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Abstract. The Dial-a-Ride Problem (DARP) consists in serving a set of
customers who specify their pickup and drop-off locations using a fleet of
vehicles. The aim of DARP is designing vehicle routes satisfying requests
of customers and minimizing the total traveled distance. In this paper,
we consider a real case of dynamic DARP service operated by Padam3

in which customers ask for a transportation service either in advance or
in real time and get an immediate answer about whether their requests
are accepted or rejected. A fleet of fixed number of vehicles is available
during a working period of time to provide a transportation service.
The goal is to maximize the number of accepted requests during the
service. In this paper, we propose an original and novel online Reinsertion
Algorithm based on destroy/repair operators to reinsert requests rejected
by the online algorithm used by Padam. The proposed algorithm was
implemented in the optimization engine of Padam and extensively tested
on real hard instances up to 1011 requests and 14 vehicles. The results
show that our method succeeds in improving the number of accepted
requests.

Keywords: Dynamic DARP, Insertion and Reinsertion Heuristics, Com-
putational experiments

1 Introduction

Road transport is still responsible for the bulk of transport emissions in terms
of greenhouse gases and air pollutants. Every day, congested roads are a huge
cost to the large cities in the world. However, profound change lies ahead for the
transport sector in the world. A series of technological innovation and disruptive
business models has led to a growing demand for new mobility services. At the
same time, the sector is responding to the pressing need to make transport more
efficient and sustainable. Digital technologies are a driving force of this process
of innovation in transport sector. These technologies create a truly multimodal
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transport system integrating all modes of transport into one mobility service,
allowing people and cargo to travel smoothly from door to door.

In this paper, we focus on the transportation service developed by Padam.
The service consists in creating dynamic bus lines according to the customer
demands. In Padam’s system, customers submit demands of transportation (ori-
gin and destination locations) via a mobile application, either in advance, i.e.
few days before the service, or in real-time for an immediate service. Customers
specify either when they wish to be picked up or when they have to be at their
destination. The transportation service is operated by mini-bus with restricted
number of places. All potential stop locations of buses are predefined and cor-
respond to POI in cities where a bus can stop without affecting traffic, such as
train or metro station, administrative buildings and so on. Thus, pickup and
destination locations of customers are then associated to their nearest prede-
fined locations and the customer will be serviced at these predefined locations
instead of original pickup and destination locations. Once a customer submits
its request, the Padam’s optimization service decides whether the request can
be accepted or not, i.e. whether the request can be inserted in the existing rides
or not. When solutions exist, several offers are then proposed to the customer
around its requested time-window, among which he will choose the most conve-
nient for himself. The transport operation is outsourced in Padam’s service, and
contract is negotiated with third parties transport companies. In such contract,
the number of mini-bus as well as the shifts of working hours of drivers is spec-
ified for each weekday. The number of mini-bus for each day is determined by
Padam based on historical data of transportation demands. The starting loca-
tions of rides are decision variables fixed by the optimization engine depending
on the number and the localization of requests of customers. Furthermore, as
the transport cost is a fixed cost (i.e. outsourcing cost), the main objective of
Padam’s service is servicing as many demands as possible during the ride shifts.

In this work, we improve optimization algorithm implemented in Padam’s
service. More precisely, we consider a dynamic dial-a-ride problem with online
requests of transportation. Since a solution must be proposed to a customer in
real time, i.e. in a few seconds for each request, a heuristic approach is pro-
posed. The proposed method is based on a neighborhood search algorithm for
reinsertion of requests rejected by the online insertion algorithm. The Reinser-
tion Algorithm uses construction and destruction operators such as those used in
an ALNS meta-heuristic [12]. It should be noted that the reinsertion techniques
for the dynamic DARP are not widely used in the literature. To the best of our
knowledge, only the paper [11] has proposed a reinsertion algorithm for dynamic
DARP in which the objective is to reduce the number of vehicles while in our
case the number of vehicles is imposed. The remainder of this paper is structured
as follows. In section 2 we provide a selective review on papers related to DARP
problems. In Section 3 we give more details on the constraints and characteristics
of our problem. In section 4 we describe the proposed approach. Experimental
results are presented in section 5. The paper concludes with a short summary
and an outlook on future research in section 6.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_7

