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Abstract. The computation of higher derivatives tensors is expensive
even for adjoint algorithmic differentiation methods. In this work we in-
troduce methods to exploit the symmetry and the sparsity structure of
higher derivatives to considerably improve the efficiency of their compu-
tation. The proposed methods apply coloring algorithms to two-dimen-
sional compressed slices of the derivative tensors. The presented work is
a step towards feasibility of higher-order methods which might benefit
numerical simulations in numerous applications of computational science
and engineering.
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1 Introduction

The preferred numerical method to compute derivatives of a computer program is
Algorithmic Differentiation (AD) [1,2]. This technique produces exact derivatives
with machine accuracy up to an arbitrary order by exploiting elemental symbolic
differentiation rules and the chain rule. AD distinguishes between two basic
modes: the forward mode and the reverse mode. The forward mode builds a
directional derivative (also: tangent) code for the computation of Jacobians at a
cost proportional to the number of input parameters. Similarly, the reverse mode
builds an adjoint version of the program but it can compute the Jacobian at a
cost that is proportional to the number of outputs. For that reason, the adjoint
method is advantageous for problems with a small set of output parameters, as
it occurs frequently in many fields of computational science and engineering.

For some methods second or even higher derivatives are required. In [3] it was
already shown that Halley-methods using third derivatives are competitive to the
Newton’s method. The use of higher-order Greeks to evaluate financial options
is discussed in [4]. The moments method approximates moments of a function
by propagating uncertainties [5,6]. To improve the accuracy of the approximated
moments higher-order terms in the Taylor series that require higher derivatives
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need to be involved. The method has been applied to robust design optimization
using third derivatives [7].

One possibility to obtain higher derivatives is to propagate Taylor series [8].
Another is to reapply the AD modes to an already differentiated program [2]. In
[9] it is shown that computing a projection of the third derivative is proportional
to the cost of calculating the whole Hessian. Nevertheless, the computation of
higher derivatives is expensive even for adjoint algorithmic differentiation meth-
ods.

In this paper, we focus on the exploitation of symmetry and investigate the
case where the d-th derivative tensor is considered sparse. Besides the application
of coloring techniques for solving linear systems [11] these can be used to exploit
the sparsity of Jacobian and Hessian matrices. The general idea is to assign
the same color to those columns (or rows) of the corresponding matrix that are
structurally orthogonal, thus they can be computed at the same time. In [12] a
comprehensive summary of coloring techniques is given. We designed procedures
to make solutions of the coloring problem applicable to the computation of third
and higher derivative tensors. Due to symmetries of these tensors the colors
obtained by a Hessian coloring can be applied multiple times. Furthermore, these
colors can be used for a compression of higher derivative tensors to perform a
coloring on the compressed two-dimensional slices of the tensor. We call this
approach recursive coloring.

For the computation of sparse fourth derivatives we introduced three different
approaches: The first is to use the colors of the Hessian three times. The second is
to use the colors of the Hessian once to compress the third derivative, reapply the
coloring algorithms to the two-dimensional slices of the compressed three-tensor
and use the colors of the third derivative twice. The third is to use the colors of
the Hessian and the third derivative slice to compress the fourth derivative and
again color each two-dimensional slice. We generated random sparse polynomials
for matrices from the Matrix Market collection [13] for the computation of sparse
fourth derivative tensors to evaluate the efficiency of the three approaches.

The paper is organized as follows: In Section 2 there is a brief introduction to
AD. Section 3 gives an overview of coloring techniques to exploit the sparsity of
Hessian matrices. Subsequently in Section 4 we describe the procedures to exploit
sparsity for third and higher derivatives. A description of the test cases and their
implementation can be found in Section 5. Furthermore, this section provides
numerical results to compare the introduced procedures. The last section gives
a conclusion and an outlook.

