),) and 𝑙′/ is a Voronoi edge of the Voronoi cell of 𝑙),/. Note that 𝑙′), 𝑙′/ and edge 𝑒
are connected together by a newly introduced Voronoi vertex 𝑣′. The remaining part of
the Voronoi diagrams for 𝒫′ and 𝒫 stays the same. The BFS labeling procedure (see
Step 2 of the algorithm above) for Voronoi edges and vertices of 𝒱𝒟(𝒫′) will split the
introduced in 𝒱𝒟(𝒫′) Voronoi edge 𝑒 into two parts 𝑒) and 𝑒/: one part will be labeled
as “Outer” and the other part will be labeled as “Redundant”. Therefore, both parts will
be removed at Step 3 of the skeletonizing algorithm and the resulting Voronoi skeleton
𝒱𝒮(𝒫′) will contain the line segment edges 𝑙′), 𝑙′/ connected by 𝑣′.

Case 2. In case of a line segment’s interior 𝑙 and an endpoint	𝑝, two possible sce-
narios take place. First scenario is when 𝑝 is an endpoint of 𝑙. In this case Voronoi
diagram contains an edge 𝑒′ coming through 𝑝 and perpendicular 𝑙. The edge 𝑒′ can be

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

7

either removed or not by BFS procedure depending on the type of 𝑝. Subdividing 𝑙 into
two parts 𝑙[and 𝑙y which share an endpoint 𝑞 will introduce a new edge 𝑒 parallel to
𝑒′, which will be classifies as “Redundant” and removed from the final skeleton. The
second scenario (see Fig. 2,b) is when 𝑝 is not an endpoint of 𝑙. Then the bisector be-
tween 𝑝 and 𝑙 is a parabolic arc 𝑙z, which is subdivided into two parts 𝑙z,), 𝑙z,/ if we
split 𝑙 into 𝑙[and 𝑙y. The analysis in this case is the similar to the Case 1 except that
now 𝑙′) and 𝑙′/ are parabolic arcs 𝑙z,) and 𝑙z,/, respectively.

Case 3. The bisector between two different endpoints of 𝒱𝒟(𝒫′) or 𝒱𝒟(𝒫) is an
infinite edge (ray), which is classified at Step 2 of the algorithm above as “Outer” and,
therefore, removed from both 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) at Step 3.

The case of single subdivision (𝐿 = 1) of polygon’s line segment for different pos-
sible bisectors of the Voronoi diagram is covered above. The general case for several
subdivisions 𝐿 can be proved by induction on L.

Let’s assume that for 𝐿 = 𝑛 subdivisions of 𝒫 holds that 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) are
equal. The polygon 𝒫′′ is obtained from 𝒫′ by subdividing an arbitrary line segment of
𝒫′ into two line segments. Therefore, we can apply one of the proved cases for a single
subdivision above and obtain that Voronoi skeletons 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′′) are equal.
Thus, by induction 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) are equal for any 𝐿 > 0. ■

Fig. 3. The Voronoi skeletons (red) for polygon P (blue) and its subdivided version P' (blue) and
respective Voronoi diagrams (gray).

Remark. It follows from Lemma 4 that the Voronoi skeleton 𝒱𝒮(𝒫′) for a subdi-
vided polygon 𝒫′ is the same (w.r.t. Hausdorff distance) as the Voronoi skeleton 𝒱𝒮(𝒫)
for the original polygon 𝒫 (see Fig. 3). However, in comparison to 𝒱𝒮(𝒫), 𝒱𝒮(𝒫′) is
represented with a larger number of Voronoi edges and vertices. Therefore, the concept
of the Voronoi skeleton with a minimal number of vertices/edges take place. Applying
Lemma 4 in the reverse direction allows us to reduce the number of vertices and edges
of the Voronoi skeleton. This in turn reduces the execution time of skeletonization al-
gorithm and compresses the resulting graph representation of a skeleton.

