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Abstract. Tensor contraction is an important mathematical operation
for many scientific computing applications that use tensors to store mas-
sive multidimensional data. Based on the Loops-over-GEMMs (LOG) ap-
proach, this paper discusses the design of high-performance algorithms
for the mode-q tensor-vector multiplication using efficient implementa-
tions of the matrix-vector multiplication (GEMV). Given dense tensors
with any non-hierarchical storage format, tensor order and dimensions,
the proposed algorithms either directly call GEMV with tensors or recur-
sively apply GEMV on higher-order tensor slices multiple times. We analyze
strategies for loop-fusion and parallel execution of slice-vector multipli-
cations with higher-order tensor slices. Using OpenBLAS, our parallel im-
plementation attains 34.8 Gflops/s in single precision on a Core i9-7900X
Intel Xeon processor. Our parallel version of the tensor-vector multipli-
cation is on average 6.1x and up to 12.6x faster than state-of-the-art
approaches.

1 Introduction

Numerical multilinear algebra has become ubiquitous in many scientific domains
such as computational neuroscience, pattern recognition, signal processing and
data mining [4,11]. Tensors representing large amount of multidimensional data
are decomposed and analyzed with the help of basic tensor operations where the
contraction of tensors plays a central role [5, 6]. To support numeric computa-
tions, the development and analysis of high-performance kernels for the tensor
contraction have gained greater attention. Based on the Transpose-Transpose-
GEMM-Transpose (TGGT) approach, [2, 13] reorganize tensors in order to perform
a tensor contraction with an optimized matrix-matrix multiplication (GEMM) im-
plementation. A more recent method, GEMM-like Tensor-Tensor Multiplication
(GETT), is to design algorithms according to high-performance GEMM [1,9,14]. Other
methods are based on the LOG approach in which algorithms utilize GEMM with
multiple tensor slices [7, 10, 12]. Focusing on class 3 compute-bound tensor con-
tractions with free tensor indices, most implementations of the above mentioned
approaches reach near peak performance of the computing machine [9, 12,14].

In this work, we design and analyze high-performance algorithms for the
tensor-vector multiplication that is used in many numerical algorithms, e.g.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_3

https://dx.doi.org/10.1007/978-3-030-22734-0_3


the higher-order power method [2, 5, 6]. Our analysis is motivated by the ob-
servation that implementations for class 3 tensor contractions do not perform
equally well for tensor-vector multiplications. Our approach is akin to the one
proposed in [7, 12] but targets the utilization of general matrix-vector multipli-
cation routines (GEMV) using OpenBLAS [15] without code generation. We present
new recursive in-place algorithms that compute the tensor-vector multiplication
by executing GEMV with slices and fibers of tensors. Moreover, except for few cor-
ner cases, we demonstrate that in-place tensor-vector multiplications with any
contraction mode can be implemented with one recursive algorithm using mul-
tiple slice-vector multiplications and only one GEMV parameter configuration. For
parallel execution, we propose a variable loop fusion method with respect to the
slice order of slice-vector multiplications. Our algorithms support dense tensors
with any order, dimensions and any non-hierarchical layouts including the first-
and the last-order storage formats for any contraction mode. We have quanti-
fied the impact of the tensor layout, tensor slice order and parallel execution of
slice-vector multiplications with varying contraction modes. The runtime mea-
surements of our implementations are compared with those presented in [1,9,14].
In summary, the main findings of our work are:

– A tensor-vector multiplication is implementable by an in-place algorithm
with 1 DOT and 7 GEMV parameter configurations supporting all combinations
of contraction mode, tensor order, dimensions and non-hierarchical storage
format validating the second recipe in [10] with a precise description.

– Algorithms with variable loop fusion and parallel slice-vector multiplications
can achieve the peak performance of a GEMV with large slice dimensions. The
use of order-2 tensor slices helps to retain the performance at a peak level.

– A LOG-based implementation is able to compute a tensor-vector product
faster than TTGT- and GETT-based implementations that have been described
in [1, 9, 14]. Using symmetrically shaped tensors, an average speedup of 3
to 6x for single and double precision floating point computations can be
achieved.