2 Algorithmic Differentiation in a Nutshell

AD is a technique that transforms a primal function or primal code by using the
chain rule to compute additionally to the function value the derivative of that
function with respect to a given set of input (and intermediate) variables. For
simplicity and w.l.o.g. we will only consider multivariate scalar functions. Thus
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the given primal code has a set of n inputs x and a single output y.

f : Rn → R, y = f (x)

Furthermore, we assume that we are interested in the derivatives of the output
variable with respect to all input variables. The first derivative of these functions
is the gradient∇f(x) ∈ Rn, the second derivative is the Hessian∇2f(x) ∈ Rn×n,
and the third derivative is the three-tensor ∇3f(x) ∈ Rn×n×n. In this paper a
two-dimensional subspace of a tensor will be referred as a slice.

Schwarz’s theorem says that the Hessian is symmetric if f has continuous
second partial derivatives

∂2y

∂xj∂xk
=

∂2y

∂xk∂xj
. (1)

This generalizes to third and higher derivatives. Thus, a derivative tensor of
order d has only

(
n+d−1

d

)
structurally distinct elements.

AD is applicable if f and its corresponding implementation are locally dif-
ferentiable up to the required order. The two basic modes are introduced in the
following sections.

2.1 Tangent Mode AD

The tangent model can be simply derived by differentiating the function depen-
dence. In Einstein notation this yields

y(1) =
∂y

∂xj
x
(1)
j .

The notation implies summation over all the values of j = 0, . . . , n − 1. The
superscript (1) stands for the tangent of the variable [2]. This approach can be
interpreted as an inner product of the gradient ∇f(x) ∈ Rn and the tangent
x(1) as

y(1) = f (1)(x,x(1)) = ∇f(x) · x(1) . (2)

For each evaluation with x(1) set to the i-th Cartesian basis vector ei in Rn (also
called seeding), an entry of the gradient can be extracted from y(1) (also called
harvesting). To get all entries of the gradient by using this model, n evaluations
are required which is proportional to the number of input variables. The costs
of this method are similar to the costs of a finite difference approximation but
AD methods are accurate up to machine precision.

2.2 Adjoint Mode AD

The adjoint mode is also called reverse mode, due to the reverse computation of
the adjoints compared to the computation of the values. Therefore, a data-flow
reversal of the program is required, to store additional information on the com-
putation (e.g. partial derivatives) [14], which potentially leads to high memory
requirements.
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Again following [2], first-order adjoints are denoted with a subscript (1)

x(1),j =
∂y

∂xj
y(1) .

This equation is computed for each j = 0, . . . , n− 1.
Reverse mode yields a product of the gradient with the adjoint y(1)

x(1) = f(1)(x, y(1)) = y(1) · ∇f(x) . (3)

By setting y(1) = 1 the resulting x(1) contains all entries of the gradient. A single
adjoint computation is required.

2.3 Higher Derivatives

One possibility to obtain second derivatives is to nest the proposed AD modes.
Hence there are four combinations to compute second derivatives. The tangent-
over-tangent model result from the application of tangent mode to the first-order
tangent model in (2):

y(1,2) = f (1,2)(x,x(1),x(2)) =
∂2y

∂xj∂xk
x
(1)
j x

(2)
k .

By seeding the Cartesian basis of Rn for the tangents x(1) and x(2) indepen-
dently the entries of the Hessian can be computed with n2 evaluations of f (1,2).
The other three methods apply the adjoint mode at least once and thus their
computational complexity is different to the pure tangent model. To obtain the
whole Hessian a second-order adjoint model needs to be evaluated n times.

Applying the tangent mode to (3) yields the second-order adjoint model

x
(2)
(1),k = f

(2)
(1),k(x,x(2), y(1)) =

∂2y

∂xk∂xj
x
(2)
j y(1) . (4)

These models are simplified versions of the complete second-order models by
setting mixed terms to zero. Detailed derivations can be found in [1] and [2].

