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Abstract. The Track–Before–Detect (TBD) algorithms allow the esti-
mation of the state of an object, even if the signal is hidden in the back-
ground noise. The application of local cross–correlation for the modified
Information Update formula improves this estimation for extended ob-
jects (tens of cells in the measurement space) compared to the direct ap-
plication of the Spatio–Temporal TBD (ST–TBD) algorithm. The Monte
Carlo test was applied to evaluate algorithms by using a variable stan-
dard deviation of the additive Gaussian noise. The proposed solution
does not require prior knowledge of the size or measured values of the
object. Mean Absolute Error for the proposed algorithm is much lower,
close to zero to about 0.8 standard deviation, which is not achieved for
the ST–TBD.

Keywords: Track–Before–Detect · Tracking · Algorithm Analysis · Monte
Carlo · Cross–Correlation.

1 Introduction

Tracking algorithms are applied in numerous civil and military applications [6].
Detection algorithms could be used to estimate basic object parameters, such
as only position. Tracking allows you to combine subsequent measurements into
paths. Tracking allows the filtering of incoming signals to reduce noise and pre-
dict the state of the objects. Such filtering is very important because false mea-
surements lead to distortions in tracking. The signal strength associated with
several close observations is not an appropriate criterion for choosing a particular
observation as an object signal [6].

Different types of measurement data can be processed: radar or video signals
are typical. The complexity of tracking systems depends on SNR (Signal–to–
Noise Ratio) and the number of tracked objects [7], and real–time tracking of a
single object in low SNR scenarios is very sophisticated. It is well known that
the Detection and Tracking (classical) approach can only be used in cases of
high and medium SNR [6]. Detection based on the threshold algorithm leads
to a large number of false detections, so further processing of the tracking part
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is not possible. The tracking algorithm (e.g. Benedict–Bordner, Kalman, and
EKF) enables suppression of false detection only to a certain level using a mo-
tion model [5]. The selection of a fixed or adaptive threshold algorithm is not
a solution to the problem. A too low threshold level leads to an increase in
the number of observations that are treated as potentially possible. A too high
threshold level leads to the omission of observations that may be associated with
the object.

An alternative approach is based on Tracking and Detection (Track–Before–
Detect). It uses tracking of all possible trajectories without first detecting ob-
jects, even if no object is in the range. This is possible due to the processing of
raw measurements, without thresholding, as in classical systems [24]. The mea-
sured values are accumulated on trajectories, so the signal is filtered (improved
SNR), and then detection is possible after tracking. The computational cost of
such a solution is extremely high, but in many applications it is acceptable due
to safety and expected reliability.

1.1 Related Work

There are many TBD algorithms (e.g. Velocity Filters [10], Viterbi TBD [22],
ST–TBD [17], SLRT [24], Directional Filters [26]) and all of them support track-
ing of many objects. This is an internal feature of TBD algorithms. The cost
of calculations for most TBD algorithms is constant, regardless of the number
of objects and requires high computing power. The reduction of the number of
calculations by reducing the number of analyzed possible paths is available in
the Particle Filters TBD algorithms [25]. Unfortunately, the main problem with
the Particle Filters TBD method is the difficult initialization of the algorithm,
especially when the object can appear in range at any time.

A typical tracking system assumes zero mean noise and a positive value for a
large point object, so a single pixel (or cell) is excited by the tracked object [24].
Otherwise, additional preprocessing is required for conditioning the input sig-
nal [16, 18, 24]. Tracking a larger object that occupies dozens of pixels, sometimes
with values below the zero value, requires a dedicated preprocessing algorithm.
Large extended objects are considered in Section 2 Objects with known signal
characteristics (profile) can be improved by applying matching filters as shown
in [16]. Very specific objects are noise objects (only noise is observed from the
object), therefore local signal distributions are used [18, 19].

1.2 Content and Contribution of the Paper

The proposed solution for tracking extended objects uses the modified ST–TBD
with local analysis of cross–correlation between neighboring measurements.

The ST–TBD algorithm is oriented to the processing of individual cells (pix-
els) of the input signal (image), and the use of cross-correlation allows better use
of information about neighbor values in determining the potential position for
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the next measurement. This solution can be applied to extended objects with-
out significantly increasing the computing cost and losing information about the
similarity of the pixels representing the object in motion.

Using the local cross–correlation and by comparing the current and previous
image frame, it is possible to sharpen the measurement values, which is necessary
to improve the SNR, as discussed in Section 3. The analysis of the algorithm’s
performance is possible only through the Monte Carlo approach, as presented
in Section 4. The discussion is presented in Section 5. The final conclusions and
further work are presented in Section 6.

2 Data

There are several types of objects being tracked in image processing applications
and a typical area of objects with a single pixel. Sometimes the neighborhood
pixels are excited because of the imperfections of the sensor. An extended type
object includes tens or more pixels, so the direct use of TBD algorithms is not
possible, because object features can be treated as separate objects. Classic algo-
rithms use the conversion of extended objects to a single pixel or the estimation
and processing of positions. An example of an extended object is shown in Fig. 1
that may have low contrast in poor weather or lighting conditions. The obtained
image may also be deteriorated due to the measurement noise caused by poor
lighting, long distance and sensor noise.

