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Abstract. During the last century, X-ray science has enabled breakthrough dis-
coveries in fields as diverse as medicine, material science or electronics, and re-
cently, ptychography has risen as a reference imaging technique in the field. It
provides resolutions of a billionth of a meter, macroscopic field of view, or the
capability to retrieve chemical or magnetic contrast, among other features. The
goal of ptychography is to reconstruct a 2D visualization of a sample from a
collection of diffraction patterns generated from the interaction of a light source
with the sample. Reconstruction involves solving a nonlinear optimization prob-
lem employing a large amount of measured data —typically two orders of mag-
nitude bigger than the reconstructed sample— so high performance solutions are
normally required. A common problem in ptychography is that the majority of
the flux from the light sources is often discarded to define the coherence of an
illumination. Gradient Decomposition of the Probe (GDP) is a novel method de-
vised to address this issue. It provides the capability to significantly improve the
quality of the image when partial coherence effects take place, at the expense of
a three-fold increase of the memory requirements and computation. This down-
side, along with the fine-grained degree of parallelism of the operations involved
in GDP, makes it an ideal target for GPU acceleration. In this paper we propose
the first high performance implementation of GDP for partial coherence X-ray
ptychography. The proposed solution exploits an efficient data layout and multi-
gpu parallelism to achieve massive acceleration and efficient scaling. The experi-
mental results demonstrate the enhanced reconstruction quality and performance
of our solution, able process up to 4 million input samples per second on a sin-
gle high-end workstation, and compare its performance with a reference HPC
ptychography pipeline.

1 Introduction

Ptychography [1] permits imaging macroscopic specimens at nanometer wavelength
resolutions while retrieving chemical, magnetic or atomic information about the sam-
ple. It has proven to be a remarkably robust technique for the characterization of nano
materials, and it is currently used in scientific fields as diverse as condensed matter
physics [2], cell biology [3], materials science [4] and electronics [5], among others.
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Fig. 1: Overview of a ptychography experiment and reconstruction. An illumination
source (X-ray beam) consecutively scans regions of the sample to produce a stack of
phase-less intensities. The stack and the geometry of the measurements are fed to an it-
erative solver that retrieves the phases and reconstructs an image of the original sample.

Ptychography is based on recording the distribution of the diffraction patterns produced
by the interaction of an X-ray beam (illumination) with a sample. The diffracted signal
contains information about features much smaller than the size of the beam, making it
possible to achieve higher resolutions than with standard scanning transmission tech-
niques. Only the intensities of the diffracted illumination are measured, and one has to
retrieve the corresponding phases to be able to reconstruct an image of the sample. To
solve this problem, diffraction patterns are obtained from overlapping regions of the
sample, producing a redundancy that can be used to recover the original phases of the
signal.

An overview of ptychography is depicted in Fig. 1. First, a sample is repetitively
scanned with an X-ray beam, producing diffraction patterns that are recorded on a 2D
detector. Each measurement is stored as a frame, and its exact location in the sample is
also registered. Secondly, the stack of frames and the measurements’ geometries are fed
to a non-linear iterative solver that recovers the phases of the measurements. The solver
optimizes based on two main constraints: (1) the match between overlapping regions of
the frames, and (2) the match with a given model for the data. After the solver reaches
an exit condition, the output is the overlap of the stack of frames (now with phases)
in their corresponding geometries. This overlap corresponds to the 2D reconstructed
image of the sample.

Normally, the ptychography reconstruction problem can only be solved if the illu-
mination employed is coherent. The (spatial) coherence of an illumination defines how
correlated are different points of its wavefront. To achieve higher coherence, X-ray mi-
croscopes employ apertures to filter the illumination, producing an homogeneous wave-
front where different points are virtually identical in phase and amplitude. This solution
wastes the majority of the X-ray flux, which is left behind the aperture. Overall, re-
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search institutions employ considerable resources to produce brighter X-ray sources,
while over 90% of the photons are discarded to produce a coherent illumination.