The remainder of the paper is organized as follows. Section 2 presents related
work. Section 3 introduces the terminology used in this paper and defines the
tensor-vector multiplication. Algorithm design and methods for parallel execu-
tion is discussed in Section 4. Section 5 describes the test setup and discusses
the benchmark results in Section 6. Conclusions are drawn in Section 7.

2 Related Work

The authors in [10] discuss the efficient tensor contractions with highly optimized
BLAS. Based on the LOG approach, they define requirements for the use of GEMM for
class 3 tensor contractions and provide slicing techniques for tensors. The slicing
recipe for the class 2 categorized tensor contractions contains a short description
with a rule of thumb for maximizing performance. Runtime measurements cover
class 3 tensor contractions.
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The work in [7] presents a framework that generates in-place tensor-matrix
multiplication according to the LOG approach. The authors present two strategies
for efficiently computing the tensor contraction applying GEMMs with tensors.
They report a speedup of up to 4x over the TTGT-based MATLAB tensor toolbox
library discussed in [2]. Although many aspects are similar to our work, the
authors emphasize the code generation of tensor-matrix multiplications using
high-performance GEMM’s.

The authors of [14] present a tensor-contraction generator TCCG and the GETT
approach for dense tensor contractions that is inspired from the design of a high-
performance GEMM. Their unified code generator selects implementations from
generated GETT, LoG and TTGT candidates. Their findings show that among 48 dif-
ferent contractions 15% of LoG based implementations are the fastest. However,
their tests do not include the tensor-vector multiplication where the contraction
exhibits at least one free tensor index.

Using also the GETT approach, the author presents in [9] a runtime flexible
tensor contraction library. He describes block-scatter-matrix algorithm which
uses a special layout for the tensor contraction. The proposed algorithm yields
results that feature a similar runtime behavior to those presented in [14].

3 Background

Notation An order-p tensor is a p-dimensional array or hypermatrix with p
modes [8]. For instance, scalars, vectors and matrices are order-0, order-1 and
order-2 tensors. We write a, a, A and A in order to denote scalars, vectors,
matrices and tensors. In general we will assume the order of a tensor to be p and
explicitly mention it otherwise. Each dimension nr of the r-th mode shall satisfy
nr > 1. The p-tuple n with n = (n1, n2, . . . , np) will be referred to as a dimension
tuple. We will use round brackets A(i1, i2, . . . , ip) or A(i) together with a multi-
index i = (i1, i2, . . . , ip) to identify tensor elements. The set of all multi-indices
of a tensor is denoted by I which is defined as the Cartesian product of all index
sets Ir = {1, . . . , nr}. The set J = {0, . . . , n̄ − 1} contains (relative) memory
positions of an order-p tensor with n̄ = n1 ·n2 · · ·np contiguously stored elements
with |I| = |J |. A subtensor denoted by A′ shall reference or view a subset of
tensor elements where the references are specified in terms of p index ranges.
The r-th index range shall be given by an index pair denoted by fr : lr with
1 ≤ fr ≤ lr ≤ nr. We will use : r to specify a range with all elements of the
r-th index set. A subtensor is an order-p′ slice if all modes of the corresponding
order-p tensor are selected either with a full index range or a single index where
p′ with p′ ≤ p is the number of all non-singleton dimensions. A fiber is a tensor
slice with only one dimension greater than 1.

Non-Hierarchical Storage Formats and Memory Access Given a dense
order-p tensor, we use a layout tuple π ∈ Np to encode non-hierarchical storage
formats such as the well known first-order or last-order layout. They contain
permuted tensor modes whose priority is given by their index. For 1 ≤ k ≤ p,
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an element πr of k-order layout tuple is defined as k − r + 1 if 1 < r ≤ k and r
in any other case. The well-known first- and last-order storage formats are then
given by πF = (1, 2, . . . , p) and πL = (p, p − 1, . . . , 1). Given a layout tuple π
with p modes, the πr-th element of a stride tuple is given by

wπr
= nπ1 · nπ2 · · ·nπr−1 for 1 < r ≤ p. (1)

With wπ1 = 1, tensor elements of the π1-th mode are contiguously stored in
memory. In contrast to hierarchical storage formats, all tensor elements with
one differing multi-index element exhibit the same stride.