https://dx.doi.org/10.1007/978-3-030-22734-0_7


2 Related work

The Dial-a-Ride Problems (DARPs) have been investigated in the literature for
over 30 years. The basic version of DARP consists of serving a set of users who
specify their departure and arrival locations using a fleet of vehicles. The user
specifies either desired pickup time or desired drop-off time. The basic objective
function used in the literature is the total distance traveled by the vehicles ([3]).
There are two main versions of the problem: static and dynamic DARP. In the
first case, all requests are known in advance before computing a solution while
in the second case a part of the user requests arrives in real time, vehicle routes
being adjusted in real-time to meet new demand. Dynamic DARP has received
much less attention than its static counterpart. See [6] for a recent survey on
both static and dynamic cases.

To solve dynamic DARP, literature studies have been focused on fast heuris-
tics to insert new requests ([8]) and on meta-heuristic methods to optimize the
system between the appearance of two consecutive requests ([13], [1]). Most stud-
ies have proposed to combine the online insertion and the optimization system
between requests ([15],[9],[2],[4]). In ([9]), the authors proposed an online-regret
based algorithm for a 2-phase optimization procedure by using available idle time
to continuously optimize the solution. [2] presented hybrid method proceeding
in two phases. In the first phase a simple insertion scheme is used to generate a
feasible solution, which is improved in the second phase with a tabu search algo-
rithm. The tabu search algorithm is stopped each time a new request appears. In
[15], a similar approach to the one proposed by [2] has been developed to solve a
real problem but the improvement phase uses an Adaptive Large Neighborhood
Search metaheuristic. The study in [4] presented a two-phase insertion algorithm
based on route perturbations. Every time a new request appears, the insertion
is evaluated for each route within an appropriate neighborhood of the current
one.

The aim of this paper is to design an efficient online reinsertion heuristic
subject to a fixed and limited number of vehicles. By reinsertion heuristic we
mean that whenever the online system cannot insert a new customer, we try
to rearrange the current solution to try to insert him anyway. This procedure
must be fast (the computation time must not exceed few seconds) To the best
of our knowledge, only two papers have developed a reinsertion procedure for
the DARP ([10],[11]). In these two studies, the number of vehicles is unlimited,
which is not the case in our problem. In [10], the authors developed a heuristic for
the static multi-vehicles DARP in order to reduce the number of used vehicles.
Their heuristic improves the parallel insertion heuristic of [7]. [11] adapts the
latter algorithm to the dynamic case, where the main objective is to reduce the
number of used vehicles.

In this paper, we present a new Reinsertion Algorithm for dynamic DARP
based on destroy/repair operators. This algorithm allows us to test more rein-
sertion possibilities than the approach proposed in [10] and [11], while remaining
fast and simple. We study the performance of our reinsertion heuristic both in
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terms of the vehicle duration and of the number of accepted requests. Extensive
tests on real hard instances provided by Padam are performed.

3 Problem description

When a user wants to book a ride, he specifies (via a mobile application) tem-
poral and geographical informations: pickup and drop-off locations, number of
passengers and requested hour. The requested hour concerns either the desired
pickup or drop-off time, in which case the customer’s request is said to be pickup-
oriented (PO) or delivery-oriented (DO), respectively. This kind of choice is
frequently used in Dial-A-Ride systems [3]. The road network is modeled as
weighted graph with a set V of nodes and a set E of edges. Nodes represent
predefined pickup and drop-off locations and each user’s request is associated to
the nearest predefined location. Nodes are determined by a statistical study on
user travel patterns by combining several data sources, which is not presented in
this paper. The set of edges depicts paths between nodes, and each edge (i, j) has
weights dij and tij which correspond to the shortest distance and the shortest
travel time between nodes i and j, respectively.