Therefore, our aim is to design a heuristic based on simplification operation (reverse
to subdivision) and obtain polygon 𝒫 from 𝒫′. According to Lemma 4 simplification
procedure (algorithm) should meet the following requirement:

Simplification requirement (SR): The polygon simplification heuristic removes
the points corresponding to colinear connected line segments of the polygon represent-
ing such line segments by a single line segment.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

8

Table 1. The overview of polygon (polyline) simplification algorithms.

Thus, we introduce Step 0 of the skeletonizing algorithm: simplify each polygon of
a set 𝒮 by reducing the points associated with colinear connected line segments (SR).
This operation can be performed using one of the existing polygon simplification algo-
rithms satisfying the simplification requirement (SR).

Table 2. Suitable polygon simplification algorithms, their parameter and heuristics.

Algorithm Parameter(s) Heuristics for 2nd parameter
DP 𝜀 > 0 – tolerance parameter; No
VW 𝐴 > 0 – minimum triangle area; No
RW 𝜀 > 0 – distance tolerance; No
OP 𝜀+6� , 𝜀+[� > 0 – tolerances; 𝜀+[� = +∞ (large number)

LA 𝜀 > 0 – distance tolerance;
𝑅 ∈ ℕ – size of search region;

𝑅 = 𝜃 ∙ 𝑁, 	𝑁 – number of points;
𝜃 ∈ {0.05,0.1,0.2,0.25, 0.5, 1.0}.

ZS 𝜀 > 0 – sector bound error; No
PD 𝜀 > 0 – distance tolerance;

𝐾 ∈ ℕ – number of repetitions;
𝑅 = 𝜃 ∙ 𝑁, 	𝑁 – number of points;
𝜃 ∈ {0.05,0.1,0.2,0.25, 0.5, 1.0}.

Analysis of simplification algorithms. We have analyzed the most commonly used
algorithms for polygon (polyline) simplification and summarized the results in Table 1.

However, certain simplification strategies do not agree with the simplification re-
quirement (SR). For example, a naive Nth point [38] method merely removes every Nth
point from a polygon ignoring its geometry. Circle simplification [38] method groups
together points forming spatial clusters based on the distance threshold. Then, a single
representative point replaces each such cluster. Li-Openshaw [37] and Rapso [36] al-
gorithms simplify polyline based on spatial pixel (or hexagon-based) grid. These algo-
rithms instead solve the problem of polyline digitization (useful for solving the problem
of optimal map rescaling). Therefore, we consider only the algorithms fulfilling SR (see
Table 2). Most of the analyzed algorithms have complexity O(N) except DP [30] and

Name of algorithm (Abbr.) Average complexity Worst-case complexity SR
Ramer-Douglas-Peucker (DP) [30] O(N log N) O(N2) yes
Visvalingam-Whyatt (VW) [31] O(N log N) O(N log N) yes
Reumann-Witkam (RW) [32] O(N) O(N) yes
Opheim (OP) [33] O(N) O(N) yes
Lang (LA) [34] O(NK) O(NK2) yes
Zhao-Saalfeld (ZS) [35] O(N) O(N) yes
Rapso (RA) [36] O(N) O(N) no
Li-Openshaw (LO) [37] O(N) O(N) no
Nth point (NP) [38] O(N) O(N) no
Circle (CI) [38] O(N) O(N) no
Perpendicular distance (PD) [38] O(NK) O(N) yes

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

9

VW [31] algorithms with O(N log N) complexity. In order to select the algorithm, which
shows the best performance improvement, has the smallest computational overhead and
influences the resulting skeleton the least, we investigated these algorithms empirically
as described in the evaluation section.

5 Evaluation
We evaluate the performance of the skeletonization algorithm in terms of the execution
time and measure the influence of the introduced heuristics onto the accuracy, execu-
tion time of the overall algorithm. We also estimate the computational overheads re-
lated to the line simplification algorithms.

Dataset. In order to evaluate the perfor-
mance of the skeletonization algorithm and
individual optimization heuristics, we used
polygons obtained from MPEG 7 CE-Shape-
1 dataset. These polygons were extracted
from binary images using the Marching
Squares algorithm [19]. In total the dataset
consists of 1282 polygons (see Fig. 4).