The location of tensor elements within the allocated memory space is deter-
mined by the storage format of a tensor and the corresponding layout function.
For a given layout and stride tuple, a layout function λw : I → J maps a
multi-index to a scalar index according to

λw(i) =
p∑
r=1

wr(ir − 1) (2)

With j = λw(i) being the relative memory position of an element with a multi-
index i, reading from and writing to memory is accomplished with j and the
first element’s address of A.

Tensor-Vector Multiplication Let A be an order-p input tensor with a
dimension tuple n = (n1, . . . , nq, . . . , np) and let b be a vector of length nq
with p > 1. Let C be a tensor with p − 1 modes with a dimension tuple
m = (n1, . . . , nq−1, nq+1, . . . , np). A mode-q tensor-vector multiplication is de-
noted by C = A×q b where

ci1,...,iq−1,iq+1,...,ip =
nq∑
iq=1

ai1,...,iq,...,ip · biq (3)

is an element of C. Eq. (3) is an inner product of a fiber of A and b.The mode q
is its contraction mode. We additionally term π as the layout tuple of the input
tensor A with a stride tuple w that is given by Eq. (1). With no transposition
of A or C, elements of the layout tuple ϕ of the mode-q tensor-vector product
C are given by

ϕj =
{
πk if πk < πq

πk − 1 if πk > πq
and j =

{
k if k < q

k − 1 if k > q
(4)

for k = 1, . . . , p. The stride tuple v is given by Eq. (1) using the shape m and
permutation tuple ϕ of C.

4 Algorithm Design
4.1 Standard Algorithms with Contiguous Memory Access
The control and data flow of the basic tensor-vector multiplication algorithm im-
plements Eq. (3) with a single function. It uses tree recursion with a control flow
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1 tensor_times_vector_recursive(A,b,C,n, i, q, q̂, r)
2 if r = q̂ then
3 tensor_times_vector_recursive(A,b,C,n, i, q, q̂, r − 1)
4 else if r > 1 then
5 for iπr ← 1 to nπr do
6 tensor_times_vector_recursive(A,b,C,n, i, q, q̂, r − 1)

7 else
8 for iq ← 1 to nq do
9 for iπ1 ← 1 to nπ1 do

10 C(i1, . . . , iq−1, iq+1, . . . , ip) += A(i1, . . . , iq, . . . , ip) · b(iq)

Algorithm 1: Recursive implementation of the tensor-vector multiplication start-
ing with r = p for p ≥ 2 and 1 ≤ π1 6= q ≤ p with better data locality for large
dimensions. Iteration along mode q̂ with q̂ = (π−1)q is moved into the inner-most
recursion level.

akin to one of Algorithm 1 in [3]. Instead of combining two scalars elementwise
in the inner-most loop, the tensor-vector multiplication algorithm computes an
inner product and skips the iteration over the q-th index set, i.e. the q-th loop.
The algorithm supports tensors with arbitrary order, dimensions and any non-
hierarchical storage format. However, it accesses memory non-contiguously if the
storage format does not prioritize the q-th mode with π1 6= q and wq > 1, see Eq.
(1). The access pattern can be enhanced by modifying the tensor layout, i.e re-
ordering tensor elements according to the storage format. A reordering however,
limits its overall performance of the contraction operation [12].

As proposed in [3], elements can be accessed according to the storage format
using a permutation tuple. In this way, the desired index set for a given recursion
level can be selected. By inserting the q-th (contraction) loop into an already
existing branch for r > 1 additionally simplifies the algorithm’s control-flow.
Yet the loop-reordering forces the first n̄k−1 =

∏k−1
r=1 nπr

elements of C to be
accessed nq-times with πk = q. If the number of reaccessed elements exceeds the
last-level cache size, cache missus occur resulting in a poor performance of the
algorithm with longer execution times.

Algorithm 1 improves the data locality if the number of elements n̄k−1 ex-
ceeds the cache size. By nesting the π1-th loop inside the iq-th loop, the function
only reuses nπ1 elements. This is done by inserting an if-statement at the very
beginning of the function which skips the q-th loop when r = q̂ with q̂ = (π−1)q
where q̂ is the index position of q within π. The proposed algorithm constitutes
the starting point for BLAS utilization.

