
Remote Procedure Calls for Improved Data

Locality with the Epiphany Architecture

James A. Ross1 and David A. Richie2

1 U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
james.a.ross176.civ@mail.mil

2 Brown Deer Technology, Forest Hill, MD 21050, USA
drichie@browndeertechnology.com

Abstract. This paper describes the software implementation of an emerg-
ing parallel programming model for partitioned global address space
(PGAS) architectures. Applications with irregular memory access to
distributed memory do not perform well on conventional symmetric multi-
processing (SMP) architectures with hierarchical caches. Such applications
tend to scale with the number of memory interfaces and corresponding
memory access latency. Using a remote procedure call (RPC) technique,
these applications may see reduced latency and higher throughput com-
pared to remote memory access or explicit message passing. The software
implementation of a remote procedure call method detailed in the paper
is designed for the low-power Adapteva Epiphany architecture.

Keywords: Remote Procedure Call (RPC), Network-on-Chip (NoC),
Distributed Computing, Partitioned Global Address Space (PGAS), Pro-
gramming Model

1 Introduction and Motivation

Many high performance computing (HPC) applications often rely on computer

architectures optimized for dense linear algebra, large contiguous datasets, and

regular memory access patterns. Architectures based on a partitioned global

address space (PGAS) are enabled by a higher degree of memory locality than

conventional symmetric multiprocessing (SMP) with hierarchical caches and

unified memory access. SMP architectures excel at algorithms with regular,

contiguous memory access patterns and a high degree of data re-use; however,

many applications are not like this. A certain class of applications may express

irregular memory access patterns, are “data intensive” (bandwidth-heavy), or

express “weak locality” where relatively small blocks of memory are associated. For

these applications, memory latency and bandwidth drive application performance.

These applications may benefit from PGAS architectures and the re-emerging

remote procedure call (RPC) concept. By exporting the execution of a program

to the core closely associated with the data, an application may reduce the total

memory latency and network congestion associated with what would be remote

direct memory access (RDMA).

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_78

https://dx.doi.org/10.1007/978-3-319-93713-7_78

2 Background and Related Work

The 16-core Epiphany-III coprocessor is included within the inexpensive ARM-

based single-board computer “Parallella” [1]. All of the software tools and firmware

are open source, enabling rigorous study of the processor architecture and the

exploration of new programming models. Although not discussed in detail in this

paper, the CO-PRocessing Threads (COPRTHR) 2.0 SDK [2] further simplifies

the execution model to the point where the host code is significantly simplified,

supplemental, and even not required depending on the use case. We also use

the ARL OpenSHMEM for Epiphany library in this work [3]. Currently, a full

implementation of OpenSHMEM 1.4 is available under a BSD open source

license [4]. The combination of the COPRTHR SDK and the OpenSHMEM

library enabled further exploration of hybrid programming models [5], high-level

C++ templated metaprogramming techniques for distributed shared memory

systems [6].

The middleware and library designs for Epiphany emphasize a reduced mem-

ory footprint, high performance, and simplicity, which are often competing goals.

The OpenSHMEM communications library is designed for computer platforms

using PGAS programming models [7]. Historically, these were large Cray su-

percomputers and then commodity clusters. But now the Adapteva Epiphany

architecture represents a divergence in computer architectures typically used with

OpenSHMEM. In some ways, the architecture is much more capable than the

library can expose. The architecture presents a challenge in identifying the most

effective and optimal programming models to exploit it. While OpenSHMEM

does reasonably well at exposing the capability of the Epiphany cores, the library

does not provide any mechanism for RPCs.

Recent publications on new computer architectures and programming models

have rekindled an interest in the RPC concept to improve performance on

PGAS architectures with non-uniform memory access to non-local memory

spaces. In particular, the Emu System Architecture is a newly developed scalable

PGAS architecture that uses hardware-accelerated “migrating threads” to offload

execution to the remote processor with local access to application memory [8]. The

Emu programming model is based on a partial implementation of the C language

extension, Cilk. Cilk abandons C semantics and the partial implementation is

used for little or no improvement in code quality over a simple C API. The Emu

software and hardware RPC implementation details are not publicly documented,

and a proprietary, closed source compiler is used so that the software details

are not open for inspection. This paper discusses the Epiphany-specific RPC

implementation details in Section 3, the performance evaluation in Section 4,

and a discussion of future work in Section 5.