Measures. We have measured the following quantities:
1. Execution time (ms) of each simplification algorithm, skeletonizing algorithm with

(without) the mentioned heuristics and overall execution time. The experiments were
carried on Intel Core i7, 2.2GHz, 16Gb RAM.

2. Hausdorff distances 𝑑� (errors) [39] between the simplified and original polygons
and also between the ground truth skeleton and one obtained using the skeletoniza-
tion with heuristics;

3. Simplification rate (%) of the polygon is computed as follows:

𝑆𝑅(𝑃, 𝑃�) =
|𝑃| − |𝑃′|

|𝑃| ∙ 100% (3)

where 𝑃 and 𝑃� are original and simplified polygons, respectively. |𝑃| is the number of
vertices of 𝑃 (large values of 𝑆𝑅(𝑃, 𝑃�) correspond to small |𝑃′| w.r.t. |𝑃|).

Parameters. The parameters of the simplification algorithms (see Table 2) were chosen
using the line search method such that the maximum simplification rate is achieved for
a given threshold value of Hausdorff distance 𝑑� between the simplified polygon 𝑃�
and an original polygon 𝑃. This allows us to compare different simplification algorithm
with respect to the maximum tolerable error. The established parameters of the simpli-
fication algorithms for the respective values of 𝑑� are shown in Table 3.

For the algorithms with two parameters we applied additional heuristics to choose
the value of the second parameter (see Table 2). These heuristics were devised to
achieve the maximum simplification rate for a given Hausdorff error threshold 𝑑� . It
was established that for LA and PD algorithms the optimal value of 𝜃 is 0.25 (for	𝜃 >
0.25 the simplification rate does not increase, but the execution time of these simplifi-
cation algorithms rises).

Fig. 4. Distribution of polygon’s sizes

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

10

Table 3. Parameters of the simplification algorithms.
Hausdorff

distance 𝑑�
Algorithm parameters

DP VW RW OP LA (0.25) ZS PD (0.25)
0.001 0.001 0.0007 0.001 0.001 0.001 0.001 0.001
0.005 0.005 0.0025 0.005 0.005 0.005 0.005 0.005
0.01 0.01 0.005 0.009 0.009 0.01 0.01 0.01
0.05 0.05 0.025 0.04 0.04 0.05 0.05 0.05
0.1 0.1 0.05 0.08 0.08 0.1 0.1 0.1
0.5 0.5 0.25 0.4 0.4 0.5 0.5 0.5
1.0 1 0.5 0.8 0.8 1 1 1

Evaluation results. We have measured the execution time of each suitable simplifica-
tion algorithm for fixed values of Hausdorff error thresholds 𝑑� (see Fig. 5a). These
measurements show the computational overheads related to the optimization step of the
skeleton algorithm. In order to compare the quality of the simplification algorithms, we
measured the respective simplification rates for given values of 𝑑� .

(a) Average execution time (ms) (b) Simplification rates (%), RW≈OP

Fig. 5. Execution time (ms), simplification rates (%) of optimization heuristics

Fig. 5b shows that the algorithms of LA and ZS have the most substantial extent of
polygon simplification (compression) for a given 𝑑� having nearly identical depend-
ency curves. PD, VW, and PD algorithms achieve slightly smaller simplification rates
showing almost undistinguishable behavior for most of the cases. However, VW algo-
rithm overperforms other algorithms for small values of 𝑑� < 0.002. OP and RW al-
gorithms have the lowest simplification rates with nearly identical dependency curves.

In Fig. 5 one notices that despite being the fastest, algorithms of OP and RW have
the smallest simplification rate and, therefore, might not guarantee the fastest execution
of the skeletonization algorithm. Therefore, we measured the total execution time of
the skeletonization algorithm depending on the value of 𝑑� taking into account the
overhead time of the simplification heuristics (see Fig. 6a).