Recursively applying the two basic modes yields even higher derivative mod-
els. As an example the simplified third-order adjoint model via tangent-over-
tangent-over-adjoint can be written as

x
(2,3)
(1),l = f

(2,3)
(1),l (x,x(2),x(3), y(1)) =

∂3y

∂xl∂xk∂xj
x
(2)
j x

(3)
k y(1) . (5)

Instead of seeding all combinations of Cartesian basis vector for both tangents

which requires n2 evaluations of f
(2,3)
(1) we could exploit symmetry and evaluate

the adjoint model only for those combinations of directional derivatives that
fulfill n ≥ i2 ≥ . . . ≥ id−1 ≥ id ≥ 1. Thus, the tangents x(j) are set to eij for

2 ≤ j ≤ d. which results in
(
n+d−2
d−1

)
evaluations of the d-th order adjoint model.

3 Coloring Techniques

For the computation of higher derivatives it is indispensable to exploit the spar-
sity and symmetry of the particular matrices or tensors due to the expenses
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that come along with their computation. We aim for a reduction of the number
of projections that are needed for the computation of the sparse derivative. In
[15,16] it is shown that the symmetric graph coloring problems considered in
this section are equivalent to a matrix partitioning problem and can be used to
enable the determination of the corresponding derivative matrices.

Coloring techniques can be used to exploit sparsity of Jacobian and Hessian
matrices [12]. The general idea is to identify columns (or rows) of the corre-
sponding matrix that can be computed at the same time and assign the same
color to these columns.

Definition 1. We define Cj to denote the set that contains the indices of all
columns belonging to color j. These sets are grouped in a set of sets Cd for the
d-th derivative. Cd can be used to compute a compressed derivative by seeding∑

j∈Ck
ej for each color k instead of ej for each column.

In the following we outline the difference between direct and indirect coloring
heuristics for Hessian matrices. For the proposed heuristics we assume multivari-
ate scalar functions f : Rn → R. Furthermore, we assume their sparsity patterns
of all derivatives to be known.

Definition 2. The sparsity pattern of the d-th derivative is a set that contains
the (multi-)indices of those elements that are non-zero. It is denoted by Pd.

The detection of sparsity patterns is out of the scope of this paper. For further
reading about sparsity pattern detection see for example [17,18].

3.1 Hessian Coloring with Direct Recovery

A direct approach to find a suitable Hessian coloring considering symmetry of
the Hessian (1) is the so called star coloring. This heuristic ensures that each
element of the Hessian is computed at least once and can be directly extracted
from the computed derivative projections. Star coloring uses an adjacency graph

where each node belongs to a column (or row). Each non-zero element ∂2y
∂xj∂xk

with (j, k) ∈ P2 in the matrix is an edge connecting node j and k in the graph.
Then, a distance-1 coloring is applied to the graph in that the same color cannot
be assigned to adjacent nodes. Furthermore, there is an additional condition
that every path of length four uses at least three colors. The nodes and thus the
columns of the Hessian with the same color can be computed simultaneously.

3.2 Hessian Coloring with Indirect Recovery

Another heuristic described in [12] is acyclic coloring that also applies distance-
1 coloring to the adjacency graph. This coloring technique has the additional
condition that each cycle in the graph needs at least three distinct colors. Since
it might assign the same color to columns that are not structurally orthogonal,
the derivative matrix can be compressed even more. Nevertheless, a recovery of
these non-zero elements implies the solution of a system of linear equations.

Both methods for Hessian coloring reduce the number of required derivative
projections from n to |C2|.
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Fig. 1: Sparsity pattern of the Hessian (left) and the corresponding adjacency
graph (right) with colors obtained by acyclic coloring for the function from (6)

4 Computation of Sparse Derivative Tensors

In this section, we show how to use coloring heuristics introduced in Section 3
to obtain sparse higher derivative tensors efficiently. Section 4.1 focuses on the
reapplication of colors for higher derivatives. In Section 4.2 a recursive coloring
approach for the computation of higher derivatives is described. After that, we
propose the incomplete recursive coloring in Section 4.3. We will use the higher-
order adjoint models from Section 2.3, that is (5) for third derivatives.

