
GeoSkelSL: A Python High-Level DSL for
Parallel Computing in Geosciences

Kevin Bourgeois1,2, Sophie Robert1, Sébastien Limet1, and Victor Essayan2

1 Univ.Orléans, INSA Centre Val de Loire, LIFO EA4022, Orléans, France
(kevin.bourgeois, sophie.robert, sebastien.limet)@univ-orleans.fr

2 Géo-Hyd (Antea Group), Olivet, France
(kevin.bourgeois, victor.essayan)@anteagroup.com

Keywords: GIS, DSL, Implicit parallelism, Performance

Abstract. This paper presents GeoSkelSL a Domain Specific Language
(DSL) dedicated to Geosciences that helps non experts in computer sci-
ence to write their own parallel programs. This DSL is embedded in
Python language which is widely used in Geosciences. The program writ-
ten by the user is derived to an efficient C++/MPI parallel program using
implicit parallel patterns. The tools associated to the DSL also generate
scripts that allow the user to automatically compile and run the resulting
program on the targeted computer.

1 Introduction

In the last decades, in almost every sciences, the amount of data to process have
grown dramatically because of the technological progress that improved the res-
olution of the measuring tools and also because of the emergence of new tech-
nologies such as sensor networks. These progress allow scientists to refine their
theoretical models to make them more precise which increases the need of com-
putation power to compute them. Geosciences are particularly affected by these
trends. Indeed, geosciences cover an area at the edge of the computer science
and the earth sciences and aim at gathering, storing, processing and delivering
geographic information. The global warming and the pollution or water resource
problems became global concerns which reinforce the need for geosciences. For
example, many countries impose regulations that command to collect and ana-
lyze some environmental data to provide indicators to the citizens.

On the other hand, during the same period, parallel computers became
widespread since nowadays almost all computers have several processing units.
It is now quite easy to any scientist to access a powerful parallel computer like a
cluster. However, writing programs that efficiently exploit the computing power
of such computers is not an easy task and requires high expertise in computer
science. Unfortunately, very few people have great skills in both their scientific
domain and computer science.

A first solution, form a team composed of geoscientists and computer-scientists
expert in parallel programming, may be difficult to implement because it could

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_83

https://dx.doi.org/10.1007/978-3-319-93713-7_83


2 Bourgeois, Robert, Limet and Essayan

take a long time to make understand them each others. It may be a problem
when programs become too complicated and the scientist loose the expertise on
his codes. This could be also financially too expensive for small scientific units.

A second solution, provide tools to help non computer-scientists to produce
efficient parallel program, is more attractive since it tends to make the geosci-
entist independent from the technicalities of parallel programming which allows
him to master his programs. However, providing such tools needs to resolve
three main issues, first, providing an easy-to-use programming language that is
accepted by the scientist, then, being able to derive an efficient parallel program
from the one written by the user and providing tools to easily run the generated
programs on parallel machines.

According to their domain, the geoscientists are familiar with Python as
GIS like ArcGIS or QGIS use it as script language. Therefore, the proposed
programming language should be close to -or embedded in- Python.

Using implicit parallel patterns allow to hide some points of the parallelism.
But using libraries as ScaLAPACK remains difficult because, programs are de-
pendent of the provided routines which makes them difficult to evolve. The use
of parallel patterns address this last issue however, they are usually based on a
low-level language so they are hard to use for non computer scientists.

To provide a user-friendly tool that abstracts scientists from all the worries
associated with parallelization, we the Geoskel framework. It relies on parallel
patterns associated to a Domain-Specific Language (DSL) embedded in Python
language. Thus, it is split into three layers: from a high-level programming lan-
guage used to write algorithms, to a low-level data system to efficiently manage
data on disks, with an implicit parallelism pattern layer in-between.

The GeoSkel heart is the implicit parallel patterns aimed to cover the recur-
ring computations on rasters in geosciences [1]. This layer is written in C++
using template classes and the MPI parallel library. GeoSkelSL is the DSL top-
level layer. It is a DSL embedded in Python allowing geoscientists to have a
classical view of their GIS and to write their programs in a sequential way know-
ing the available predefined parallel patterns. This program is either executable
in a Python context or can be transformed in a parallel program which can be
automatically launched on a cluster. GeoSkelSL is the main contribution of the
paper and is detailed Section 2 as well as the parallel program generation.

