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Abstract. Traditionally, the manipulation of unlabeled instances is solely based 

on prediction of the existing model, which is vulnerable to ill-posed training set, 

especially when the labeled instances are limited or imbalanced. To address this 

issue, this paper investigate the local correlation based on the entire data distri-

bution, which is leveraged as informative guidance to ameliorate the negative 

influence of biased model. To formulate the self-expressive property between 

instances within a limited vicinity, we develop the sparse self-expressive repre-

sentation learning method based on column-wise sparse matrix optimization. Op-

timization algorithm is presented via alternating iteration. Then we further pro-

pose a novel framework, named semi-supervised learning based on local corre-

lation, to effectively integrate the explicit prior knowledge and the implicit data 

distribution. In this way, the individual prediction from the learning model is re-

fined by collective representation, and the pseudo-labeled instances are selected 

more effectively to augment the semi-supervised learning performance. Experi-

mental results on multiple classification tasks indicate the effectiveness of the 

proposed algorithm.  

Keywords: Semi-supervised Learning, Local Correlation, Self-expressive Rep-

resentation, Sparse Matrix Optimization, Predictive Confidence. 

1 Introduction 

Machine learning has manifested its superiority in providing effective and efficient so-

lutions for various applications [1][2][3][4][5]. In order to learn a robust model, the 

labeled instances are indispensable in that they convey precious prior knowledge and 

offer informative instruction. Unfortunately, manually labeling is labor-intensive and 

time-consuming. The cost associated with the labeling process often renders a fully 

labeled training set infeasible. In contrast, the acquisition of unlabeled instances is rel-

atively inexpensive. One can easily have access to abundant unlabeled instances. As a 

result, when dealing with machine learning problems, we typically have to start with 

very limited labeled instances and plenty of unlabeled ones [6][7][8].  
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Recent researches indicate that the unlabeled instances, when used in conjunction 

with the labeled instances, can produce considerable improvement in learning perfor-

mance. Semi-supervised learning [9][10], as a machine learning mechanism that jointly 

explores both labeled and unlabeled instances, has aroused widespread research atten-

tion. In semi-supervised learning, the exploration into unlabeled instances is largely 

dependent on the model trained with the labeled instances. On one hand, the insufficient 

or imbalanced labeled instances are inclined to lead to ill-posed learning model, which 

will consequently jeopardize the learning performance of semi-supervised learning. On 

the other hand, pair-wise feature similarity is widely used when estimating the data 

distribution, which is not necessarily plausible for semantic-level recommendation of 

class labels.  

To address the aforementioned issues, this paper proposes a novel, named semi-su-

pervised learning based on local correlation. Robust local correlation between the in-

stances is estimated via sparse self-expressive representation learning, which formu-

lates the self-expressive property between instances within a limited vicinity into a col-

umn-wise sparse matrix optimization problem. Based on the local correlation, an aug-

mented semi-supervised learning framework is implemented, which takes into account 

both the explicit prior knowledge and the implicit data distribution. The learning sub-

stages, including individual prediction, collective refinement, and dynamic model up-

date with pseudo-labeling, are iterated until convergence. Finally, an effective learning 

model is obtained with encouraging experimental results on multiple classification ap-

plications.  

2 Notation 

In the text that follows, we let matrix 𝑿 = [𝒙1, … , 𝒙𝑛] = 𝑿𝐿⋃𝑿𝑈 ∈ ℝ𝑚×𝑛 denote the 

entire dataset, where 𝑚 is the dimension of features, and 𝑛 is the total number of in-

stances. In 𝑿, each column 𝒙𝑖 represents a 𝑚-dimensional instance. 𝑿𝐿 ∈ ℝ𝑚×𝑛𝐿 and 