A recent study from the CAMERA team at the Lawrence Berkeley National Labo-
ratory (LBNL) proposed a novel algorithm that allows a ptychographic reconstruction
with an incoherent source of illumination. The new algorithm, named Gradient Decom-
position of the Probe (GDP) [6], has been proven to achieve successful reconstructions
with significantly incoherent illuminations. The GDP algorithm also allows for a faster
experimental data acquisition time: having more flux means you need less exposure
time which can accelerate the whole measuring process up to an order of magnitude.

The benefits of GDP come at the expense of a remarkable increase in arithmetic
operations and memory requirements with respect to a problem that is already com-
putationally expensive. In ptychography, the stack of frames is normally two orders of
magnitude bigger than the image reconstructed, and it is employed in practically all the
operations of the solver. The GDP algorithm employs additional variables that require
a three-fold increase of the memory footprint and computation with respect to baseline
ptychography. On top of that, GDP employs an additional sub-solver that iteratively
refines the illumination at every iteration. On the bright side, the operations employed
in both baseline and GDP ptychography present high fine-grained parallelism and few
dependencies. This parallelism is usually exploited in ptychographic reconstructions,
frequently employing many-core accelerators, such as GPUs [7–9].

In this paper we propose the first high performance implementation of a partial co-
herent ptychography solution using GDP. We design an implementation that exploits
the GDP parallelism and data requirements, making use of multiple GPU devices to
achieve state-of-the-art reconstruction times. We compare the performance of the pro-
posed implementation with that of baseline SHARP [7], a reference HPC ptychography
solution, heavily optimized and also multi-GPU accelerated. The experimental results
demonstrate how our implementation achieves only 2.5 times slower reconstruction
times, on average, compared with standard coherent ptychography, while handling with
3 times more data and performing 4 to 5 times more arithmetic operations. The pro-
posed solution has the key benefit of being able to process non-coherent illumination
measurements, potentially leading to more flux utilization, increased robustness to non-
stable sample exposures, and the capability to use less measurements when employing
partially coherent illumination sources. Experimental results also assess the increased
quality of the proposed method and implementation when handling partially coherent
data, as compared with that of baseline coherent ptychography.

The paper is structured as follows. Section 2 overviews the main concepts regarding
ptychography reconstruction, and introduces the GDP model. Section 3 presents the
proposed algorithm and implementation with a detailed description of the challenges
behind its design and the techniques employed, and Section 4 assesses its performance
through experimental results. The last section summarizes this work.

2 Overview of Ptychography and GDP

A coherent ptychography problem can be defined as follows. A X-ray illumination (or
probe) ω scans through a sample u, while a 2D detector collects a sequence J of phase-
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less intensities f . The goal is to retrieve a reconstruction of the sample u from the
sequence of intensity measurements f . In a discrete setting, u ∈ Cn is a 2D image with√
n ×
√
n pixels, ω ∈ Cm̄ is a localized 2D probe with

√
m̄ ×

√
m̄ pixels, and fj =

|F(ω ◦ Sju)|2 is a stack of phaseless measurements, with fj ∈ Rm̄+ ∀0 ≤ j ≤ J − 1.
The operation | · | represents an element-wise absolute value of a vector, whereas ◦
denotes an element-wise multiplication, and F represents a normalized 2-dimensional
discrete Fourier transform. Each Sj ∈ Rm̄×n corresponds to a binary matrix that selects
a region j of size m̄ from the sample u.

Besides recovering the sample u, in a ptychographic experiment the illumination
is rarely perfectly known, and thus both sample and illumination need to be retrieved
jointly. This is commonly referred to as blind ptychographic phase retrieval [10]. The
joint problem can be formulated as:

To find ω ∈ Cm̄ and u ∈ Cn, s.t. |A(ω, u)|2 = f, (1)

where bilinear operators A : Cm̄ × Cn → Cm and Aj : Cm̄ × Cn → Cm̄ ∀0 ≤ j ≤
J − 1, are denoted as:

A(ω, u) :=(AT0 (ω, u),AT1 (ω, u), · · · ,ATJ−1(ω, u))T ,

Aj(ω, u) :=F(ω ◦ Sju),

and f := (fT0 , f
T
1 , · · · , fTJ−1)T ∈ Rm+ .