At the low-level layer, the datasets are stored in a distributed file system
and the main objective of this layer in GeoSkel is to provide an efficient way to
select the data required by the program and to distribute them according to the
parallel execution.

The main tools used by geoscientists rely on Geographical Information Sys-
tems (GIS), like ArcGIS, QGIS [11] or GrassGIS [6]

These GISs were designed from sequential algorithms and focused on dealing
with data of different formats as well as providing relevant user interfaces. They
were not originally designed to be used on huge data sets. For several years now,
some projects extend them with tools to perform parallel computations on large

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_83

https://dx.doi.org/10.1007/978-3-319-93713-7_83


GeoSkelSL: A Python High-Level DSL for Parallel Computing in Geoscience 3

volume of data. SAGA-GIS has a module library and proposes parallel versions
of some classical algorithms in hydrology.

Thanks to the possibility to add external modules, QGIS and ArcGIS allow
to include some optimized parallel computations. For example, TauDEM [10] a
tool set to analyze a Digital Elevation Model and based on parallel processing
can be used both by QGIS and ArcGIS.

All these systems strongly depend on external contributions for parallel pro-
cessing and for geoscientists who are not specialists of parallel computing, it is
very difficult to implement a new algorithm that is not included in the used
toolkit.

Implicit parallelism aims at helping non specialists to write parallel programs.
The user writes the program in a sequential way and the transformation into a
parallel program is realized thanks to automatic tools which tends to hide the
technicalities of data distribution, data communication or task division.

One approach to propose implicit parallelism is to provide parallel containers
that are automatically distributed among the nodes and that can be handled as
sequential containers. The Standard Adaptive Parallel Library is a C++ library
similar and compatible with the STL [8]. The user builds programs using View
and pAlgorithms. The View is equivalent to the iterator in the STL library,
it is used to access the pContainers, which are parallel data structures. The
pAlgorithms are the parallel equivalent to the algorithms of the STL.

The second approach to provide implicit parallelism is to write the program
in a specific programming language. In this context, DSL [2] can be used. In
general, the DSL’s role is to hide low-level tools to users while allowing them
to develop their applications by mean of the features provided by these tools.
For example, in geosciences, the DSL [5] aims to specify visualization of large
scale geospatial datasets. Instead of writing the visualization code using low-level
API as Google Maps or Javascript libraries a DSL is proposed to describe the
application as data properties, data treatments and visualization settings. Then
the DSL source code is transformed into the appropriate visualization code.

In the implicit parallelism context, many DSLs are proposed either to be
suitable for a scientific domain or for a class of parallel algorithms. In the machine
learning domain, OptiML [9] is an implicit parallel DSL built on Scala [7] which
design allows to take advantage of heterogeneous hardware.

The approaches described in [4] propose a DSL to write programs based on
classical parallel patterns. In [4], the DSL is composed of simple expressions to
describe the operation sequences. the DSL code is transformed into an executable
program using rewriting rules and refactoring code which introduces parallel
patterns.

The DSLs presented above are not suitable for our purpose since none of
them is both dedicated to geosciences and provides implicit parallelism.

Hence, we describe GeoSkelSL a DSL embedded in Python and detail the
DSL source code transformation into parallel patterns in the C++ layer.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_83

https://dx.doi.org/10.1007/978-3-319-93713-7_83


4 Bourgeois, Robert, Limet and Essayan

2 GeoSkelSL

In this section, we present the main contribution of the paper i.e. the DSL called
GeoSkelSL. It is the top layer of GeoSkel framework. The first objective of this
high-level programming language is to be accessible to geoscientists to allow
them to write their own programs in an usual way. The DSL source code will
be transformed into a parallel C++/MPI program that will be compile to be
run on the targeted computer. Therefore, the original program needs to contain
the useful information for this transformation which must be transparent for the
user.

First, the main GeoSkelSL features are described. Then, the whole derivation
process that transforms the DSL source code to a parallel program is detailed.

2.1 GeoSkelSL Features

GeoSkel is the interface with users. For its design, we have worked with geosci-
entists to understand their needs and expectations. This allowed us to extract
the main features wanted in the DSL. They can be summarized in three points.
The DSL must rely on a well-known language in geosciences, promote the ex-
pressiveness of the data they deal with, and hide the technical concerns related
to the code parallelization. Our DSL is based on Python. It is a very common
language in the geoscience domain and it is used in a lot of GIS tools such as
ArcGIS, QGIS or GrassGIS. Therefore, Python is a well-known language to geo-
scientists, making it a good language to build a DSL on it. Moreover, embedding
GeoSkelSL in Python language favors its use in GIS tools.