A homogeneous fleet of vehicles fixed by the transporter is available to serve
requests. Vehicles have their own time window (beginning and end of service)
and start location. When the system receives a request, the optimization engine
determines one or more proposals using a fast heuristic (described in section
4.1), and the proposals are sent to the customer. When the customer confirms
one of the proposals, the request is inserted in the appropriate ride and a time
window constraint is added on the request (see section 4.1). Furthermore, the
system imposes a maximum ride time Mij between pick-up i and drop-off j of
each inserted request in a ride where Mij is the maximum detour that a customer
can accept and is proportional to the shortest travel time tij between i and j, i.e.
Mij ≤ γk×tij , with γk ≥ 0. The value of γk is selected from a set Γ of coefficients
already predefined in the system and depends on the value of tij . For example,
for any travel time tij in the interval [10, 20] of minutes, the value of γ is 1.3. The
set Γ helps us to models the fact that the acceptable deviation is not the same
for short and long travel time. Thus, for each insertion of a new request, the
optimization engine must respect time-window and gamma constraints of each
already inserted request in addition to vehicle constraints, namely maximum
capacity and service time window. The main goal is then to serve a maximum
number of requests under described constraints while minimizing the service
time duration of the vehicles. Given the dynamic nature of the problem, it is
clear that it is not possible to directly maximize the number of served requests.
Instead, our approach will use the total duration of the rides as an objective to
be optimized, the duration of a ride being the sum of the travel time between
it’s successive visited nodes. The idea is to create rides with fewer useless detour
and with ’straight’ travels so that they serve more requests at the end of the
service.
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4 Solving approaches

In this section, we first present the algorithm currently used by the company.
We call it the online insertion algorithm. We then present our new reinsertion
heuristic algorithm designed to improve the responses of the system.

4.1 Online Insertion Algorithm

Each time a new request appears, a fast insertion heuristic is launched to get
a quick proposal list for the customer (generally in less than 1 second time).
This Online Insertion Algorithm is a greedy heuristic which tests each possible
insertion position (i.e pickup/drop-off position) in each ride. If feasible inser-
tions are found, the heuristic output several proposals that are submitted to the
customer, each one at a different time like timetables in public transportation
system. The idea is to take into account the wishes of the customer while keeping
in the foreground the concept of shared transportation. The customer is free to
choose one of the proposals or to refuse them. The proposals are differentiated
by their pickup and drop-off hours. If h is the requested hour of the customer,
we assume that the customer will accept a proposal if the pickup (drop-off) hour
of a PO (DO) request is within TWr = [h−W,h+W ], where the value of W
is often around 20 minutes (see [15] for more details).
Let’s assume that the customer chooses a proposal with hp and hd as pickup and
drop-off time. To ensure that subsequent insertions will not disturb the initial
commitment toward the customer, we impose a time-window around the pickup
(TWp) and drop-off (TWd) hours as follows:

TWp = [hp − PWB, hp + PWA]

TWd = [hd −DWB,hd +DWA]

where PWB, PWA, DWB, DWA are parameters fixed by the company.
These time-windows (which can as tight as 10 minutes wide) ensure that subse-
quent clients can be inserted in the same ride while maintaining a high-quality
service for the new customer.