There are multiple algorithms designed to solve the ptychography problem. The
most popular ones are the extended Ptychographic Iterative Engine (ePIE) [11], Differ-
ence Map [10, 12], Maximum Likelihood (ML) method [13], Proximal Splitting algo-
rithm [14], Relaxed Averaged Alternating Reflections (RAAR) [15] based algorithms
[7], and generalized Alternating Direction Method of Multipliers (ADMM) [16,17] for
blind ptychography [18, 19].

When using a partial coherent illumination, modeling the ptychohraphy problem is
more challenging. GDP proposes a model based on describing the illumination as the
superposition of a single coherent illumination convolved with a separable translational
kernel. This way, the partial coherence effect can be handled using this single illumina-
tion, its gradient, and the variance of the convolution kernel. Following this idea, GDP
is based on the following model:∑

ξ
|Fx→q (ω(x− ξ)Sju(x))|2 κ(ξ) = fpc,j(q), (2)

where fpc represents a sequence of partially coherent intensity measurements, κ(ξ) is
a 2D kernel with variance (second order moments) σ2

1 , σ2
1 and σ12 (σ2

1σ
2
2 − σ2

12 ≥ 0).
Then, the Taylor expansion of ω can be derived and simplified as:

fpc ' |A(ω̃, u)|2 + σ2
1 |A(∇1ω̃, u)|2 + σ2

2 |A(∇2ω̃, u)|2, (3)

with:
ω̃ := ω +

1

2
(σ2

1∇11ω + σ2
1∇22ω + 2σ12∇12ω),
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and ∇1, ∇2, ∇11, ∇22, ∇12 corresponding to the forward first and second order fi-
nite difference operators (gradients) with respect to x, y, xx, yy and xy directions.
Considering the sequence of measurements j , we can define the nonlinear operator
Gj : Cm̄ × Cn × R2 → Rm̄+ as:

Gj(ω̃, u, σ) := |Aj(ω̃, u)|2 + σ2
1 |Aj(∇1ω̃, u)|2 + σ2

2 |Aj(∇2ω̃, u)|2,

with σ := (σ1, σ2), and finally, we can establish the GDP nonlinear optimization model
as:

min
ω̃,u,σ

1

2

∑
||
√
fpc,j − Gj(ω̃, u, σ)||2, (4)

where || · || represents the L2 norm in Euclidean space.

3 High performance GDP solution

The GPD model is proposed in [6] together with an algorithm employing the ADMM
framework to efficiently solve the derived subproblems (GDP-ADMM). In this work
we design an implementation of GDP-ADMM and also propose a novel one employing
the RAAR algorithm (GDP-RAAR). In the following section we focus on GDP-RAAR
to describe the implementation, although the main insights and operations are common
to both. The implementations and algorithms of this work are developed inside the
SHARP framework, and some of the technologies and operations are common to the
baseline coherent solutions. In this section, we focus on the main key operations unique
to the GDP method; please refer to [7, 9] for a detailed description of other aspects of
the end-to-end solution not described in here.

The challenge deriving from the GDP model is threefold. First, the algorithm re-
quires to maintain in memory additional high dimensional variables. Second, the main
ptychography operations need to be reformulated to handle the new problem. Third,
to solve the illumination refinement, an additional inner solver needs to be considered
at every ptychography iteration. The standard memory footprint of the ptychography
problem involves the following structures. There are two main inputs: (1) a stack of 2D
frames (framesm[x, y, z]) containing the floating point values from the original mea-
sured intensities, and (2) a vector containing the coordinates of each one of the frames
in the sample 2D image (int2 coord[z]). Then, at least three additional structures are
required in the iteration process: sample[i, j], illum[x, y], and framess[x, y, z], con-
taining a 2D image of the object, the refined illumination and the stack of solution
frames (with phases), respectively. Each one of these contains phase and amplitude in-
formation, and thus they are stored as complex values (float2).