4.2 Extended Algorithms utilizing BLAS

The number of reused elements in Algorithm 1 can be further minimized by
tiling the inner-most loops. Instead of applying loop transformations as proposed

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_3

https://dx.doi.org/10.1007/978-3-030-22734-0_3


Case Order p Layout π Mode q Routine FORMAT M N LDA

1 1 - 1 DOT - n1 - -

2 2 (1, 2) 1 GEMV ROW n2 n1 n1
3 2 (1, 2) 2 GEMV COL n1 n2 n1
4 2 (2, 1) 1 GEMV COL n2 n1 n2
5 2 (2, 1) 2 GEMV ROW n1 n2 n2

6 > 2 any π1 GEMV ROW n̄q nq nq
7 > 2 any πp GEMV COL n̄q nq n̄q

8 > 2 any π2, π3, . . . , πp−1 GEMV* COL n̂q nq n̂q

Table 1. Parameter configuration of the DOT- and GEMV with eight cases executing a
tensor-vector multiplication with respect to the order p, layout π and contraction mode
q. All three parameters determine the values of FORMAT, M, N and LDA. GEMV* denotes a
multiple execution of GEMV with different tensor slices. In case of order-2 and order-q̂
slices, the number of rows must be equal to n̂q = nπ1 and n̂q = wq, respectively. The
number of rows for case 6 and 7 is given by n̄q =

∏p

r=1 nr/nq.

in [9, 14], we apply highly optimized routines to fully or partly execute tensor
contractions as it is done in [7, 12] for class 3 tensor operations. The function
and parameter configurations for the tensor multiplication can be divided into
eight cases.

Case 1 (p = 1): The tensor-vector product A×1 b can be computed with a
DOT operation aTb where A is an order-1 tensor, i.e. a vector a of length n1.

Case 2-5 (p = 2): Let A be an order-2 tensor, i.e. matrix with dimensions
n1 and n2. If m = 2 and if A is stored according to the column-major π =
(1, 2) or row-major format π = (2, 1), the tensor-vector multiplication can be
trivially executed by a GEMV routine using the tensor’s storage format. The two
remaining cases for m = 1 require an interpretation of the order-2 tensor. In
case of the column-major format π = (1, 2), the tensor-vector product can be
computed with a GEMV routine, interpreting the columns of the matrix as rows
with permuted dimensions. Analogously, a GEMV routine executes a tensor-vector
multiplication with π = (2, 1).

Case 6-7 (p > 2): General tensor-vector multiplications with higher-order
tensors execute the GEMV routine multiple times over different slices of the tensor.
There are two exceptions to the general case.If π1 = q, a single GEMV routine is
sufficient for any storage layout. The tensor can be interpreted as a matrix with
n̄q =

∏p
r=1 nr/nq rows and nq columns. The leading dimension LDA for π1 = q is

nq. Tensor fibers with contiguously stored elements are therefore interpreted as
matrix rows. In case of πp = q, the leading dimension LDA is given by n̄q where all
fibers with the exception of the dimension πp are interpreted as matrix columns.
The interpretation of tensor objects does not copy data elements.

Case 8 (p > 2): For the last case with π1 6= q and πp 6= q, we provide two
methods that loop over tensor slices. Lines 8 to 10 of Algorithm 1 perform a
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slice-vector multiplication of the form c′ = A′ ·b. It is executed with a GEMV with
no further adjustment of the algorithm. The vector c′ denotes a fiber of C with
nu elements and A′ denotes an order-2 slice of A with dimensions nu and nv
such that

A′ = A(i1, . . . , :u, . . . , :v, . . . , ip) and c′ = C(i1, . . . , :u, . . . , ip) (5)

where u = π1 and v = q or vice versa. Algorithm 1 needs a minor modification
in order to loop over order-q̂ slices. With q̂ = (π−1)q, the conditions in line 2
and 4 are changed to 1 < r ≤ q̂ and q̂ < r, respectively. The modified algorithms
therefore omits the first q̂ modes π1, . . . , πq̂ including πq̂ = q where all elements of
an order-q̂ slice are contiguously stored. Choosing the first-order storage format
for convenience, the order-q̂ and order-(q̂− 1) slices of both tensors are given by