4.2 Reinsertion Algorithm

When dealing with real situations, it can happen that a customer gets no satis-
factory answer or even no answer at all. It means that the current arrangement
of the rides doesn’t allow us to serve him. In this case, rather than simply let-
ting the customer refuse proposals, we try to move other already inserted and
not yet served requests to see whether we can find an arrangement allowing us
to insert the new customer while respecting all the other constraints. The rear-
rangement must be done in a few seconds to keep a low response time to the
customer. We call the corresponding heuristic the Reinsertion Algorithm. The
algorithm is based on destroy/repair neighborhoods search ([14]). The idea is
to appropriately destroy part of the solution by removing existing requests and
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then reinserting them together with the new request. Thus, each iteration of the
algorithm consists in a destroy/repair steps. Iterations are performed until the
calculation time limit is reached and the best feasible solution found (if any)
is chosen. The maximum operating time of the reinsertion heuristic is noted as
MT . The purpose is to find a proposal close to the request hour of the customer
(section 4.1).
Algorithm 1 describes our reinsertion heuristic. It is different from a pure Large
neighborhood Search (LNS) framework ([14]) in that once the search finds a new
solution, it is no longer improved, but rather returns to the original solution. This
is necessary for practical issues. Indeed, at this stage, we are not sure that the
customer will validate our proposal. Even if he validates it, he can decide to do it
a little time later, for example one minute later. It is possible that other requests
may be accepted during this period, which could make the proposed insertion
impossible. In order to design an effective validation procedure, we must keep
the reinsertion process as simple as possible and disrupt the current solution as
little as possible.

Algorithm 1 Reinsertion Heuristic

Input: Current solution s, new request r, list of remove operators LDO, list of
repair operators LRO

Output: Best feasible solution sb if it exists otherwise Empty

1: L← EmptyList();
2: while time is not over do
3: op← SelectRemoveOperators(LDO);
4: n← ChooseNumberRequest()
5: LR← RemoveRequests(op, n);
6: LR← LR ∪ {r};
7: snew ← ReinsertRequests(LR,LRO, s); . See Algorithm 2
8: if feasible(snew) then L← L ∪ snew;

9: end while
10: if L not empty then return GetBestSolution(L);

We now present the components of the Algorithm 1.

4.2.1 Destroy step

Given the current arrangement of the rides, the first step of the algorithm is to
choose a set of requests to be removed from their current places (destroy step).
To achieve it, we use three different destroy operators. Each operator selects the
requests to be removed among a list LI of already inserted requests in rides.
Note that LI does not necessarily contain all requests. Indeed, it is not relevant
to remove requests which are distant (in time) from the requested hour h of
the new customer. We then define a time window [h−W − T, h+W + T ] with
T a free parameter and restrict LI to requests whose pickup hour or drop-off
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hour is in the time window [h−W − T, h+W + T ]. If T is too small, the set
of candidate requests will be small and will not provide enough opportunity to
insert the new customer. However, if it is too high, the search will spend a lot
of time deleting requests that are not relevant to insert the new request. Section
5.2.1 studies the impact of several values of T . Beside the list of candidates
for removal, destroy operators also receive the number k of requests to select.
k is randomly chosen (at each iteration) between kmin and kmax, which are
two parameters. Furthermore, at each iteration, the destruction operator used
is randomly selected. We now describe our three removal operators:

Random operator: Select k requests randomly.

Worst operator: Select the k requests with the largest savings, i.e. the differ-
ence between the objective value of the current solution and the objective
value of solution once the requests are removed. In order to increase diversifi-
cation, this operator is randomized as follow: all requests of LI are sorted in
decreasing order of saving values in a list L. A random number y is sampled
between 0 and 1 and the request at the position bypr |L|c where |L| is the
size of L and pr a chosen parameter. This is repeated until k requests have
been chosen.

Relatedness operator: Choose a request randomly and select k − 1 related
requests. The relatedness measure between request i and j is defined as
follow:

1

2

(
tpi,pj

+ tdi,dj

)
+

1

2

(
|upi
− upj

|+ |udi
− udj

|
)

where pi and di are respectively the pickup and drop-off nodes, upi and udi

the service time of pickup and drop-off of request i and tn1,n2 the travel
time between nodes n1 and n2. This operator is also randomized as for the
worst operator. The parameter controlling the randomness is called pw. In
this case pw = pr.