Fig. 1. Example of good quality measurement (left), low contrast measurement (cen-
ter), and measurement of the noisy low contrast (right) for the aircraft.

An additional problem with TBD is blurring caused by the Motion Update
formula (explicitly or not). Sharpening is a good solution, but in the case of a
low SNR it leads to the emphasis of noise. The solution proposed in this article
uses local correlation to sharpen. The example of a cross–correlation that shows
the use of local cross–correlation is shown in Fig. 2 and Fig. 3. The highest peak
value is for c(v = 2) in the 25 position, which results in the appropriate spatial
offset (v = 2) (the object’s velocity is 2) and the position of the object. The test
case with no background noise is shown in Fig. 2, so detection and tracking is
possible using very simple algorithms. Detection and tracking is possible due to
the contrast between the object signal and the background. Tracking an object
when the signal values for the object are close to the background noise are shown
in Fig. 3.
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Fig. 2. Example of local cross–correlations c(.) for two 1D X(n) and X(n + 1) signals
(two time moments: n and n + 1) with an object (between vertical lines) for several
possible shifts of objects in space. No background noise.
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Fig. 3. Example of local cross–correlations c(.) for two 1D X(n) and X(n + 1) signals
(two time moments: n and n + 1) with a low contrast object (between vertical lines)
for several possible shifts of objects in space.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_5

https://dx.doi.org/10.1007/978-3-030-22734-0_5


6 P. Mazurek, R. Krupinski

In this article, the Monte Carlo method [20] was used to compare the basic
ST–TBD algorithm with the local cross–correlation ST–TBD for 1D signals. The
extension to 2D cases (images) is possible, but is not taken into account due to
the high cost of simulation.

It is assumed that the extended object has a size of 11 pixels (cells). The pixel
values of the object are randomly selected at the beginning of the test (obtained
from a uniform random number generator). The object velocity is an integer
value in the range 0− 10 and the velocity value is chosen randomly. A velocity
value of 0 corresponds to the static position of the object (no movement).

The measurement is disturbed by the additive Gaussian noise. The standard
deviation of this noise is controlled, configured in a random number generator,
which allowed testing of various SNR cases.

There are 1500 cells associated with the position, so the input image has a
resolution 1×1500 for the assumed 1D case. This allows you to test the object for
100 frames, because 100 frames for a maximum velocity of 10, gives a maximum
of 1000 pixels of movement. Estimated and known positions are compared after
100 frames to determine the position error.

3 Method

The proposed tracking solution is based on the ST–TBD algorithm that uses the
Motion Update formula (2) to predict the state and Information Update formula
(3) to process a new input signal:

Start

P (k = 0, s) = 0 (1)

For k ≥ 1 and s ∈ S

P−(k, s) =

∫
S

qk(s|sk−1)P (k − 1, sk−1)dsk−1 (2)

P (k, s) = αP−(k, s) + (1− α)X(k) (3)

EndFor
End

where: S is a state–space, s is a state (spatial and velocity components), k
is a time step, α is a smoothing coefficient α ∈ (0, 1), X(k) is an observed value,
P (k, s) is the estimated value of state, P−(k, s) is the predicted value of state,
qk(s|sk−1) denotes the transition between states (a Markov matrix [24]).

The Markov matrix determines the state changes and can generally describe
the probability of changing position and velocity to any other. This matrix can
be additionally variable over time. The Markov matrix does not support the
transition between velocities in this test, because the assumed velocity of the
object is constant. The transition model for a single cell is shown in Fig. 4. The
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variable velocity of the object causes that the transition leads to several neigh-
boring targets and therefore the blur of the state space occurs. The knowledge
of the object’s movement enables optimization of this matrix and reduction of
blur.

1

P(k-1,s=(x,V)) P(k,s=(x+V,V))

Fig. 4. The simplest transition model.

The local cross–correlation ST–TBD uses a different Information Update
formula (3):

P (k, s) = αP−(k, s) + (1− α)CN [X(k, s), X(k − 1, s)] , (4)

where: CN [., .] is a cross–correlation function for a local window with a length
of N .

The state–space can be defined in various ways. In the considered approach,
the direct mapping of the input signal to the state–space is selected. One-
dimensional measurement uses the following formula:

CN [X(k, s = (x, V )), X(k − 1, s = (x, V ))] =

=

N−1
2∑

i=−N−1
2

X(k, x+ i)X(k − 1, x+ i− V ),
(5)

where x is a position, which leads to a 2D state–space. The local window length
is N . Velocity is the number of cells for the movement of local window between
the time moments k and k + 1 and is denoted by V . A similar formula can be
obtained for 2D inputs (images) and this leads to a 4D state–space.