A′ = A( :1, . . . , :q, iq+1, . . . , ip) and C′ = C( :1, . . . , :q−1, iq+1, . . . , ip). (6)

The fiber c′ of length wq = n1 ·n2 · · ·nq−1 is the one-dimensional interpretation
of C′ and the order-2 slice A′ with dimensions wq and nq the two-dimensional in-
terpretation of A′. The slice-vector multiplication in this case can be performed
with a GEMV that interprets the order-q̂ slices as order-2 according to the descrip-
tion. Table 1 summarizes the call parameters of the DOT or GEMV for all order,
storage format and contraction mode combinations.

4.3 Parallel Algorithms with Slice-Vector Multiplications

A straight-forward approach for generating a parallel version of Algorithm 1 is to
divide the outer-most πp-th loop into equally sized iterations and execute them in
parallel using the OpenMP parallel for directive [3]. With no critical sections and
synchronization points, all threads within the parallel region execute their own
sequential slice-vector multiplications. The outer-most dimension nπp determines
the degree of parallelism, i.e. the number of parallel threads executing their own
instruction stream.

Fusing additional loops into a single one improves the degree of parallelism.
The number of fusible loops depends on the tensor order p and contraction mode
q of the tensor-vector multiplication with q̂ = (π−1)q. In case of mode-q slice-
vector multiplications, loops πq̂+1, . . . , πp are not involved in the multiplications
and can be transformed into one single loop. For mode-2 slice-vector multiplica-
tions all loops except π1 and πq̂ can be fused. When all fusible loops are lexically
present and both parameters are known before compile time, loop fusion and
parallel execution can be easily accomplished with the OpenMP collapse direc-
tive. The authors of [7] use this approach to generate parallel tensor-matrix
functions.

With variable number of dimensions and a variable contraction mode, the
iteration count of slice-vector multiplications and the slice selection needs to be
determined at compile or run time. If n̄ is the number of tensor elements of A, the
total number of slice-vector multiplications with mode-q̂ slices is given by n̄′ =
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n̄/wq. Using Eq. (1), the strides for the iteration are given by wπq̂+1 for A and
vπq̂

for C. In summary, one single parallel outer loop with an iteration count n̄′
and an increment variable j iteratively calls mode-q̂ slice-vector multiplications
with adjusted memory location j ·wπq̂+1 and j ·vπq̂

for A and C, respectively. The
degree of parallelism

∏p
r=q̂+1 nr decreases with increasing q̂ and corresponds for

q̂ = p− 1 to the first parallel version. Tensor-vector multiplications with mode-2
slice-vector multiplications are further optimized by fusing additional q̂−2 loops.

5 Experimental Setup

Computing System The experiments were carried out on a Core i9-7900X
Intel Xeon processor with 10 cores and 20 hardware threads running at 3.3 GHz.
It has a theoretical peak memory bandwidth of 85.312 GB/s resulting from four
64-bit wide channels with a data rate of 2666MT/s. The sizes of the L3-cache and
each L2-cache are 14MB and 1024KB. The source code has been compiled with
GCC v7.3 using the highest optimization level -Ofast and -march=native, -pthread
and -fopenmp. Parallel execution for the general case (8) has been accomplished
using GCC’s implementation of the OpenMP v4.5 specification. We have used the
DOT and GEMV implementation of the OpenBLAS library v0.2.20. The benchmark
results of each function are the average of 10 runs.