𝑿𝑈 ∈ ℝ𝑚×𝑛𝑈  are the labeled and unlabeled dataset, respectively, where 𝑛𝐿 and 𝑛𝑈 are 

the numbers of labeled and unlabeled instances, respectively. The corresponding class 

labels of the instances are denoted as matrix 𝒀 = 𝒀𝐿⋃𝒀𝑈 ∈ ℝ𝑐×𝑛, where 𝑐 is the num-

ber of classes, and 𝒀𝐿 ∈ ℝ𝑐×𝑛𝐿 and 𝒀𝑈 ∈ ℝ𝑐×𝑛𝑈  are the label matrices corresponding 

to the labeled and unlabeled dataset, respectively. For the labeled instance 𝒙 ∈ 𝑿𝐿, its 

label 𝒚 ∈ 𝒀𝐿  is already known and denoted as a 𝑐 -dimensional binary vector 𝒚 =
[𝑦1 , … , 𝑦𝑐]𝑇 ∈ {0,1}𝑐, whose 𝑖th element 𝑦𝑖  (1 ≤ 𝑖 ≤ 𝑐) is a class indicator, i.e. 𝑦𝑖 = 1 

if instance 𝒙 falls into class 𝑖, and 𝑦𝑖 = 0 otherwise. For the unlabeled instance 𝒙 ∈
𝑿𝑈, its label 𝒚 ∈ 𝒀𝑈 is unrevealed and initially evaluated as 𝒚 = 𝟎.  

3 Robust Local Correlation Estimation 

The locally linear property is widely applicable for smooth manifolds. In this scenario, 

an instance can be concisely represented by its close neighbors. As a result, the under-

lying local correlation is an effective reflection of the data distribution, and can be sub-
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sequently leveraged as instructive guidance to improve the performance of model learn-

ing. Given the instance matrix 𝑿, we develop a robust local correlation estimation 

method in a unsupervised fashion, which aims to infer a correlation matrix 𝑾 ∈ ℝ𝑛×𝑛 

based on the instances themselves regardless of their labels. The formulation is based 

on two major considerations. On one hand, an instance can be represented as a linear 

combination of the closely related neighbors. On the other hand, only a small number 

of neighbors are involved for the representation of an instance. In light of that, we esti-

mate the robust local correlation between the instances via a novel Sparse Self-Expres-

sive Representation Learning (SSERL), which is formulated as the follows. 

 
min

𝑾
‖𝑾𝑇‖2,1

s. t. 𝑿 = 𝑿𝑾, diag(𝑾) = 𝟎, 𝑾 ≥ 0
 (1) 

where the minimization of ℓ2,1-norm ‖𝑾𝑇‖2,1 ensures column sparsity of 𝑾.  

To make the problem more flexible, the equality constraint 𝑿 = 𝑿𝑾 is relaxed to 

allow expressive errors [11], and the corresponding objective is modified as follows. 

 
min

𝑾
ℒ(𝑾) = ‖𝑿 − 𝑿𝑾‖𝐹

2 + 𝜆‖𝑾𝑇‖2,1

s. t. diag(𝑾) = 𝟎, 𝑾 ≥ 0
 (2) 

In ℒ(𝑾), the first term stands for the self-expressive loss and the second term is the 

column sparsity regularization. 𝜆 quantifies the tradeoff between the two terms.  

The optimization problem (2) is not directly solvable. According to the general half-

quadratic framework for regularized robust learning [12], we introduce an augmented 

cost function 𝒜(𝑾, 𝒑) as follows. 

 𝒜(𝑾, 𝒑) = ‖𝑿 − 𝑿𝑾‖𝐹
2 + 𝜆Tr(𝑾𝑷𝑾𝑇) (3) 

where 𝒑 is an auxiliary vector, and 𝑷 is a diagonal matrix defined as 𝑷 = diag(𝒑). The 

operator diag(∙) places a vector on the main diagonal of a square matrix.  

With 𝑾 given, the 𝑖-th entry of 𝒑 is calculated as follows. 

 𝑝𝑖 =
1

2‖𝒘𝑖‖2
 (4) 

With 𝒑 fixed, 𝑾 can be optimized in a column-by-column manner as follows. 