4.2.2 Repair step

Once the requests to be removed have been selected, they are removed from
their current rides. We then try to reinsert them in the best way, including the
request of the new customer. If all requests can be inserted while respecting
constraints of the already existing requests, we obtain a feasible solution. To
reinsert requests we use three repair operators. Each operator is always called
during the repair process, in a sequential way. If several operators find a feasible
solution, the best one is selected and used as the outcome of the current iteration
(see Algorithm 2).

Deep Greedy operator: Perform the best insertion among all feasible inser-
tions of all remaining requests to be reinserted. The best insertion is defined
as the insertion with the minimal increase in the objective function.
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Algorithm 2 ReinsertRequests Procedure

Input: List of requests to reinsert LR, list of repair operators LRO, current solu-
tion s

Output: best feasible solution sb if it exists otherwise Empty

1: L← EmptyList();
2: for each operator o in LRO do
3: snew ← InsertRequests(o, LR, s);
4: if feasible(snew) then L← L ∪ snew;

5: end for
6: if L not empty then return GetBestSolution(L);

Regret operator: Insert the request with the largest regret. The regret mea-
sure is defined in [5] and evaluates the difficulty to insert the request later.
The idea is to find for each request i its best insertion in each vehicle k, with
insertion cost cik. We then construct a matrix in which each row represents
a request and each column a vehicle. If no feasible insertion exists, an arbi-
trary large value is used instead. A regret of a request i is then computed
as: ∑

k

(
cik −min

j
cij

)
Request with largest regret is then chosen and inserted in its best position.

Priority Operator: The idea is to insert first requests at positions which will
have small impact on others request insertion. To do this, we first select a
request, then a ride to insert this request. The following steps are repeated
until the number of requests to be inserted is reached: 1) for each request,
compute (by testing all possible insertions) the number of rides in which
it is possible to insert it, 2) take the request with the smallest number, 3)
compute for each ride (where insertion of the selected request is possible)
the number of requests that can be inserted into it, 4) take the ride with the
smallest number.

5 Experiments

The purpose of this section is to assess the benefits of the Reinsertion Algorithm
(Section 4.2) by running computer simulations on realistic data. The simulations
were executed on a server with 16 Intel Processor Core cadenced to 3 GHZ.
For each instance, we run a simulation with online algorithm as described in
section 4.1 to get reference results called RV . The Reinsertion Algorithm being
stochastic, we run 10 simulations on each instance and use the average results
called V for comparison for each experiment. When comparing V against a
reference value RV , we compute the relative percentage improvement V−RV

RV ∗
100.
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5.1 Instances

We have 19 instances divided in two groups A and B. The groups A and B con-
tain 10 and 9 instances respectively. Each group models a different real transport
context, with different service and geographical features. Instances of the same
group differ by the number of requests. Each instance is named G N , where
G is the group name and N the number of requests. Table 1 presents fleet in-
formation and geographical data of each Group. Column ’Nodes’ indicates the
number of nodes of the underlying graph (i.e all pickup/drop-off nodes), ’Ser-
vice Duration’ is the time span where vehicle serve customer, ’Vehicle Capacity’
is the maximum capacity of a vehicle, ’Area’ is the number of km2 covered by
the set of nodes and ’Fleet Size’ is the number of vehicles ’Requests’ gives the
minimum and maximum number of requests among the instances of the group.
The two groups are very different: A is a large territory with short service span

Group Nodes Service Duration Vehicle Capacity Area (km2) Fleet Size Requests

A 473 3h30 8 25 13 120 - 360
B 90 12h 30 5 6 200 - 1011

Table 1: Characteristics of groups A and B

representing commuting transport (morning or evening) with mini-bus whereas
B is far much smaller with larger bus running throughout the day, representing
public transport in a neighborhood area.
Table 2 presents customer constraints of each Group. Columns PWA/PWB and
DWA/DWB concern Time-Window range of requests as explained in section 4.1,
’Gamma Levels’ and ’Gamma Values’ the gamma parameters (see section 3), W
is defined in section 4.2 and DwellingT ime represents the service time at each
pickup or drop-off node, i.e the time requested for people to get in and out of the
bus. All temporal parameters are expressed in minutes. Based on the knowledge
of the various instances and the operational experience of the company, we can
say that group A is harder than group B, mostly because the associated terri-
tory is more extended and the associated requests don’t follow easy geographical
patterns.