The proposed algorithms assume multivariate scalar functions f : Rn → R
for simplicity. For the more general case of multivariate vector functions the
algorithms can be applied to each output variable individually. It is also possible
to combine the proposed approaches with Jacobian coloring for vector functions
to make their derivative computation more efficient, but this is future work.

We will illustrate the algorithms in this section for

f(x) =

n−1∑
i=0

x3i +

n−2∑
i=1

xi−1 · xi · xi+1 , (6)

with n = 6. The sparsity pattern of the Hessian and the corresponding adjacency
graph are visualized in Figure 1. The colors in this figure are a solution for the
symmetric graph coloring problem obtained by acyclic coloring.

4.1 Reapplication of Colors

In [3] a so called induced sparsity of the third derivative was introduced where(
∇2fjk = 0 ∨ ∇2fjl = 0 ∨ ∇2fkl = 0

)
⇒ ∇3fjkl = 0 . (7)

Definition 3. We call a third-order tensor induced sparse if only those elements
that fulfill (7) have zero entries. The same can be generalized to any order d ≥ 2:
a d-th-order tensor is called induced sparse if only those elements of the tensor
are zero that are induced by a zero in the (d − 1)-th derivative. The induced
sparsity pattern of the d-th derivative is denoted as P̃d.

We extended the concept of induced sparsity to show that the colors obtained
by a Hessian coloring can be used for the higher derivative computation.

Lemma 1. Every solution C of the coloring problem for a symmetric matrix
A ∈ Rn×n with sparsity pattern PA is also valid for a symmetric matrix B ∈
Rn×n with sparsity pattern PB if PB ⊆ PA.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22734-0_1

https://dx.doi.org/10.1007/978-3-030-22734-0_1
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Proof. In case of PB ⊆ PA we can consider a matrix A′ with the same sparsity
pattern as A as a composition of matrix B with its values at (j, k) ∈ PB ,
numerical zeros at (j, k) ∈ PA\PB and structural zeros at (j, k) /∈ PA. The
coloring result C obtained for A can be used to determine matrix A′ and thus
B beside the numerical zeros. �

Theorem 1. A solution C2 of the coloring problem for a Hessian matrix can be
used for seeding the (d − 1) tangents of a d-th-order adjoint model to compute
the d-th derivative tensors for d ≥ 2.

Proof. Mathematical induction can be used to prove that Theorem 1 holds for
all natural numbers d ≥ 2.

Basis: Since [15,16] showed that the symmetric graph coloring problems can
be transformed to matrix partitioning problems, colors C2 obtained for the col-
oring problem can be used as seed vectors for the tangent of the second-order
adjoint model (4). Thus, Theorem 1 holds for d = 2.

Inductive Step: Given that Theorem 1 holds for the (d− 1)-th derivative, we
can apply the Hessian colors to compress this derivative at least d− 2 times. We
need to show that the Hessian colors C2 can be used d − 1 times for the d-th
derivative.

The induced sparsity from (7) holds for any order d ≥ 2 and the sparsity
pattern of each slice P̃d

ij
is a subset of the sparsity pattern of the (d − 1)-th

derivative Pd−1, where ij is the index for the direction of tangent x(j). Further-
more, the induced pattern is an overestimation of the actual sparsity pattern
Pd

ij
which yields

Pd
ij ⊆ P̃d

ij ⊆ Pd−1 for 0 ≤ ij ≤ n− 1 , (8)

with 2 ≤ j ≤ d.