The Data. Our DSL deals with rasters which are matrices describing terrains
with metadata as the projection used, the coordinates, the resolution, the color
interpretation. It can have multiple bands and each of them can have its own
datatype. A raster can depict the elevation of a terrain, soil pollutant concen-
trations at various depths, air pollutant concentrations. The rasters are used
in many applications as watershed delineation, pollutant spreading and heat
diffusion.

GeoSkelSL provides a Mesh class to handle rasters. Therefore a mesh is used
to store each band of a raster. This class is also extended with basic operators
corresponding to classical computations on a mesh as the addition or the sub-
traction. Thanks to a bracket operator for the cell access, a mesh is also usable as
a standard 2D matrix. Regarding the metadata, GeoSkelSL uses GDAL [3] and
its Python API to be able to read them. Therefore, load data and write data

are the only functions necessary for the data management. They support the
reading and the writing of the metadata information on the raster.

The Computation. The computation on rasters are based on the implicit par-
allel patterns implemented as a C++ library in our framework. These patterns
allow to separate the writing of the computation to realize on the raster and

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_83

https://dx.doi.org/10.1007/978-3-319-93713-7_83


GeoSkelSL: A Python High-Level DSL for Parallel Computing in Geoscience 5

the parallelization. According to the chosen pattern the user only needs to write
some functions in Python to describe the computation to apply on the raster
cells in a sequential way. For example, applying a median filter on a raster con-
sists in using the stencil pattern. Thus, in GeoSkelSL the main program consists
in few lines to describe how to load the data, which pattern to use and finally
where the result is saved.

2.2 The program derivation

The program derivation consists in using the GeoSkelSL source code to con-
cretely instantiate the parallel patterns. The main issues are the data types,
the data distribution and the data dependencies that will define the exchanges
necessary to the computation. The derivation process is based on a partial ex-
ecution of the GeoSkelSL source code in order to guess the parameters of the
parallelization. The steps illustrated Figure 1 allow to build the C++ main pro-
gram with the relevant parameters to instantiate correctly the parallel pattern
and to launch its execution on a cluster.

As GeoSkelSL is based on Python, the user does not explicitly type vari-
ables or functions. However, the targeted program is a C++ program where all
variables are statically typed. The derivation process has to type each Python
variable. Choosing the right type is very important regarding performance. For
example, the run-time of a program can be much longer using double rather
than float.

source
.py
(DSL)

source
.pyx

typing
source
.cpp

cythonize

Geoskel
Library

Compilation

Deployment

Fig. 1: Derivation process from the DSL source code to the parallel program.

Python has only two types to store numbers: int for integer and float to
approximate real numbers. In C++, the programmer can control the precision
of both integer and float numbers using different types like short, int or long

for integers or float and double for real numbers. During the derivation from
Python to C++, all variables and functions must be statically typed with the
smallest equivalent in C++ for best performance. To do the type guessing the
user must give at least the type of the incoming mesh. This can be done either
using a parameter of the load data function, or it can be guess by reading
the metadata of the raster performing a partial execution of load data. Each

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_83

https://dx.doi.org/10.1007/978-3-319-93713-7_83


6 Bourgeois, Robert, Limet and Essayan

variable assignment of the Python program is then executed once to determine
its type. NumPy is used to determine the smallest type needed in C++. NumPy
is a Python library for scientific computing. NumPy types are very similar to
C++ types and the execution of a variable assignment returns the smallest
corresponding type.

The data distribution on the cluster nodes is based on a round-robin distri-
bution which consists in splitting the mesh into sub-meshes in various shapes
and sizes. For example, for the stencil pattern, a distribution per block of lines
is chosen and the size of the block is defined according to the mesh size. The
size of the raster is again guessed thanks to the partial execution of load data.