Tensor Shapes We have used asymmetrically-shaped and symmetrically-shaped
tensors in order to provide a comprehensive test coverage. Setup 1 performs run-
time measurements with asymmetrically-shaped tensors. Their dimension tuples
are organized in 10 two-dimensional arrays Nq with 9 rows and 32 columns
where the dimension tuple nr,c of length r + 1 denotes an element Nq(r, c) of
Nq with 1 ≤ q ≤ 10. The dimension nr,c(i) of Nq is 1024 if i = 1, c · 215−r if
i = min(r + 1, q) and 2 for any other index i with 1 < q ≤ 10. The dimension
nr,c(i) of N1 is given by c · 215−r if i = 1, 1024 if i = 2 and 2 for any other index
i. Dimension tuples of the same array column have the same number of tensor
elements. Please note that with increasing tensor order (and row-number), the
contraction mode is halved and with increasing tensor size, the contraction mode
is multiplied by the column number. Such a setup enables an orthogonal test-set
in terms of tensor elements ranging from 225 to 229 and tensor order ranging from
2 to 10. Setup 2 performs runtime measurements with symmetrically-shaped ten-
sors. Their dimension tuples are organized in one two-dimensional array M with
6 rows and 8 columns where the dimension tuple mr,c of length r + 1 denotes
an element M(r, c) of M. For c = 1, the dimensions of mr,c are given by 212,
28, 26, 25, 24 and 23 with descending row number r from 6 to 1. For c > 1, the
remaining dimensions are given by mr,c = mr,c+k · (c−1) where k is 29, 25, 23,
22, 2, 1 with descending row number r from 6 to 1. In this setup, shape tuples
of a column do not yield the same number of subtensor elements.

Performance Maps Measuring a single tensor-vector multiplication with the
first setup produces 2880 = 9 × 32 × 10 runtime data points where the tensor
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Fig. 1. Schematic contour view of the following average performance maps for the
tensor-vector multiplication with tensors that are stored according to the first-order
storage format. Each case x in Table 1 affects a different region x within the perfor-
mance map. Performance values are the arithmetic mean over the set of tensor sizes
with 32 and 8 elements in case of the first and second test setup, respectively. Con-
traction mode q = p for q > p where p is the tensor order.

order ranges from 2 to 10, with 32 shapes for each order and 10 contraction
modes. The second setup produces 336 = 6 × 8 × 7 data points with 6 tensor
orders ranging from 2 to 7, 8 shapes for each order and 7 contraction modes.
Similar to the findings in [3], we have observed a performance loss for small
dimensions of the mode with the highest priority. The presented performance
values are the arithmetic mean over the set of tensor sizes that vary with the
tensor order and contraction mode resulting in a three dimensional performance
plot. A schematic countour view of the plots is given in Fig. 1 which is divided
into 5 regions. The cases 2, 3, 6 and 7 generate performance values within the
regions 2, 3, 6 and 7 where only a single parallel GEMV is executed, see Table 1.
Please note that the contraction mode q is set to the tensor order p if q > p.
Performance values within region 8 result from case 8 which executes GEMV’s with
tensor slices in parallel.

The following analysis considers four parallel versions SB-P1, LB-P1, SB-PN and
LB-PN. SB (small-block) and LB (large-block) denote parallel slice-vector multipli-
cations where each thread recursively calls a single-threaded GEMV with mode-2
and mode-q̂ slices, respectively. P1 uses the outer-most dimension np for parallel
execution whereas PN applies loop fusion and considers all fusible dimensions for
parallel execution.

6 Results and Discussion

Matrix-Vector Multiplication Fig. 2 shows average performance values of
the four versions SB-P1, LB-P1, SB-PN and LB-PN with asymmetrically-shaped ten-
sors. In case 2 (region 2), the shape tuple of the two-order tensor is equal to
(n2, n1) where n2 is set to 1024 and n1 is c · 214 for 1 ≤ c ≤ 32. In case 6 (region
6), the p-order tensor is interpreted as a matrix with a shape tuple (n̄1, n1) where
n1 is c · 215−r for 1 ≤ c ≤ 32 and 2 < r < 10. The mean performance averaged

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_3

https://dx.doi.org/10.1007/978-3-030-22734-0_3


1 2 3 4 5 6 7 8 9 10

2
4

6
8

10
9

22

35

Mode
Order

G
flo

ps
/s

LB-P1

1 2 3 4 5 6 7 8 9 10

2
4

6
8

10
5

20

35

Mode
Order

G
flo

ps
/s

SB-P1

1 2 3 4 5 6 7 8 9 10

2
4

6
8

10
9

22

35

Mode
Order

G
flo

ps
/s

LB-PN

1 2 3 4 5 6 7 8 9 10

2
4

6
8

10
9

22

35

Mode
Order

G
flo

ps
/s

SB-PN

Fig. 2. Average performance maps of four tensor-vector multiplications with vary-
ing tensor orders p and contraction modes q. Tensor elements are encoded in single-
precision and stored contiguously in memory according to the first-order storage format.
Tensors are asymmetrically-shaped with dimensions.