Lemma 1 is applicable since (8) holds such that the coloring results used to
compute the (d − 1)-th derivative can also be used for the computation of the
d-th derivative. This includes that the Hessian colors can be applied for the first
d− 2 tangents due to the assumption that the theorem holds for d− 1. Seeding
these tangents yields x(j) =

∑
k∈C2

ij

ek for 2 ≤ j ≤ d − 1. Thus, it remains to

show that C2 can also be applied to the last tangent x(d).

Using the Hessian colors for the d− 2 tangents leads to a compression of the
d-th-order tensor which is a projection of the derivative tensor in direction of
the colors ∑

k2∈C2
i2

. . .
∑

kd−1∈C2
id−1

∇dfk2,...kd−1
(9)

and reduces the size of the corresponding tangent directions ij with 2 ≤ j ≤ d−1
from n to |C2|. For each combination of the directions we will receive a two-
dimensional slice of the tensor of size n× n.
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i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

Fig. 2: Induced (striped) and actual (gray) sparsity pattern of the third derivative

C2
0 = {0, 3} C2

1 = {1, 4} C2
2 = {2, 5} C2

0 = {0, 3} C2
1 = {1, 4} C2

2 = {2, 5}

Fig. 3: Sparsity pattern of the third derivative projections by using Hessian colors
of function (6) with resulting colorings for reapplication of Hessian colors (left)
and recursive coloring results (right)

Again (8) shows that the sparsity pattern of each of these slices is still a
subset of the sparsity pattern of the (d− 1)-th derivative⋃

k∈Cid

Pd
k ⊆ Pd−1 for 0 ≤ id ≤ |C| − 1 . (10)

Recursively applying (10) for (d− 2) tangents yields⋃
k2∈C2

i2

. . .
⋃

kd−1∈C2
id−1

Pd
k2,...kd−1

⊆ P2 for 0 ≤ ij ≤ |C2| − 1, 2 ≤ j ≤ d− 1 .

Hence, due to Lemma 1 C2 can also be used to seed tangent x(d). Thus, with
the inductive step, we have shown that the Hessian colors C2 are (d − 1) times
applicable for the computation of the d-th derivative. �

Applying the Hessian colors for all tangents requires |C2|d−1 model evalu-
ations of the d-th-order adjoint model to compute the whole d-th derivative
tensor.

Example 1. The induced sparsity pattern of the third derivative of (6) is shown
in Figure 2. It can be seen, that the actual sparsity pattern (gray) is a subset of
the induced sparsity pattern (striped).

Using the Hessian colors from Figure 1 for the first tangent results in the
compressed derivative tensor visualized in Figure 3 (left). The sparsity pattern
of each slice of the compressed tensor is (a subset of) the Hessian sparsity pattern.
Thus, the Hessian colors are applied again.

4.2 Recursive Coloring

Since the actual sparsity patterns of the higher derivatives are assumed to be
known, this information should be used to design more efficient algorithms.
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Algorithm 1
Full Recursive Coloring

1: procedure RecCol(d)
2: if d > 2 then
3: Cd−1 ← RecCol(d− 1)
4: for all Cd−1

L ∈ Cd−1 do
5: for k ← 0, |Cd−1

L | − 1 do

6: l←
(
L Cd−1

L,k

)
7: Cd

l ← Col(proj
(
Pd, l

)
)

8: Cd ←
(
Cd Cd

l

)
9: end for

10: end for
11: return Cd

12: else
13: C2

∅ ← Col(P2)
14: return C2

∅
15: end if
16: end procedure

Algorithm 2
Incomplete Recursive Coloring

1: procedure IncRecCol(d, o)
2: if d > 2 then
3: Cd−1 ← IncRecCol(d− 1)
4: for all Cd−1

L ∈ Cd−1 do
5: for k ← 0, |Cd−1

L | − 1 do

6: l←
(
L Cd−1

L,k

)
7: if d ≤ o then
8: Cd

l ← Col(proj
(
Pd, l

)
)

9: else
10: Cd

l ← Cd−1
l

11: end if
12: Cd ←

(
Cd Cd

l

)
13: end for
14: end for
15: return Cd

16: else
17: C2

∅ ← Col(P2)
18: return C2

∅
19: end if
20: end procedure

Definition 4. Recursive coloring is defined as a technique that recursively solves
the symmetric graph coloring problem for two-dimensional slices (fixing the com-
pressed directions) of a compressed d-th derivative tensor (9) and to use the so-
lution of this problem for seeding tangent x(d). The other tangents need to be set
previously for the compression.