4 Results

The Monte Carlo test can be used to analyze the performance of the algorithm.
This method is based on calculating the results for different sets of values (vec-
tors) related to the object signal as well as various random vectors associated
with the background signal. A single test cannot be used to evaluate the algo-
rithm, even if the algorithm is deterministic. The problem is the influence of
random input data on the output results, so the algorithm evaluation requires
many tests for the same statistical parameters, such as standard deviation of the
background input noise. The vector of the signal associated with the object is
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also generated using a random number generator. The object velocity is another
parameter that is randomly selected. The evaluation of the algorithm requires
many repetitions and the average results related to the position error could be
presented for the comparison of different algorithms or the configurations of a
single algorithm. The smooth curves of this error are observed if an acceptable
convergence is achieved. The noisy curves are obtained if convergence is not
achieved and such results cannot be used to formulate conclusions. The Monte
Carlo algorithm is a simple approach and more advanced sampling algorithms
are also available, such as MCMC (Markov Chain Monte Carlo) [23].

Standard ST–TBD and local cross–correlations are compared (Fig. 5). In
each variant there are 10,000 test repetitions and two smoothing factors are
tested: 0.95 or 0.98. The local cross–correlation algorithm is tested with the
local window N = 11 and N = 21.

The fixed velocity and one–dimensional tracking case were adopted with a
non–negative motion vector to simplify the calculation. The maximum value of
the space–state is assumed as the detection criterion, therefore the location and
velocity of the extended object are estimated. The estimation error is a function
of additive Gaussian noise, which is the main disruptive factor. The obtained
results are shown in Fig. 5. The corrected ST–TBD algorithm assumes detection
of any pixel of the extended object instead of the center, which is important due
to the random value of the signal object. The correction effect on the result is
noticeable as a vertical shift in the result graph, however it is very small (Fig. 5
top–left).

5 Discussion

The number of test cases has been selected to obtain smooth curves (Fig. 5).
The convergence was analyzed using a variable number of tests, and 10,000 tests
were sufficient to determine the properties. The advantage of the Monte Carlo
test is the possibility of comparative testing of various algorithms, the influence
of parameters and responses for different classes of tracked objects. The obtained
results indicate a significant improvement of the proposed method in relation to
the standard algorithm (ST–TBD only).

The standard algorithm is single–pixel oriented, and the denoise of mea-
surements is not as effective as the local cross–correlation between neighboring
measurement frames. MAE for the proposed algorithm is much lower, close to
zero to about 0.8 standard deviation (Fig. 3), which is not achieved for the stan-
dard algorithm, even if a correction is applied. The increase in MAE for standard
deviation around 1 is expected behavior. This is a region in which a significant
influence of the smoothing factor is observed.

A high value of α = 0.98 allows filtering the noise, but in real scenarios
this value can not be very high. The smoothing factor reduces the impact of
trajectory changes, so it should be estimated for a specific application. Higher
errors are observed in the case of large standard deviations (> 1.2). Interestingly,
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Fig. 5. Mean absolute error (MAE) for the Monte Carlo comparison test: the standard
algorithm (ST–TBD only) and local cross–correlation with ST–TBD one.
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MAE is lower for the standard algorithm, but high MAE values show a general
problem for all algorithms.

The influence of the local window size is not relevant to the considered case.
This is important, because the size of the object is in many cases an unknown
parameter. The cost of calculations is not significant compared to the overall
algorithm. The main cost is the calculation of the Motion Update formula (2).
The local cross–correlation is calculated for known fixed velocities V , so it is fast
with a cost similar to the 1D FIR filter for the 1D input data.

The real–time implementation is not considered in this document, but effi-
cient parallel or non–parallel implementations are possible if the Markov matrix
is not considered as a typical matrix. It is a sparse matrix and numerous im-
plementation optimization techniques are possible. The proposed Information
Update formula (4) only requires the calculation of local cross–correlations. It is
possible to use parallel processing including SIMD (Single Instruction, Multiple
Data) instructions with MAC (Multiply and Accumulate) instructions.

Processing using OpenMP [8], MPI [12] and CUDA [11, 21] is possible for
the considered algorithm. Evaluation of algorithms using the Monte Carlo test
is very important, because many computers could be used independently for
computations.

Tracking systems should have high noise immunity. Parameters of algorithms
should be chosen so that the trajectories considered correspond to the real be-
havior of objects. This means that it is necessary to examine the application of
optimization methods [2, 4, 9, 14], thus increasing the credibility of the system
and reducing the already large calculation budget.

The article assumes the comparison of the potential location of the object us-
ing a local cross–correlation, but the use of other measures may allow a potential
improvement in tracking quality [1] as well as clustering [3, 13, 15].

6 Conclusions and Further Work

The proposed algorithm can be extended for 2D measurement spaces (such as
video or radar images). ST–TBD, like many other TBD algorithms, enables com-
bining data from many of the same or different types of sensors, which is impor-
tant for improving the quality of tracking. The local cross–correlation assumes
the preservation of the signal from the extended object in the neighborhood
measurement frames, even if the values associated with the object are unknown.

The achieved result improves the tracking of the hidden signal in the back-
ground noise, which is clearly visible in Fig. 3. Detection of the object’s position
is not possible directly, but the TBD processing used together with the local
cross–correlation allows the detection and estimation of position and velocity.

Further work will be related to the application to 2D tracking scenarios and
other TBD algorithms.
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