The main idea behind the GPD model is to fit the stack of frames with constraints
implying the original illumination and also its gradient on the x and y directions. Be-
cause of this, we need to consider three different variables for the stack of solution
frames: framess1, framess2, and framess3, each one float2 with size [x, y, z].
This increase in memory requirements is very relevant performance-wise. A real case
example: to generate an image with size 1024 × 1024, a stack of measured frames of
size 1500× 256× 256 is collected, which represents a ratio of 1:94 output/input. When
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Algorithm 1 GDP -RAAR

Parameters: framesm[x× y × z], coord[z], itermax,
n interleaved = 3, tolerance
1: allocate sample[i× j], illum[x× y × n interleaved ],

framess[x× y × z × n interleaved ]

2: illum = InitializeIllum(framesm)

3: sample = 1, framess = illum× Splitint(sample)

4: for k = 0 to itermax − 1 do
5: framess = ForwardFT (framess, stride = n interleaved)

6: framess = UpdateFrames(framess, framesm)

7: framess = InverseFT (framess, stride = n interleaved)

8: illum = GDescent(min{||Splitint(sample)×(I,∇1,∇2)illum1−framess||})

9: sample =
Overlapint(framess × illum∗)

Overlapint(|illum|2)
10: residual = ComputeResidual(framess, framesm)

11: if residual < tolerance then break
12: framess = RAAR Update(illum× Splitint(sample), framess)

13: end for
14: return sample, illum

using GDP, every pixel in the output (float2) is iteratively produced from 94× 1 float
framesm× 3 float2 framess elements, which constitutes a ratio of 2:658 in floating
point values. On top of it, practically all the operations involved in a ptychography re-
construction are memory bounded, so proper memory managing and locality becomes
a key factor to achieve performance.

3.1 The implementation

Algorithm 1 describes the high level outline of the proposed implementation using
the new GDP-RAAR algorithm 1. Note that all the operations are performed in GPU,
using either custom CUDA kernels or Thrust operands. Most of the operations are im-
plemented in a fused fashion in order to minimize GPU global memory transfers.

In this work we propose an scheme where all three framess1,2,3 variables are
stored as a single interleaved memory structure to maximize locality and performance.
In Algortihm 1, framess stores the three framess1,2,3 variables, with a total size
[x× y× z × n interleaved ] and n interleaved = 3 being the stride. The motivation
behind this design is related to the topology of the operations performed (how inputs
contribute to the outputs). Baseline ptychography involves four kind of core operations:
(1) Split, (2) Overlap, (3) 2D Fast Fourier Transforms (FFTs), and (4) and point-
wise additions, multiplications, divisions, etc. The standard Overlap operation takes

1 Algorithm 1 presents a simplified outline of the method. Multiple operations and memory
structures regarding regularization terms, stabilizers, background removal optimization, etc.
have been omitted for simplicity.
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Algorithm 2 Overlapint

Parameters: sample[i× j], framess[x× y × z × n interleaved],
coord[z], n interleaved = 3

1: frame size = x× y

2: n frame = block id

3: for f = thread id to frame size do
4: accum output = 0

5: out index = ComputeSampleCoord(f, coord [n frame], frame size)

6: frames index = (frame size× n frame+ f)× n interleaved

7: for p = 0 to n interleaved do
8: accum output + = framess[frames index+ p ]

9: p = p+ 1

10: end for
11: sample[out index] = AtomicAddition(sample[out index], accum output)

12: f = f + block dim

13: end for

as inputs frames[x, y, z] and coord[z], and adds each frame into a 2D image2, on its
respective coordinate, as follows:

sample[ : , : ] = 0

for( i = 0; i < z; i+ +){
sample[ coord[ i ] ] + = frames[ :, :, i ] },

with the index ”:” referring to the full slice in a dimension. The Split operation does the
opposite: for each coordinate, a frame is extracted from an input 2D image, constructing
an output 3D stack of frames. In GDP, theOverlap and Split operations are performed
considering the three stack of frames variables. Each framess1,2,3 is added into a
single image for the Overlap, and a single image is split into three stack of frames.
The interleaved strategy mentioned above permits to maximize data locality in these
operations.