Algorithm 1 describes the procedure for a d-th derivatives. To compress the
tensor of order d the coloring results of all lower derivatives are required. These
colors are computed by the recursive call in line 3. Note that the variable Cd−1

is a list that contains all coloring results Cd−1
L as a set of sets. The subscript

L of Cd
L is the list of the d − 2 tangent directions for the compression of the

d-th derivative tensor that led to the coloring. In line 6 the k-th color of Cd−1
L

is attached to L. This new list is used in line 7 to compress the tensor and to
obtain the coloring for one slice of the compressed d-th-order tensor by solving
the coloring problem for a symmetric matrix. After that, the new colors are
attached to Cd.

The following lemma will be used to show that the recursive coloring is at
least as good as the reapplication of colors.

Lemma 2. The number of colors of the optimal solution CA of the coloring
problem for a symmetric matrix A ∈ Rn×n with sparsity pattern PA is larger
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{2,5}

{2,5}{1,4}{0,3}

{1,4}

{2,5}{1,4}{0,3}

{0,3}

{2,5}{1,4}{0,3}

1

{2,5}

{1,4,5}{0,2,3}

{1,4}

{2,5}{0,1,3,4}

{0,3}

{1,4}{0,2,3,5}

y(1)

x(2)

x(3)

Fig. 4: Seeding trees for computing the third derivative tensor of the example for
the reapplication of Hessian colors (left) and the recursive coloring (right)

than that for a symmetric matrix B ∈ Rn×n with sparsity pattern PB if PB ⊆
PA, such that |CB | ≤ |CA|.

Proof. In a proof by contradiction we assume the optimal coloring results |CB | >
|CA|. Since PB ⊆ PA we can apply Lemma 1 such that CA is also a coloring for
B, which implies that CB was not optimal. Thus, the assumption was wrong. �

Theorem 2. The optimal number of adjoint model evaluations obtained with a
recursive coloring is less than or equal to the optimal number of adjoint model
evaluations resulting from the reapplication of colors.

Proof. Assuming that both approaches have the same compression for the first
d− 2 tangents, it is necessary to show that the number of adjoint model evalu-
ations for recursive coloring is less than those of the reapplication of colors∑

Cd−1
L ∈Cd−1

∑
k∈Cd−1

L

|Cd
{L,k}| ≤

∑
Cd−1
L ∈Cd−1

∑
k∈Cd−1

L

|Cd−1
L | , (11)

where Cd−1 is the list of coloring results for the (d − 1)-th derivative and L
contains those directions that are used for the compression of this derivative.

Since (10) holds for any coloring |C| we can apply Lemma 2 to show

|Cd
{L,k}| ≤ |C

d−1
L | for k ∈ Cd−1

L , (12)

such that the minimal number of colors obtained for two-dimensional slices in
Rn×n of the compressed d-th derivative tensor is less than or equal to those used
for the compression. Thus, (12) directly yields (11). �

By using heuristics to obtain a solution of the coloring problems, it might be
that the solution Cd

{L,k} is worse than Cd−1
L for some k. In that case the algorithm

should select the colors used for tangent x(d−1) by setting Cd
{L,k} = Cd−1

L .
The resultant seeding can be stored in a tree structure. The seed of the adjoint

is stored in the root of the tree, which has |C2| children. These nodes with depth
1 contain the first tangent directions that correspond to the Hessian colors.
Analogous, the nodes with depth 2 store the coloring results of the compressed
third derivative. In general, the compression is done by the information stored
in all nodes on the path connecting that node with the root. In case of a node
with depth 2, this will be only the direction that is stored in its parent node. To
obtain the complete higher derivative each path from a leaf to the root needs to
be used as a seeding for the adjoint model.
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The list L in Algorithm 1 does not need to be stored explicitly, because this
information is already available in the tree structure. Depending on the coloring
results the tree does not need to be balanced. Furthermore, due to (10) we know
that each node has no more children than its parent node.