Based on Fig. 6a we can choose the fastest optimization heuristics. However, dif-
ferent values of 𝑑� threshold might affect the accuracy of the final skeleton. Therefore,
we investigated the influence of 𝑑� on the result of the skeletonization algorithm. We
calculated the skeletonization error as Hausdorff distance between the ground truth
skeleton and the result of optimized skeletonization algorithm (see Fig. 6b).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

11

(a) Total execution time (ms) (b) Skeletonization error (Hausdorff), RW≈OP

Fig. 6. Total average execution time (ms) and skeletonization errors;

6 Discussion
Fig. 6a shows that DP- and VW-based heuristics reduce the computational time to the
greatest extent. Only these two heuristics overperform the optimization-free approach
(NO) for small values of 𝑑� ≤ 0.001. The optimization based on OP and RW algo-
rithms shows the smallest skeletonization error among the other approaches (see
Fig. 6b). However, for 𝑑� < 0.002 these algorithms have outsized computational over-
heads eliminating the whole effect of the optimization. Therefore, it is reasonable to
use OP and RW algorithm only for 𝑑� > 0.002. Note that the variance of skeletoniza-
tion error for different heuristics decreases as 𝑑� → 0 (see Fig. 6b).

We computed 2-sample t-test to validate the hypothesis that DP- and VW-based op-
timizations produce different average skeletonization errors. The test showed that the
errors produced by DP and VW optimizations are undistinguishable (p-value ≈ 0.24).

Another hypothesis testing was performed to distinguish the execution time between
DP and VW heuristics. It showed that for the most of the cases (except 𝑑� = 0.001)
DP algorithm overperforms VW (p-value < 0.001).

Speed-accuracy trade-off. Fig. 6 shows that none of the tested algorithms minimizes
the accuracy and execution time of the skeletonizing method at the same time. There-
fore, the choice of the heuristics is a trade-off between accuracy and the execution time.
Based on the performed computational experiments the following conclusions are
drawn:
1. If accuracy of the resulting skeleton is critical, then for 𝑑� > 0.002 the optimization

can be performed using OP or RW algorithms. However, for 𝑑� < 0.002 the only
reasonable optimization is using the DP or VW algorithms;

2. If execution time of the algorithm is more critical than the accuracy, then optimiza-
tion can be performed using DP or VW algorithms, which according to the provided
experiments give 1.7 times less accurate result then RW and OP heuristics;

Pruning effect of polygon simplification. It was experimentally discovered, that the
introduced optimization heuristics influences the skeleton in a similar way as pruning
methods [40]. Fig. 7 shows that for large values of 𝑑� (see bottom row) simplification

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

12

heuristics tends to regularize shape of the object in a way that the branches of the skel-
eton corresponding to small shape perturbation disappear (cf., Fig. 7, top row). There-
fore, such optimization allows us not only to speed-up the execution of the skeletoniza-
tion, but also to achieve a pruning effect and remove the noisy branches of the skeleton.

Fig. 7. Examples of the optimized Voronoi skeletons for shapes from MPEG 7 CE-Shape-1 da-
taset. Optimization heuristics is DP. For d� = 0.001 (top row of images) skeletons contain re-
dundant branches in comparison to d� = 1.0 (the bottom row of images).

7 Conclusion
We proposed optimization heuristics for computing the Voronoi skeleton of the polyg-
onal data. This topic is of relevance due to its direct relation to efficient processing of
the vectorized geometrical representations (e.g., for image processing, computer vision,
computer graphics). We illustrated in detail the main steps of the Voronoi-based skel-
etonization algorithm and determined that its complexity is O(N log N), where N is the
number of vertices in a polygon. We also established an optimization criterion (require-
ment) and proposed theoretically justified optimization heuristics based on the polygon
simplification algorithms. In order to evaluate the efficiency of the proposed heuristic,
a series of computational experiments were conducted using the polygons from MPEG
7 CE-Shape-1 dataset. Seven state-of-the-art simplification algorithms were evaluated
to determine the most suitable optimization heuristic fulfilling the established criterion.
We measured the execution time of the skeletonization algorithm with and without the
heuristic optimizations and determined the computational overheads related to such
heuristics. We also determined the accuracy of the skeleton produced by the optimized
algorithm based on the proposed heuristics. As a result, we established the criteria,
which allow us to choose the optimal heuristics depending on the system’s requirement.
For example, DP- and VW-based heuristics allow us to speed up the skeleton compu-
tation at least by 30%. It was discovered experimentally, that the optimization heuristics
have a pruning effect onto the resulting skeleton.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