Group PWB/PWA DWB/DWA Gamma Levels Gamma Values W Dwelling Time

A 0/10 10/13 [10, 20] [2, 1.8, 1.7] 20 1
B 5/8 10/10 [5, 10] [2.5, 2, 1.8] 20 0.5

Table 2: Service quality for each instance group

5.2 Impact of parameters

Before testing our Reinsertion Algorithm, we want to study the impact of its
important parameters T and MT defined in section 4.2. Concerning the values
of free parameters, preliminary experiment led us to set kmin = 3, kmax = 10
and pr = 4.
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5.2.1 Impact of T

Our first objective is to evaluate the impact of the value of T (defined in section
4.2) on the final percentage of served requests. In this evaluation, the maximum
allowed time MT for the experiment is set to 1 second. The figure 2 shows
the results of the experiments plotted separately for each group. The behavior
on the two groups is pretty clear: the performance increases up to 15 minutes
and then decreases when compared to T = 15. Thus, T = 15 has a better
performance than T = 0 since it provides a large search space of solutions. The
performance associated with values beyond 15 minutes decreases because more
time is expended in removing non-relevant requests. The decrease in performance
is different between the two groups. We observe that in groupB, this performance
deteriorates when T increases and falls below T = 0 for values greater than 60
minutes. However, we observe that in group A this performance tends to stabilize
around an average value when T > 15 and always performs better than T = 0.
Figure 1 gives us insights to explain this behavior. Neighborhood represents the
average number of requests that are candidates for removal (size of the list LI
see 4.2.1) and Feasible computes the proportion of the number of feasible moves
in relation to all the moves tested by the algorithm. These values are obtained
by running one simulation on each instance. We observe that the size of the
neighborhoods is on average similar for both groups. However, it appears that
finding feasible moves is more harder in group A, which confirms the hardness
of these instances (cf. 5.1).

T 0 60 120

Neighborhood 23.88 55.18 62.98
Feasible 1.91 1.51 1.29

(a) Group A

T 0 60 120

Neighborhood 13.67 47.10 66.78
Feasible 14.77 8.85 6.14

(b) Group B

Fig. 1: Mean number of booking and feasible moves in Neighborhood according
to the value of T for each Group

We keep the value T = 15 for future experiments. The fact that the same
value gives best results on both groups is probably related to the fact that the
W values are similar (see tab 2).

5.2.2 Impact of maximum allowed time

In this section, we are interested in varying the maximum time MT allowed for
the Reinsertion Algorithm. We perform independent tests for each value of MT .
Figure 3 shows the impact of the maximum allowed time on the two groups
of instances. In group B, we observe significant improvement between 1 and 3
seconds. The gain continues to increase up to 5 seconds in a less significant way.
The behavior is different in group A. We observe a clear improvement when
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(a) Group A (b) Group B

Fig. 2: Relative improvement according to the value of T for each group of in-
stances.

passing from 1 to 2 seconds, but no clear improvement up to 5 seconds. We
even observe that MT = 3 and MT = 4 perform slightly worse than MT = 2.
These variations are mostly due to the stochastic nature of the algorithm and the
natural variance it produces. The group B takes more advantage of the increase
of maximum time than group A, probably for the same reasons as those given
in section 5.2.1.
Based on these observations, we choose to limit the maximum allowed time for
the Reinsertion Algorithm to 3 seconds, considering that it allows to keep fast
answer time and that it doesn’t degrade the performances. Note that 2 seconds
could also be an acceptable value.

(a) Group A (b) Group B

Fig. 3: Relative Improvement according to the maximum allowed time (seconds)
for each group of instances.