over the matrix sizes is around 30 Gflops/s in single-precision for both cases.
When p = 2 and q > 1, all functions execute case 3 with a single parallel GEMV
where the 2-order tensor is interpreted as a matrix in column-major format with
a shape tuple (n1, n2). In this case, the performance is 16 Gflops/s in region 3
where the first dimension of the 2-order tensor is equal to 1024 for all tensor
sizes. The performance of GEMV increases in region 7 with increasing tensor order
and increasing number of rows n̄q of the interpreted p-order tensor. In general,
OpenBLAS’s GEMV provides a sustained performance around 31 Gflops/s in single
precision for column- and row-major matrices. However, the performance drops
with decreasing number of rows and columns for the column-major and row-
major format. The performance of case 8 within region 8 is analyzed in the next
paragraph.

Slicing and Parallelism Functions with P1 run with 10 Gflops/s in region 8
when the contraction mode q is chosen smaller than or equal to the tensor order
p. The degree of parallelism diminishes for np = 2 as only 2 threads sequentially
execute a GEMV. The second method PN fuses additional loops and is able to
generate a higher degree of parallelism. Using the first-order storage format, the
outer dimensions nq+1, . . . , np are executed in parallel. The PN version speeds up
the computation by almost a factor of 4x except for q = p− 1. This explains the
notch in the left-bottom plot when q = p− 1 and np = 2.
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Fig. 3. Average performance maps of tensor-vector multiplication implementations
using asymmetrically-shaped (top) and symmetrically-shaped (bottom) tensors with
varying contraction modes and tensor order. Tensor elements are encoded in single-
precision and stored contiguously in memory according to the first-order storage format.

In contrast to the LB slicing method, SB is able to additionally fuse the inner
dimensions with their respective indices 2, 3, . . . , p− 2 for q = p− 1. The perfor-
mance drop of the LB version can be avoided, resulting in a degree of parallelism
of

∏p
r=2 nr/nq. Executing that many small slice-vector multiplications with a

GEMV in parallel yields a mean peak performance of up to 34.8(15.5) Gflops/s
in single(double) precision. Around 60% of all 2880 measurements exhibit at
least 32 Gflops/s that is GEMV’s peak performance in single precision. In case
of symmetrically-shaped tensors, both approaches achieve similar results with
almost no variation of the performance achieving up on average 26(14) Gflops/s
in single(double) precision.

Tensor Layouts Applying the first setup configuration with asymmetrically-
shaped tensors, we have analyzed the effects of the blocking and paralleliza-
tion strategy. The LB-PN version processes tensors with different storage formats,
namely the 1-, 2-, 9- and 10-order layout. The performance behavior is almost
the same for all storage formats except for the corner cases q = π1 and q = πp.
Even the performance drop for q = p − 1 is almost unchanged. The standard
deviation from the mean value is less than 10% for all storage formats. Given a
contraction mode q = πk with 1 < k < p, a permutation of the inner and outer
tensor dimensions with their respective indices π1, . . . , πk−1 and πk+1, . . . , πp
does influence the runtime where the LB-PN version calls GEMV with the values wm
and nm. The same holds true for the outer layout tuple.
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Fig. 4. Relative average performance maps of tensor-vector multiplication implemen-
tations using asymmetrically (top) and symmetrically (bottom) shaped tensors with
varying contraction modes and tensor order. Relative performance (speedup) is the
performance ratio of TLIB-SB-PN (top) and TLIB-LB-PN (bottom) to TBLIS, TCL and
EIGEN, respectively. Tensor elements are encoded in single-precision and stored con-
tiguously in memory according to the first-order storage format.