Example 2. The results of the recursive coloring are illustrated in Figure 3 (right)
for the example function. After the compression with the first tangent x(2) = C2

i2
the resulting slices are colored again. In case of ij = 0 the resulting coloring is
{{0, 2, 3, 5}, {1, 4}}. The seeding trees for both approaches, the reapplication of
colors and the recursive coloring are shown in Figure 4.

4.3 Incomplete Recursive Coloring

The incomplete recursive coloring is an approach that combines the reapplication
of colors from Section 4.1 and the recursive coloring from Section 4.2. Instead
of applying a full recursive coloring, the recursion can be stopped on any level
and the computed colors can be reapplied for all tangents that belong to higher
derivatives. This is possible due to Lemma 1 and (8). The additional check if
the recursive coloring should be stopped in line 7 of Algorithm 2 is the main
modification. In that case the previously computed colors are reused (line 10)
and the list in the subscript needs to be updated.

Definition 5. We call an incomplete recursive coloring a d-th-order approach if
it uses colorings of derivatives up to d-th-order. The approach of using the Hes-
sian colors for all tangents from Section 4.1 is an incomplete recursive coloring
of second order.

5 Experiments and Results

In this section we compare the different coloring approaches presented in Sec-
tion 4 for a computation of a fourth derivative tensor. For evaluating the ap-
proaches we use a tool that creates sparse fourth-order polynomials from sparsity
patterns. It is stored in a data structure that is an extension of the compressed
tube storage [3] for super-symmetric induced four-tensors. The tool takes the
sparsity ratio of the third ρ3 and the fourth ρ4 derivative.

Definition 6. We define the sparsity ratio ρd to describe the ratio of non-zero
elements in the d-th derivative compared to the number of elements that are
induced by the (d − 1)-th derivative. Given that the gradient is dense, ρ2 is the
ratio of non-zero elements to distinct elements in the Hessian.

Due to the fact that the proposed approaches only apply colorings to two-
dimensional (sub-)spaces of the derivative tensors, coloring algorithms imple-
mented in ColPack [19] can be used. Particularly, we use the acyclic coloring
algorithm with indirect recovery to obtain the expected colors.

In a first set of tests we want to investigate the efficiency of the second-order
approach compared to an approach disregarding the sparsity (see Section 2.3).
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Table 1: Selected matrices from [13] with the ratio of projections required for
the second-order approach to a computation disregarding sparsity

label n ρ2 proj. ratio label n ρ2 proj. ratio

nos4 100 0.069 1.258 · 10−2 can 1072 1072 0.012 4.857 · 10−6

bcsstk04 132 0.215 6.220 · 10−2 dwt 1242 1242 0.008 1.072 · 10−6

bcsstk05 153 0.109 1.314 · 10−2 bcsstk09 1083 0.017 1.929 · 10−5

bcsstm07 420 0.043 8.562 · 10−4 bcsstm10 1086 0.020 2.725 · 10−5

nos3 960 0.018 3.322 · 10−5 bcsstm12 1473 0.010 7.674 · 10−6

dwt 992 992 0.018 1.346 · 10−5 bcsstk11 1473 0.016 3.293 · 10−5
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Fig. 5: Number of projections of the three coloring approaches for the nos4 ex-
ample (left) and for a set of test cases from [13] and induced sparsity (right)

After that, we vary the parameters for the sparsity of the higher derivative
tensors ρ3 and ρ4. In case of 0 < ρ3 < 1 or 0 < ρ4 < 1 the sparsity patterns
of the higher derivatives are generated randomly such that we perform 1000
computations for each of the parameter combinations and average the results.
As a test case we selected the nos4 matrix from [13].