Algorithm 2 presents the interleaved Overlap CUDA kernel (Overlapint) imple-
mented for GDP. The thread to data mapping is as follows: each CUDA thread block
processes a single frame from framess, iterating over the frame with a stride of sam-
ples equal to the thread block size (block dim) (line 12). For each pixel in the original
frame size [x, y], each thread accumulates in a local register the contribution from all
three framess1,2,3 variables, iterating over the interleaved stride (line 7). Then, the
accumulated value can be written into the output image employing a single atomic ad-
dition operation (line 11). The atomic operation is employed as an efficient way to
handle the collision caused by having coordinates from different frames overlapping
into the sample.

2 Note that normalization may be required afterwards.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_4

https://dx.doi.org/10.1007/978-3-030-22734-0_4


The interleaved Split operation (Splitint) is handled similarly as in the Overlap
case. The main difference is that no atomic operation is required in it. When splitting the
sample into frames, each frame is normally multiplied by the illumination. In GDP, each
framess1,2,3 variable needs to be multiplied by the illumination, its horizontal gradi-
ent and its vertical gradient, respectively. To reduce computation, the gradients of the
illumination are computed once per iteration and stored as an interleaved variable with
size [x×y×n interleaved ]. This strategy permits performing efficient straightforward
point-wise operations between the interleaved frames and the interleaved illumination
variables. In Algorithm 1, illum stores the interleaved illumination structures; it is ini-
tialized in InitializeIllum (line 2) employing the information from the measured
frames (framesm) to generate an initial guess. Then, the same function computes and
stores the x and y gradients of the produced illumination.

The interleaved strategy is also beneficial when computing the L2 norm of the
framess1,2,3 variables. In UpdateFrames and in the background noise model-
ing (not shown in Algortihm 1 for simplicity) the sum of the square root of the L2 norm
needs to be computed, benefiting again from the enhanced locality of the interleaved
structures. In the case of the 2D FTT operations, the interleaved layout actually reduces
memory locality. To handle this issue with minimum performance impact we employ
the in-build strided FFT feature implemented in cuFFT . This allows to transparently
process our data through FFTs and back, without having to handle any reorganization
of it or additional computation.

The GDP model requires to solve an additional subproblem for the illumination
refinement step (Algorithm 1 line 8). The standard refinement is performed by fixing
the current estimate of the sample and minimizing the difference with the framess,
solving a problem in the form ‖Split(sample)× illum−framess‖, which is a linear
problem with diagonal matrix that can be solved in a single step. In GDP, the illumina-
tion refinement step couples the GDP expansion of the illumination (I,∇1,∇2)illum1,
with the Splitint(sample), and the interleaved framess in the form:

‖Splitint(sample)× (I,∇1,∇2)illum1 − framess‖,

with I and illum1 referring to the identity matrix and the original illumination variable,
respectively. This poses a linear problem with a sparse band-diagonal matrix, which we
solve using the gradient descent algorithm with a fixed step size, referred in Algorithm 1
as GDescent. Instead of using the conjugate gradient described in the original GDP
paper, we choose the gradient descent algorithm because it avoids the reduction op-
erations used to compute the step size and conjugate directions scaling factors, thus
offering an increased performance. The algorithm is implemented using custom CUDA
kernels that allow pre-computing in place multiple factors, a custom manipulation of
the interleaved structures, and permits fusing the iterating process with pre- and post-
process operations, like the x, y gradient computation of the new illumination as a last
step of the refinement.