The data exchanges depend on the data dependencies in the computation
functions. Then, the size of the ghosts needs to be defined. In our patterns the
computation of a raster cell can be dependent of a set of neighboring cells. As the
data are distributed on different nodes the neighborhood of cells on edges is not
local. These ghost cells need to be sent before the computation. The size of the
ghosts can be guessed from the Python functions written by the user. Indeed,
from the mesh accesses the neighborhood size can be defined as a distance with
the studied cell. When multiple parallel pattern are called, all meshes share the
larger ghost size found. This neighborhood size is necessary to the load mesh

function in the C++ main program.
The derivation from Python to C++ is based on the Cython library. This

is a language very close to Python but it supports a subset of C/C++, like the
typing, the variable declarations or the function calls. A Cython code (.pyx) can
produce external modules than can be used in a standard C++ program. This
feature is very useful to integrate the Python functions written by the user and
which are the parameters of the parallel pattern. After the partial GeoSkelSL
source code execution, a Cython typed code is generated with annotations to
add the parameters related to the data distribution and the ghost size. The
functions written by the user are also translated in Cython code. Then we use
Cython associated to predefined rules to transform the original main program
into a new main program in C++.

The programs are likely to be written on the desktop computer of geoscien-
tists. the program derivation above generates a C++ program on this computer.
It remains several steps that could be very tricky for non computer scientists,
namely the compilation of this C++ program and the execution on a cluster. To
overcome these issues, at the end of the derivation process, a script is generated.
It automatically pushes and compiles C++ sources to the desired cluster thanks
to a configuration file and finally launches the program.

3 Conclusion and Future work

In this paper, we introduced GeoSkelSL, an efficient and simple DSL intended for
geoscientists. GeoSkelSL is embedded into Python as it is a widely used language
in geosciences that can be easily integrated into popular GIS such as ArcGIS
or QGIS. GeoSkelSL requires no skills in parallel programming and produces

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_83

https://dx.doi.org/10.1007/978-3-319-93713-7_83


GeoSkelSL: A Python High-Level DSL for Parallel Computing in Geoscience 7

efficient and scalable programs. GeoSkelSL is the top level of the GeoSkel frame-
work. It is used to derive the C++ program from the original Python program
written by the user.

In the future, we plan to extend GeoSkelSL to handle vector data which
are very common data structures used in geosciences. Vector data are made off
geometric features such as points, lines or polygons representing roads, rivers,
forests etc. Usually, vector data is not as huge as raster data, therefore it is
possible to broadcast such data instead of split them as the rasters. However,
new patterns have to be implemented to be able to handle them. In the current
implementation, it is possible to write programs that call several patterns but
no real optimization of the workflow is done. An analysis of the program work-
flow would allow us to better distribute the data among the nodes to reduce
communications and improve performance of the generated programs.

References

1. K. Bourgeois, S. Robert, S. Limet, and V. Essayan. Efficient implicit parallel
patterns for geographic information system. In International Conference on Com-
putational Science, ICCS, pages 545–554, 2017.

2. A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated
bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

3. GDAL Development Team. GDAL - Geospatial Data Abstraction Library, Version
x.x.x. Open Source Geospatial Foundation, 201x.

4. V. Janjic, C. Brown, K. Mackenzie, K. Hammond, M. Danelutto, M. Aldinucci, and
J. Daniel Garćıa. RPL: A domain-specific language for designing and implement-
ing parallel C++ applications. In 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, PDP, pages 288–295, 2016.

5. C. Ledur, D. Griebler, I. Manssour, and L. G. Fernandes. Towards a domain-
specific language for geospatial data visualization maps with big data sets. In
Computer Systems and Applications (AICCSA), 2015 IEEE/ACS 12th Interna-
tional Conference of, pages 1–8. IEEE, 2015.

6. M. Neteler, H. M. Bowman, M. Landa, and M. Metz. Grass gis: A multi-purpose
open source gis. Environmental Modelling & Software, 31:124–130, 2012.

7. M. Odersky, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, M. Zenger, and
et al. An overview of the scala programming language. Technical report, 2004.

8. L. Rauchwerger, F. Arzu, and K. Ouchi. Standard templates adaptive parallel
library (stapl). In David R. O’Hallaron, editor, Languages, Compilers, and Run-
Time Systems for Scalable Computers, pages 402–409, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg.

9. A. Sujeeth, H. Lee, K. Brown, T. Rompf, H. Chafi, M. Wu, A. Atreya, M. Oder-
sky, and K. Olukotun. Optiml: an implicitly parallel domain-specific language for
machine learning. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 609–616, 2011.

10. D. G. Tarboton. Terrain Analysis Using Digital Elevation Models (TauDEM).
Utah Water Research Laboratory, Utah State University, 2005.

11. QGIS Development Team et al. Qgis geographic information system. open source
geospatial foundation project, 2012.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_83

https://dx.doi.org/10.1007/978-3-319-93713-7_83