Comparison with other Approaches The following comparison includes
three state-of-the-art libraries that implement three different approaches. The
library TCL (v0.1.1) implements the (TTGT) approach with a high-perform tensor-
transpose library HPTT which is discussed in [14]. TBLIS (v1.0.0) implements the
GETT approach that is akin to BLIS’s algorithm design for matrix computations [9].
The tensor extension of EIGEN (v3.3.90) is used by the Tensorflow framework
and performs the tensor-vector multiplication in-place and in parallel with con-
tiguous memory access [1]. TLIB denotes our library that consists of sequential
and parallel versions of the tensor-vector multiplication. Numerical results of
TLIB have been verified with the ones of TCL, TBLIS and EIGEN.

Fig. 3 illustrates the average single-precision Gflops/s with asymmetrically-
and symmetrically-shaped tensors in the first-order storage format. The run-
time behavior of TBLIS and EIGEN with asymmetrically-shaped tensors is almost
constant for varying tensor sizes with a standard deviation ranging between 2%
and 13%. TCL shows a different behavior with 2 and 4 Gflops/s for any order
p ≥ 2 peaking at p = 10 and q = 2. The performance values however deviate
from the mean value up to 60%. Computing the arithmetic mean over the set
of contraction modes yields a standard deviation of less than 10% where the
performance increases with increasing order peaking at p = 10. TBLIS performs
best for larger contraction dimensions achieving up to 7 Gflops/s and slower run-
times with decreasing contraction dimensions. In case of symmetrically-shaped
tensors, TBLIS and TCL achieve up to 12 and 25 Gflops/s in single precision with
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a standard deviation between 6% and 20%, respectively. TCL and TBLIS behave
similarly and perform better with increasing contraction dimensions. EIGEN exe-
cutes faster with decreasing order and increasing contraction mode with at most
8 Gflops/s at p = 2 and q ≥ 2.

Fig. 4 illustrates relative performance maps of the same tensor-vector multi-
plication implementations. Comparing TCL performance, TLIB-SB-PN achieves an
average speedup of 6x and more than 8x for 42% of the test cases with asymmetri-
cally shaped tensors and executes on average 5x faster with symmetrically shaped
tensors. In comparison with TBLIS, TLIB-SB-PN computes the tensor-vector prod-
uct on average 4x and 3.5x faster for asymmetrically and symmetrically shaped
tensors, respectively.

7 Conclusion and Future Work

Based on the LOG approach, we have presented in-place and parallel tensor-vector
multiplication algorithms of TLIB. Using highly-optimized DOT and GEMV routines
of OpenBLAS, our proposed algorithms is designed for dense tensors with arbi-
trary order, dimensions and any non-hierarchical storage format. TLIB’s algo-
rithms either directly call DOT, GEMV or recursively perform parallel slice-vector
multiplications using GEMV with tensor slices and fibers.

Our findings show that loop-fusion improves the performance of TLIB’s par-
allel version on average by a factor of 5x achieving up to 34.8/15.5 Gflops/s in
single/double precision for asymmetrically shaped tensors. With symmetrically
shaped tensors resulting in small contraction dimensions, the results suggest that
higher-order slices with larger dimensions should be used. We have demonstrated
that the proposed algorithms compute the tensor-vector product on average 6.1x
and up to 12.6x faster than the TTGT-based implementation provided by TCL. In
comparison with TBLIS, TLIB achieves speedups on average of 4.0x and at most
10.4x. In summary, we have shown that a LOG-based tensor-vector multiplication
implementation can outperform current implementations that use a TTGT and
GETT approaches.

In the future, we intend to design and implement the tensor-matrix multi-
plication with the same requirements also supporting tensor transposition and
subtensors. Moreover, we would like to provide an in-depth analysis of LOG-based
implementations of tensor contractions with higher arithmetic intensity.

Project and Source Code Availability TLIB has evolved from the Google
Summer of Code 2018 project for extending Boost’s uBLAS library with ten-
sors. Project description and source code can be found at https://github.com/
BoostGSoC18/tensor/wiki. The sequential tensor-vector multiplication of TLIB is
part of uBLAS and in the official release of Boost v1.70.0. The parallel version
with results is available as a feature branch of uBLAS.
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