5.3 Benefits of reinsertion

The purpose of this section is to evaluate the benefits of running the proposed
Reinsertion Algorithm on dynamic Dial-a-Ride problems. We use the percentage
of served requests as a metric to evaluate the performance of the Reinsertion
Algorithm but we also show its impact on the total duration of rides (defined
in section 3), which is the objective minimized by algorithms implemented in
Padam’s service.
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Table 3 presents results for group A. It exposes results with 13 vehicles (num-
ber of vehicles used in practice for this group of instances) and also for 12 and
14 vehicles for each instance. The meaning of the columns is as follows: O is for
the percentage of served requests with online algorithm (algorithm implemented
in Padam’s service), O+R is the percentage of served requests with online and
reinsertion algorithms, Imp is the relative improvement of reinsertion over online
in terms of served requests and ImpD is the relative improvement of reinsertion
over online in terms of total duration of the rides.

We first observe that instances of group A are very hard, because we are
often far from satisfying all requests with the online algorithm. However, the
Reinsertion Algorithm provides an improvement on almost all instances, with an
average improvement of 3.64% (respectively 4.56% and 5.95%) with 13 vehicles
(respectively with 12 and 14 vehicles). This is done with approximately the same
rides duration, which shows that the reinsertion can satisfy more requests with
similar vehicle costs. By comparing the results obtained with 12 and 13 vehicles,
we observe that the online algorithm serves on average 45.82% of requests with
12 vehicles compared to 49.68% with 13 vehicles, while the reinsertion serves
on average 48.17% with 12 vehicles. It means that despite the hardness of the
instances, Reinsertion Algorithm fills more than half of the gap caused by the
removal of a vehicle and even eliminates the need to add a vehicle in the case of
the instance A 177 and A 120. The results also show that with 13 vehicles, the
Reinsertion Algorithm succeeds in inserting on average as many requests as with
the online algorithm with 14 vehicles, improving the result of some instances.

An analysis of the results obtained by varying the number of vehicles shows
that the relative improvement of the online algorithm with 14 vehicles compared
to the same algorithm with 13 vehicles is 3.8%, and the relative improvement of
the Reinsertion Algorithm is 63% when comparing 14 vehicles against 13 vehicles.
Then, we can conclude that the relative improvement of the online algorithm is
lower when passing from 13 to 14 vehicles, while the relative improvement of the
Reinsertion Algorithm is significantly larger.

In rare cases, the Reinsertion Algorithm implies a deterioration in the per-
centage of served requests. We observe on most of theses instances that the final
duration of the ride is nevertheless higher. This may be explained by the fact that
the reinsertion process can sometimes accept hard requests that would otherwise
have been rejected, degrading the rides too much and making it more difficult
to insert some subsequent requests. This seems however to be quite rare.

Table 4 presents results for group B. These results are more consistent than
for group A with an improvement in all instances. With 6 vehicles, the reinser-
tion gives an average improvement of 7.07% with approximately similar rides
duration, which is a significant improvement. With 5 vehicles, the reinsertion
achieves an average improvement of 11.16% resulting on an average of 81.48%
of served requests. This average percentage is larger than the results achieved
with the online algorithm with 6 vehicles. This is especially true on 6 instances
(two-thirds of the group instances). It means that the Reinsertion Algorithm
allows on average to save 1 vehicle out of 6, which corresponds to a considerable
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Ve nb of vehicles = 12 nb of vehicles =13 nb of vehicles = 14