In a third test, we compute the derivatives of polynomials generated from
several matrices from the database. A selection of these matrices is listed in
Table 1, in which the first column is the name in the database, the second is
the size and the third is the sparsity ratio ρ2 of the matrix. For this test we
assume that the higher derivatives are induced sparse (ρ3 = 1 and ρ4 = 1) which
will result in a somehow worst-case estimation of the efficiency of the third- and
fourth-order approaches. This test only requires the Hessian sparsity pattern.

5.1 Numerical Results

The results for the efficiency of the second-order approach is given in the last
column of Table 1. It can be seen that this approach becomes more efficient if
the matrices become sparser. The number of derivative projections required for
the second-order approach are less than 7% of those required with the symmetric
approach disregarding sparsity.

Figure 5 (left) visualizes the results for the second tests. The black line shows
the number of seeds that are required for the Hessian coloring approach. It is
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constant because the Hessian coloring is independent on the sparsity of the
higher derivatives. The red line shows the incomplete recursive coloring up to
third order, which means that the colors of the compressed third derivative slices
are computed. The blue lines stand for the full recursive coloring. These lines
are isolines with a constant parameter for the sparsity of the fourth derivative.

It can be seen that the recursive colorings up to third and fourth order be-
come more efficient the sparser the corresponding derivatives are. In the special
case of ρ3 = 0 or ρ4 = 0 the number of adjoint model evaluations is zero for the
approaches that use these parameters. In the induced sparse case, the incom-
plete recursive coloring up to third order still reduces the number of required
projections to 47.2% of the Hessian coloring approach, while the fully recur-
sive approach is even better with 38.9%. So even in the case where the higher
derivatives are as dense as possible dependent on the sparsity of the Hessian, the
recursive approaches yield good savings in terms of adjoint model evaluations.

Similar results can be observed for the other test matrices. Figure 5 (right)
shows the results for the matrices from Table 1. Again the black bar denotes
the second-order approach, the red bar stands for the incomplete third-order
recursive coloring and the blue bar shows the full recursive coloring approach.
The average savings compared to the second-order approach are 75.9% for the
incomplete recursive coloring and 68.5% for the full recursive coloring only con-
sidering test cases with more than a single color for the Hessian matrix. In the
case of third and fourth derivative that are sparser than the induced sparsity
the recursive coloring approaches become more efficient.

6 Conclusion and Outlook

In this paper we have introduced procedures to make coloring techniques appli-
cable for the computation of higher derivative tensors. We proposed two basic
concepts to achieve this: application of previous computed colors and recursive
coloring. By combining both concepts we came up with the incomplete recursive
coloring. Depending on how much sparsity information is available the recursion
depth of this approach can be adjusted.

The results show that even in the case where only the Hessian sparsity is
known the savings compared to an approach disregarding sparsity are significant.
Including higher sparsity information increases these savings further. Assuming
that the costs of the coloring is considerably lower than an adjoint evaluation,
additional colorings of the compressed slices can be accepted. Furthermore, the
(incomplete) recursive coloring of the higher derivative tensors can be considered
to be done in compile-time to build up the seeding tree. This seeding tree can
be used multiple times in the execution to obtain derivatives at various points.

In the future, we intend to provide a software package making the (incom-
plete) recursive coloring setup available to efficiently generate seeding trees for
the computation of higher derivatives with the most common AD tools. For
the parallelization of the proposed algorithms it is necessary to find a suitable
load balancing. Another interesting future study should consider direct coloring
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methods for higher derivative tensors. We expect that direct coloring further
decreases the number of required projections and thus the costs of the higher
derivative computation.
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