3 Remote Procedure Call Technique

Although the RPC implementation described in this paper is designed for

Epiphany, the techniques may be generally applicable to other PGAS archi-

tectures. The GNU Compiler Collection toolchain is used, without modification,

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_78

https://dx.doi.org/10.1007/978-3-319-93713-7_78

to enable the RPC capability on Epiphany. In order to keep the interface as

simple as possible, decisions were made to use a direct call method rather than

passing function and arguments through a library call. This abstraction hides

much of the complexity, but has some limitations at this time. The RPC dispatch

routine (Algorithm 1) uses a global address pointer passed in the first function

argument to select the remote core for execution. Up to four 32-bit function

arguments may be used and are registers in the Epiphany application binary

interface (ABI). In the case of 64-bit arguments, the ABI uses two consecutive

registers. For the purposes of this work, any RPC prototype can work as long as

the ABI does not exceed four 32-bit arguments and one 32-bit return value.

Algorithm 1 RPC dispatch routine

function rpc_dispatch(𝑎1,𝑎2,𝑎3,𝑎4)
rpc_call← 𝑖𝑝
ℎ𝑖𝑔ℎ_𝑎𝑑𝑑𝑟 ← 𝑚𝑎𝑠𝑘(𝑎1)
if ℎ𝑖𝑔ℎ_𝑎𝑑𝑑𝑟 = 𝑚𝑦_𝑎𝑑𝑑𝑟 then

return rpc_call(𝑎1,𝑎2,𝑎3,𝑎4)
end if

𝑟𝑒𝑚𝑜𝑡𝑒_𝑙𝑜𝑐𝑘 ← ℎ𝑖𝑔ℎ_𝑎𝑑𝑑𝑟|𝑙𝑜𝑐𝑘_𝑎𝑑𝑑𝑟
𝑟𝑒𝑚𝑜𝑡𝑒_𝑞𝑢𝑒𝑢𝑒← ℎ𝑖𝑔ℎ_𝑎𝑑𝑑𝑟|𝑞𝑢𝑒𝑢𝑒
acquire_lock(𝑟𝑒𝑚𝑜𝑡𝑒_𝑙𝑜𝑐𝑘)
if 𝑟𝑒𝑚𝑜𝑡𝑒_𝑞𝑢𝑒𝑢𝑒 is full then

release_lock(𝑟𝑒𝑚𝑜𝑡𝑒_𝑙𝑜𝑐𝑘)
return rpc_call(𝑎1,𝑎2,𝑎3,𝑎4)

end if

𝑝_𝑒𝑣𝑒𝑛𝑡← 𝑚𝑦_𝑎𝑑𝑑𝑟|&𝑒𝑣𝑒𝑛𝑡
𝑟𝑒𝑚𝑜𝑡𝑒_𝑞𝑢𝑒𝑢𝑒.push({𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑟𝑝𝑐_𝑐𝑎𝑙𝑙, 𝑝_𝑒𝑣𝑒𝑛𝑡})
release_lock(𝑟𝑒𝑚𝑜𝑡𝑒_𝑙𝑜𝑐𝑘)
if 𝑟𝑒𝑚𝑜𝑡𝑒_𝑞𝑢𝑒𝑢𝑒 initially empty then

signal_remote_interrupt(ℎ𝑖𝑔ℎ_𝑎𝑑𝑑𝑟)
end if

repeat

until 𝑒𝑣𝑒𝑛𝑡.𝑠𝑡𝑎𝑡𝑢𝑠 = rpc_complete
return 𝑒𝑣𝑒𝑛𝑡.𝑣𝑎𝑙

end function

An overview of the specialized RPC interrupt service request (ISR) appears

in Algorithm 2. The user-defined ISR precludes other applications from using

it, but it is sufficiently generalized and exposed so that applications can easily

make use of it. The ISR operates at the lowest priority level after every other

interrupt or exception. It may also be interrupted, but the RPC queue and the

RPC dispatch method are designed so the ISR need only be signalled when the

first work item is added to the queue.

Setting up code to use the developed RPC methods is easy, but there are

some restrictions. The subroutine should localize the global-local addresses to

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_78

https://dx.doi.org/10.1007/978-3-319-93713-7_78

Algorithm 2 RPC interrupt service request

function rpc_isr
acquire_lock(𝑚𝑦_𝑙𝑜𝑐𝑘)
while 𝑞𝑢𝑒𝑢𝑒 is not empty do

𝑤𝑜𝑟𝑘 ← 𝑞𝑢𝑒𝑢𝑒.pop()
release_lock(𝑚𝑦_𝑙𝑜𝑐𝑘)
𝑤𝑜𝑟𝑘.𝑒𝑣𝑒𝑛𝑡.𝑣𝑎𝑙← 𝑤𝑜𝑟𝑘.rpc_call(𝑤𝑜𝑟𝑘.𝑎1,𝑤𝑜𝑟𝑘.𝑎2,𝑤𝑜𝑟𝑘.𝑎3,𝑤𝑜𝑟𝑘.𝑎4)
𝑤𝑜𝑟𝑘.𝑒𝑣𝑒𝑣𝑒𝑛𝑡.𝑠𝑡𝑎𝑡𝑢𝑠 = rpc_complete
acquire_lock(𝑚𝑦_𝑙𝑜𝑐𝑘)

end while

release_lock(𝑚𝑦_𝑙𝑜𝑐𝑘)
end function

improve performance. A convenient inline subroutine has been made for this. If

one of the addresses is non-local, it will not modify the pointer and default to

RDMA. Listing 1 shows creating a dot product routine, a corresponding routine

without a return value, and using the RPC macro to set up the RPC dispatch

jump table.