13

Acknowledgements
The research reported in this paper has been partly supported by the Austrian Ministry
for Transport, Innovation and Technology, the Federal Ministry of Science, Research
and Economy, and the Province of Upper Austria in the frame of the COMET center
SCCH.

References

1. Saha, P. K., Borgefors, G., Sanniti di Baja, G.: A survey on skeletonization algorithms and
their applications. Pattern Recognition Letters. 76, 3–12 (2016).

2. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and re-
trieval. In: 2003 Shape Modeling International, pp. 130-139, IEEE, Seoul (2003).

3. Xie, J., Heng, P.-A., Shah, M.: Shape matching and modeling using skeletal context. Pattern
Recognition. 41, 1756–1767 (2008).

4. Chaudhuri, A., Mandaviya, K., Badelia, P., K Ghosh, S.: Optical Character Recognition
Systems for Different Languages with Soft Computing. Springer (2017).

5. Torres, R. da S., Falcão, A.X.: Contour salience descriptors for effective image retrieval and
analysis. Image and Vision Computing. 25, 3–13 (2007).

6. Rezaee, K., Haddadnia, J., Tashk, A.: Optimized clinical segmentation of retinal blood ves-
sels by using combination of adaptive filtering, fuzzy entropy and skeletonization. Applied
Soft Computing. 52, 937–951 (2017).

7. Lasso, W., Morales, Y., Torres, C.: Image segmentation blood vessel of retinal using con-
ventional filters, Gabor Transform and skeletonization. In: 2014 XIX Symposium on Image,
Signal Processing and Artificial Vision. IEEE, Columbia (2014).

8. Al-Kofahi, Y., Dowell-Mesfin, N., Pace, C., Shain, W., Turner, J.N., Roysam, B.: Improved
detection of branching points in algorithms for automated neuron tracing from 3D confocal
images. Cytometry Part A. 73A, 36–43 (2008).

9. Faulkner, C., Zhou, J., Evrard, A., Bourdais, G., MacLean, D., Häweker, H., Eckes, P.,
Robatzek, S.: An automated quantitative image analysis tool for the identification of micro-
tubule patterns in plants. Traffic. 18, 683–693 (2017).

10. Beil, M., Braxmeier, H., Fleischer, F., Schmidt, V., Walther, P.: Quantitative analysis of
keratin filament networks in scanning electron microscopy images of cancer cells. Journal
of Microscopy. 220, 84–95 (2005).

11. Changxian, S., Yulong, M.: Morphological thinning based on image’s edges. In: ICCT’98.
1998 Int. Conf. on Communication Tech. Pub. House of Constr. Mater, Beijing (1998).

12. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Communi-
cations of the ACM. 27, 236–239 (1984).

13. Yan, T.-Q., Zhou, C.-X.: A Continuous Skeletonization Method Based on Distance Trans-
form. In: Communications in Computer and Information Science. pp. 251–258. Springer
Berlin Heidelberg (2012).

14. Chen, J., Du, M., Qin, X., Miao, Y.: An improved topology extraction approach for vector-
ization of sketchy line drawings. The Visual Computer. 34, 1633–1644 (2018).

15. Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence. 28(6), 890–904 (2006).

16. Acciai, L., Soda, P., Iannello, G.: Automated Neuron Tracing Methods: An Updated Ac-
count. Neuroinformatics. 14, 353–367 (2016).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

14

17. De, J., Cheng, L., Zhang, X., Lin, F., Li, H., Ong, K.H., Yu, W., Yu, Y., Ahmed, S.: A
Graph-Theoretical Approach for Tracing Filamentary Structures in Neuronal and Retinal
Images. IEEE Transactions on Medical Imaging. 35, 257–272 (2016).