The GDP-RAAR implementation proposed in this paper is also accelerated using
multi-GPU over MPI/NCCL. The partition employed is similar to the one used in [7,9].
The main idea is to divide both framesm and framess variables across different
GPUs so that each independent device process only a subset of frames. Then, com-
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munication is required every time the sample and the illumination are updated. The
communication operation is essentially an AllReduce directive (Reduce and Broadcast)
that performs a summation of the partial results of each independent GPU. The commu-
nication directives are performed in-place, using NCCL if it is installed on the system,
or over standard MPI otherwise. Given the significant increase of the problem size of
GDP, the proposed implementation greatly benefits from multi GPU execution when
executed on high-end workstations. An additional feature is that the communication
frequency can be adapted to occur every N iterations, employing previous iteration
data for the non-local areas of the image. For the proposed GDP implementation, this
features enhances performance only with small problem sizes per GPU (<30 millions
measured samples).

4 Experimental results

The results presented below have been executed in a dual socket workstation with two
Intel Xeon E5-2683 v4, with a clock frequency of 2.10 GHz and 16 cores each. The
machine is equipped with 4 dual-slot Tesla K80 GPUs, for a total of 8 GK210B de-
vices, each device with 2496 CUDA cores. The implementations reported here have
been compiled using gcc 5.4.0 and nvcc 8.0. The profiling results have been obtained
with both Nvidia visual and inline profilers, nvvp and nvprof, respectively. All execu-
tion times and performance results consider the full pipeline execution time, includ-
ing loading the data from memory, GPU runtime initialization, memory allocation and
transfers, and writing back the reconstructed image and illumination. The experiments
below all employ the GDP-RAAR algorithm described in the previous section but the
reconstruction results and performance are also comparable when using GDP-ADMM.
All experiments are measured using 100 solver iterations, which is enough to achieve
convergence using standard tolerance thresholds for the datasets presented in here. The
performance analysis and results below can also be extrapolated when running more
iterations.

The first experiment, reported in Figure 2, evalutes the reconstruction quality of the
proposed GDP-RAAR algorithm when retrieving a partial coherent illumination and
sample, as compared with the baseline RAAR method from SHARP. In order to perform
this test, a sample was measured with a standard coherent illumination first (Fig. 2 first
column) and then it was measured again using a partial coherent illumination (Fig. 2
second and third columns). The first column represents our reference reconstruction
and the second and third columns report an actual partial coherence experiment, recon-
structed using RAAR and GDP-RAAR, respectively. Top and bottom rows correspond
to the amplitude and phase contrast, respectively, from the same reconstruction. This
experiment was conducted at the Advanced Light Source (ALS) in 2018, at the COS-
MIC beamline, and the sample corresponds to a conglomerate of nanometer-sized gold
particles of uniform shape and size. Both coherent and partial coherent experiments
have virtually the same configuration, with both datasets containing 1600 frames of
size 256× 256 each. We can clearly see in Fig. 2 second column how the RAAR algo-
rithm introduces severe ghosting artifacts, specially around the contour of the sample.
Some areas of this reconstruction become significantly blurry, specially on the top-right
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(a) (b) (c)

(d) (e) (f)

Fig. 2: First column: baseline reconstruction using a standard coherent illumination us-
ing RAAR. Second column: reconstruction using a partial coherent illumination using
RAAR. Third column: reconstruction using a partial coherent illumination using the
proposed GDP-RAAR algorithm and implementation. Top row (a, b, c) corresponds
to the amplitude images retrieved, whereas the bottom row (d, e, f) depicts the phase
images from the same reconstructions.

features of the amplitude image and top-center and top-left areas of the phase image.
The results reported in the third column of Fig. 2 show how the main artifacts intro-
duced by RAAR are removed by the proposed GDP-RAAR method. When using GDP,
the ghosting artifacts are almost completely gone, and the heavily blurred areas present
the same quality as the coherent reference reconstruction (see the top areas mentioned
previously in both amplitude and phase).