INS O O+R Imp ImpD O O+R Imp ImpD O O+R Imp ImpD

A 120 67.5 76.67 12.1 -0.92 74.17 82.5 11.24 0.45 75.83 83.08 9.56 -0.25
A 145 53.10 53.52 0.78 0.13 57.24 60.62 5.90 -2.58 62.06 62.55 0.78 -2.65
A 159 60.38 64.40 6.67 1.38 66.04 68.49 3.71 2.76 65.41 70.75 8.17 4.19
A 177 42.37 45.14 6.53 6.55 44.63 46.89 5.06 -1.49 46.33 48.64 5.00 -2.67
A 216 43.52 41.99 -3.51 1.27 44.44 44.03 -0.94 -0.37 45.37 47.45 4.59 -0.27
A 233 51.07 53.22 4.20 1.03 55.79 58.88 5.54 3.43 60.94 62.70 2.88 0.64
A 271 34.32 35.43 3.23 -0.15 36.53 37.49 2.62 -2.79 38.75 42.43 9.52 0.09
A 288 34.03 33.40 -1.84 2.51 34.72 34.375 -0.99 0.77 35.07 37.26 6.24 0.65
A 288b 45.49 51.32 12.82 -1.9 54.86 54.03 -1.52 0.32 55.55 57.88 4.19 -0.20
A 360 26.39 27.61 4.63 -0.28 28.33 29.97 5.78 -1.51 30.27 32.86 8.53 -0.29

Avg. 45.82 48.17 4.56 1.10 49.68 51.73 3.64 -0.19 51.56 54.56 5.95 -0.07

Table 3: Performance of Reinsertion Algorithm on instances of group A.

benefit for the transporter. This is also true when comparing results with 6 and
7 vehicles: reinsertion with 6 vehicles performs better than the online algorithm
with 7 vehicles on all instances, meaning that the reinsertion prevents the trans-
porter to add a vehicle while having better performances and similar costs. This
is another huge benefit.
We also observe that with a fixed number of vehicles, the Reinsertion Algorithm
tends to perform better when the number of requests increases. This could po-
tentially be explained by the fact that the higher the number of requests, the
more the online algorithm is far from optimal arrangement for these requests.

Ve nb of vehicles =5 nb of vehicles =6 nb of vehicles =7

INS O O+R Imp ImpD O O+R Imp ImpD O O+R Imp ImpD

B 200 84.5 88.95 5.27 5.27 90.5 92.75 2.49 -2.42 89.5 92.0 2.79 1.93
B 301 82.06 91.06 10.97 3.95 89.04 92.29 3.66 -1.61 91.03 94.15 3.43 -0.80
B 398 86.93 90.70 4.34 1.29 88.94 91.21 2.54 0.39 87.44 91.88 5.08 1.99
B 498 76.51 85.94 12.34 2.42 85.94 90.84 5.70 2.40 87.35 93.88 7.47 0.97
B 607 72.32 82.19 13.64 0.85 80.72 88.37 9.47 1.88 84.51 91.57 8.34 -0.38
B 709 69.25 78.22 12.95 0.87 80.82 84.79 4.92 0.96 84.34 89.01 5.53 1.32
B 802 67.83 75.01 10.58 -0.29 72.57 82.77 14.05 2.08 78.05 86.66 11.02 0.06
B 909 61.45 75.01 17.29 0.48 73.68 81.38 10.45 1.17 76.98 85.45 11.00 2.90
B 1011 61.03 69.00 13.06 -0.02 70.23 77.51 10.37 0.44 75.57 82.11 8.65 0.38

Avg. 73.54 81.46 11.16 1.65 81.38 86.88 7.07 0.59 83.86 89.64 7.04 0.93

Table 4: Performance of Reinsertion Algorithm on instance of group B.

6 Conclusion

In this paper, we have studied a real problem of dynamic DARP raised by the
company Padam. We have proposed an original and novel re-insertion algorithm
for rejected requests based on repair and destroy operators. Our approach ex-
plores many reinsertion possibilities since it allows to cover a wide neighbour-
hood. We conducted extensive experiments on hard and realistic instances up to
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1011 requests and 14 vehicles to evaluate the benefits of our proposed method.
We have shown that it allows us to respond to a greater number of requests
and that it saves an average of one bus on almost half of the cases, which is a
significant advantage for Padam.
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