f loat dotprod(f loat* a , f loat* b, int n)

{

a = localize (a) ; // translate global addresses to local

b = localize (b) ;

f loat sum = 0.0 f ;

for (int i = 0; i < n; i++) sum += a[i] * b[i] ;

return sum;

}

RPC(dotprod) // dotprod_rpc symbol and jump table entry

List. 1. Example code for RPC function with symbol registration and jump table entry.

Using the RPC method is also very easy. The RPC calls made with the RPC

macro have a _rpc suffix and are called like regular functions, but with the first

pointer as a global address on a remote core. An example of application setup

with mixed OpenSHMEM and RPC calls is presented in Listing 2. OpenSHMEM

with symmetric allocation is not required, but it is convenient for demonstration.

f loat* A = shmem_malloc(n * sizeof (*A)) ; // symmetric allocation

f loat* B = shmem_malloc(n * sizeof (*B)) ;

f loat* A1 = shmem_ptr(A, 1) ; // address of ’A’ on PE #1

f loat* B1 = shmem_ptr(B, 1) ;

f loat res = dotprod_rpc(A1, B1, n) ; // RPC on PE #1

List. 2. Application code example for mixed usage of OpenSHMEM and RPC. The
address translation for the B vector is necessary in case RDMA is required.

4 Results

The results presented include performance figures for an optimized single precision

floating point RPC dot product operation using a stack-based RPC work queue.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_78

https://dx.doi.org/10.1007/978-3-319-93713-7_78

The dot product subroutine was chosen because it has a tunable work size param-

eter, n, relatively low arithmetic intensity at 0.25 FLOPS/byte—representing

the challenging “data-intensive” operations—and reduces to a single 32-bit value

result. Dot product performance for a single Epiphany core executing on local

memory approaches the core peak performance of 1.2 GFLOPS and 4.8 GB/s.

This corresponds to a dual-issue fused multiply-add and double-word (64-bit)

load per clock cycle at 600 MHz. The small bump in the results around n=16

on Figures 1 and 2 is the result of the subroutine using a different code path

for larger arrays. Figure 1 shows the total on-chip bandwidth performance for

various execution configurations. The highest performance is achieved with a

symmetric load executing a dot product on local data, without address translation

(localization for array pointers a and b within the subroutine), which adds a

small overhead.

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128 256 512 1K 2K

T
o
ta

l
O

n
-C

h
ip

 B
a
n
d

w
id

th
 (

G
B

/s
)

Dot Product Size (number of elements)

Dot Product Bandwidth
 Symmetric RPC on Remote Core: α = 1102 ± 32 nsec, β-1 = 3.171 ± 0.019 GB/s

Symmetric RPC on Local Core

Symmetric RDMA on Remote Core

Symmetric RPC on Remote Core

Asymmetric RPC (All to Core #0)

Fig. 1. Symmetric, or load-balanced, RPC with a stack-based queue can achieve over
60% of the bandwidth performance as if execution were accessing local scratchpad data
(throughput up to 2.95 GB/s vs 4.8 GB/s per core). However, there must be sufficient
work on the remote core to mitigate the overhead of the RPC dispatch versus RDMA.

A very positive and initially unexpected result occurred during the asymmetric

loading for the RPC test where all 16 cores made requests to a single core (core

#0). Peak performance of the operation was not expected to exceed 4.8 GB/s,

but the timing indicated performance around 8 GB/s (Figures 1 and 2). This is

due to the local memory system supporting simultaneous instruction fetching,

data fetching, and remote memory requests. If a remote work queue is filled with

RPC requests, the calling core will perform RDMA execution as a fallback rather

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_78

https://dx.doi.org/10.1007/978-3-319-93713-7_78

than waiting for the remote core resources to become available. This prevents

deadlocking and improves overall throughput because no core is idle even if it is

operating at lower performance. The result is that multiple cores may execute

on data in different banks on a single core, effectively increasing bandwidth

performance. Figure 2 shows the effect of increasing the RPC work queue size.

There is no performance impact by increasing the queue size to more than the

total number of cores on-chip minus one since each remote core will only add a

single request to the queue then wait for completion.

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512 1K 2K

 0

 1

 2

 3

E
ff

e
ct

iv
e
 C

o
re

 #
0

 B
a
n
d

w
id

th
 (

G
B

/s
)

S
p

e
e
d

u
p

 (
N

Q
U

E
U

E
 =

 1
5

 v
s.