The following test evaluates the execution time of the reconstruction results pre-
sented in the previous experiment. Results are reported in Figure 3, and show the
time in seconds of RAAR and GDP-RAAR, when being executed on a single GPU
and on different multi-GPU settings. First, we can see the significant increase in exe-
cution time required by GDP-RAAR, presenting execution times ranging from 5.5 to
1.5 times slower than RAAR. This is consistent with the increase in arithmetic opera-
tions required in GDP-RAAR: almost all arithmetic involve 3 times more data, whereas
the additional illumination solver performs 20 inner iterations per outer iteration, each
iterations requiring multiple point-wise multiplications, divisions, and gradients with
high dimensional data. The proposed implementation scales with the number of GPUs,
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Fig. 3: Execution times of the proposed GDP-RAAR implementation, compared to
those of baseline RAAR, when running on 1 to 8 GK210B GPUs. The dataset and
configuration are the same presented in the experiment reported in Figure 2.

achieving speedups of 1.94, 3.09 and 4.39 when using 2, 4, and 8 GPUs, respectively.
The reported scaling is remarkably good, specially considering the fact that communi-
cation across GPUs is performed three times per outer iteration, in order to share the
sample and illumination structures. This communication can significantly slow down
execution, as seen in the time results reported by RAAR. The amount of computation
and problem size that baseline RAAR handles is much less than GDP-RAAR, and that
is why the speedup gain with the increase of GPUs is lower, as independent devices
are not close to reach resource saturation. The communication overhead on its turn
becomes higher with the number of independent executions, effectively reducing the
performance of RAAR when running on 4, 6 and 8 GPUs.

The final experiment, reported in Figure 4, analyzes the scalability of the proposed
method with respect to the problem size. In this case we employ a dataset from an
experiment performed in the ALS on 2015 that measured a cluster of iron catalyst par-
ticles. We have selected different size slices of said experiment to asses the performance
of the proposed implementation with different input sizes. The performance metric is
given in samples/second (the higher the better). The horizontal axis presents the dif-
ferent size datasets for their number of measured intensity samples (in millions). As a
reference, we report the performance of baseline RAAR, together with the proposed
method, and each algorithm is executed on 2, 4 and 8 GPUs. The experiment reveals
how the proposed implementation achieves an almost perfect linear scaling when run-
ning on 2 GPUs. When running on 4 and 8 GPUs, the scaling achieved is better than
linear due to the devices not being saturated at first by the smaller individual problem
sizes. This effect is very noticeable with the RAAR results, where an (almost) satura-

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_4

https://dx.doi.org/10.1007/978-3-030-22734-0_4


Fig. 4: Performance and scalability of the proposed GDP-RAAR implementation com-
pared to that of baseline RAAR, both executed on 2, 4 and 8 GK210B GPUs. The size
of the datasets employed range from 100× 256× 256 to 2500× 256× 256 measured
frames.

tion point is only reached with 2 GPUs and the biggest problem sizes. We can also see
how the speedup achieved by the GDP-RAAR multi gpu execution effectively scales
with the problem size: the biggest dataset (240 million samples) achieves an speedup of
1.92 and 3.13 when running on 4 and 8 GPUs, respectively, with respect to a dual-GPU
execution.

5 Conclusions

This paper presents the first GPU-accelerated implementation of GDP for high per-
formance partial coherent ptychography. We tackle the significant increase of compu-
tational costs of GDP to produce a solution with a minimum performance loss, while
maintaining all the features offered by the method. We design our implementation using
an efficient interleaved data layout strategy that enhances the memory locality and over-
all performance of the core operations of the solver. Multi-GPU parallelism is exploited,
achieving linear scaling and capability to process up to 4 million measured samples per
second, on a single high-end workstation. We also demonstrate how our implementa-
tion achieves a drastic increase of reconstruction quality when dealing with partially
coherent light sources, with respect to standard ptychography. The proposed solution
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has the increased benefit of being able to employ more flux, potentially reducing the
acquisition time up to an order of magnitude, while being more robust to non-stable
sample exposures. It also offers the capability to use less measurements when employ-
ing partially coherent sources. The proposed implementation is currently installed and
being used at the ptychography COSMIC beamline at the Advanced Light Source at
LBNL, and the binaries and source code are also open to other DOE light sources.
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