18. Stein, A.M., Vader, D.A., Jawerth, L.M., Weitz, D.A., Sander, L.M.: An algorithm for ex-
tracting the network geometry of three-dimensional collagen gels. Journal of Microscopy.
232, 463–475 (2008).

19. Maple, C.: Geometric design and space planning using the marching squares and marching
cube algorithms. In: 2003 International Conference on Geometric Modeling and Graphics,
2003. IEEE Comput. Soc, London, (2003).

20. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A Novel Type of Skeleton for
Polygons. In: J.UCS The Journal of Universal Computer Science. pp. 752–761. Springer
Berlin Heidelberg (1996).

21. Eppstein, D., Erickson, J.: Raising Roofs, Crashing Cycles, and Playing Pool: Applications
of a Data Structure for Finding Pairwise Interactions. Discrete & Computational Geometry.
22, 569–592 (1999).

22. Chin, F., Snoeyink, J., Wang, C.A.: Finding the Medial Axis of a Simple Polygon in Linear
Time. Discrete & Computational Geometry. 21, 405–420 (1999).

23. Ogniewicz, R., Ilg, M.: Voronoi skeletons: theory and applications. In: Proc. 1992 IEEE
Conf. on Comp. Vision and Pattern Recogn. IEEE Comput. Soc. Press, Champaign (1992).

24. Siddiqi, K., Pizer, S.M. eds: Medial Representations. Springer, Netherlands (2008).
25. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, New York (1985).
26. Shamos, M.I., Hoey, D.: Closest-point problems. In: 16th Annual Symposium on Founda-

tions of Computer Science. IEEE, Berkley (1975).
27. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica. 2, 153–174 (1987).
28. Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Springer

Berlin Heidelberg (2008).
29. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N., Kendall, D.G. eds: Spatial Tessellations.

John Wiley & Sons, Inc. (2000).
30. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required

to represent a digitized line or its caricature. Cartographica. 10, 112–122 (1973).
31. Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of points. The

Cartographic Journal. 30, 46–51 (1993).
32. Reumann, K., Witkam, A. P. M.: Optimizing curve segmentation in computer graphics. In:

Int. Comp. Symp., pp. 467–472, Elsevier, North Holland (1973).
33. Opheim, H.: Fast data reduction of a digitized curve. Geo-Processing 2, 33-40 (1982).
34. Lang, T.: Rules for robot draughtsman. Geographical Magazine 42, 50-51 (1969).
35. Zhao, Z., Saalfeld, A.: Linear-time sleeve-fitting polyline simplification algorithms. In:

Proc. of Ann. Conv. and Expos.Tech. Papers, pp. 214-223. Seattle, USA (1997).
36. Raposo, P.: Scale-specific automated line simplification by vertex clustering on a hexagonal

tessellation. Cartography and Geographic Information Science. 40, 427–443 (2013).
37. Nie, H., Huang, Z.: A New Method of Line Feature Generalization Based on Shape Charac-

teristic Analysis. Metrology and Measurement Systems. 18, 597–606 (2011).
38. Song, J., Miao, R.: A Novel Evaluation Approach for Line Simplification Algorithms to-

wards Vector Map Visualization. International Journal of Geo-Information. 5, 223 (2016).
39. Taha, A.A., Hanbury, A.: An Efficient Algorithm for Calculating the Exact Hausdorff Dis-

tance. IEEE Trans. on Pattern Analysis and Machine Intelligence. 37, 2153–2163 (2015).
40. Beristain, A., Graña, M., Gonzalez, A.I.: A Pruning Algorithm for Stable Voronoi Skeletons.

Journal of Mathematical Imaging and Vision. 42, 225–237 (2011).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_8

https://dx.doi.org/10.1007/978-3-030-22734-0_8