 1
)

Dot Product Size (number of elements)

Asymmetric Remote Procedure Dot Product Bandwidth (Core #0 Only)
 Core #0 Performance: α = 2500 ± 67 nsec, β-1 = 8.569 ± 0.007 GB/s

NQUEUE = 15

NQUEUE = 8

NQUEUE = 4

NQUEUE = 2

NQUEUE = 1

No Queue

Speedup (avg = 1.55)

Fig. 2. Effect of RPC queue size for an asymmetric workload shows a speedup of about
1.5x from a queue size of one to 15. The greatest improvement comes from having a
single extra workload enqueued (NQUEUE = 1) compared to no queue at all.

5 Conclusion and Future Work

The combination of fast message passing with OpenSHMEM to handle symmet-

ric application execution and the RPC techniques described here for handling

asymmetric workloads remote procedure calls creates a very flexible and high-

performance programming paradigm. This combination creates potential for good

performance on diverse applications with both regular and irregular data layouts,

memory access patterns, and program execution on the Epiphany architecture.

We hope that developers on similar memory-mapped parallel architectures may

use this paper as a guide for exploring the inter-processor RPC concept.

The developments in this paper will be built into the COPRTHR 2.0 SDK

as low-level operating system services. It may also be used by some of the non-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_78

https://dx.doi.org/10.1007/978-3-319-93713-7_78

blocking subroutines in the ARL OpenSHMEM for Epiphany software stack for

particular remote subroutines to enable higher performance. We will extend this

work to support asynchronous RPC requests so programs do not block on remote

operations. Additional reductions in instruction overhead may be found through

low-level optimization of the RPC dispatch and software interrupt routines by

transforming the high-level C code to optimized Epiphany assembly. The software

interrupt appears to be overly conservative in saving the state and the dispatch

method is overly conservative in assumptions of address locations and memory

alignment, so these routines should be able to be substantially optimized. Since

no considerations are made for load balancing and quality of service in this work,

future development may allow for remote cores to defer servicing RPCs with

tunable priority.

References

1. A. Olofsson, T. Nordström, and Z. Ul-Abdin. Kickstarting high-performance energy-
efficient manycore architectures with Epiphany. In 2014 48th Asilomar Conference
on Signals, Systems and Computers, pages 1719–1726, Nov 2014.

2. COPRTHR-2 Epiphany/Parallella Developer Resources. http://www.

browndeertechnology.com/resources_epiphany_developer_coprthr2.htm. Accessed:
2016-07-01.

3. James Ross and David Richie. An OpenSHMEM Implementation for the Adapteva
Epiphany Coprocessor. In Workshop on OpenSHMEM and Related Technologies,
pages 146–159. Springer, 2016.

4. GitHub - USArmyResearchLab/openshmem-epiphany - ARL OpenSHMEM for
Epiphany. https://github.com/USArmyResearchLab/openshmem-epiphany/. Ac-
cessed: 2018-02-06.

5. David A. Richie and James A. Ross. OpenCL + OpenSHMEM Hybrid Programming
Model for the Adapteva Epiphany Architecture. In OpenSHMEM and Related
Technologies. Enhancing OpenSHMEM for Hybrid Environments, pages 181–192,
Cham, 2016. Springer International Publishing.

6. David Richie, James Ross, and Jamie Infantolino. A Distributed Shared Memory
Model and C++ Templated Meta-Programming Interface for the Epiphany RISC
Array Processor. In ICCS, 2017.

7. Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn, Chuck
Koelbel, and Lauren Smith. Introducing OpenSHMEM: SHMEM for the PGAS
Community. In Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model, PGAS ’10, pages 2:1–2:3, New York, NY, USA, 2010.
ACM.

8. Timothy Dysart, Peter Kogge, Martin Deneroff, Eric Bovell, Preston Briggs, Jay
Brockman, Kenneth Jacobsen, Yujen Juan, Shannon Kuntz, Richard Lethin, Janice
McMahon, Chandra Pawar, Martin Perrigo, Sarah Rucker, John Ruttenberg, Max
Ruttenberg, and Steve Stein. Highly Scalable Near Memory Processing with Migrating
Threads on the Emu System Architecture. In Proceedings of the Sixth Workshop on
Irregular Applications: Architectures and Algorithms, IA3̂ ’16, pages 2–9, Piscataway,
NJ, USA, 2016. IEEE Press.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_78

http://www.browndeertechnology.com/resources_epiphany_developer_coprthr2.htm
http://www.browndeertechnology.com/resources_epiphany_developer_coprthr2.htm
https://github.com/USArmyResearchLab/openshmem-epiphany/
https://dx.doi.org/10.1007/978-3-319-93713-7_78