 𝒘𝑖 = (𝑿𝑇𝑿 + 𝜆𝑝𝑖𝑰)−1𝑿𝑇𝒙𝑖 (5) 

Based on (4) and (5), the auxiliary vector 𝒑 and the correction matrix 𝑾 are jointly 

optimized in an alternating iterative way. At the end of each iteration, the following 

post-processing is further implemented according to the constraints. 

   {
𝑾Ω = 0, Ω = {(𝑖, 𝑗)|1 ≤ 𝑖 = 𝑗 ≤ 𝑛}

𝑾 = max(𝑾, 0)
 (6) 

After convergence, the optimal correlation matrix 𝑾 is obtained, which can serve as 

an informative clue for the revelation of the underlying data distribution and the con-

struction of the subsequent model learning.  
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4 Semi-supervised Learning Based on Local Correlation 

Different from the traditional semi-supervised learning mechanism that solely depends 

on the classification model when exploring the unlabeled instances, the proposed SSL-

LC takes into account both model prediction and local correlation. By iteration of the 

following three steps, SSL-LC is implemented in an effective way and the optimal 

learning model is obtained after convergence of the algorithm. 

Step 1: individual label prediction by supervised learning.  

As we know, for the labeled dataset 𝑿𝐿 ∈ ℝ𝑚×𝑛𝐿, the corresponding label set 𝒀𝐿 ∈
ℝ𝑐×𝑛𝐿  is known beforehand. Using (𝑿𝐿 , 𝒀𝐿)  as training dataset, the classification 

model ℋ𝜃: ℝ𝑚 → ℝ𝑐 can be obtained with off-the-shelf optimization methods. Specif-

ically, probabilistic model can be applied based on the posterior distribution 𝑃(𝒚|𝒙; 𝜃) 

of label 𝒚 conditioned on the input 𝒙, where 𝜃 is the optimal parameter for ℋ𝜃  given 

(𝑿𝐿 , 𝒀𝐿). For the unlabeled instance 𝒙 ∈ 𝑿𝑈, its label 𝒚 is unknown and need to be pre-

dicted by the trained classification model ℋ𝜃 . The prediction is given in the form of a 

𝑐-dimensional vector �̃� = [𝑃(𝑦1 = 1|𝒙; 𝜃), … , 𝑃(𝑦𝑐 = 1|𝒙; 𝜃)]𝑇 ∈ [0,1]𝑐. For the 𝑖-th 

entry 𝑃(𝑦𝑖 = 1|𝒙; 𝜃), larger value indicates higher probability that 𝒙 falls into the 𝑖-th 

class with respect to ℋ𝜃, and vice versa. Based on the learning model ℋ𝜃 , prediction 

can be made on each unlabeled instance individually. The predicted label set is collec-

tively denoted as �̃�𝑈, which represents the classification estimation from the model 

point of view. With the dynamic update of model ℋ𝜃, the predicted label �̃�𝑈 is also 

dynamically renewed.  

Step 2: collective label refinement by self-expressing.  

In addition to the posterior probability estimated by model ℋ𝜃 , the label of an unla-

beled instance 𝒙 ∈ 𝑿𝑈 can further be concisely represented by its closely related neigh-

bors. The local correlation 𝑾 calculated via SSERL reflects the underlying relevance 

between instances within the vicinity, and thus can serve as an informative guidance 

for self-expressive representation of labels. In this way, robust label refinement is 

achieved against potential classification errors. To be specific, the entire label matrix 

can be denoted as 𝒀𝑝 = [𝒀𝐿 , �̃�𝑈] after inference via classification. For further refine-

ment, the local correlation matrix 𝑾 is leveraged to obtain the self-expressive repre-

sentation of labels in the form of 𝒀𝑠 = 𝒀𝑝𝑾. By this means, the self-expressive prop-

erty with respect to the instances is transferred to the labels, and the column-wise spar-

sity of 𝑾 guarantees the concision of representation within a constrained vicinity. Then 

𝒀𝑠 is normalized to obtain a legitimate probability estimation 𝒀𝑛, whose 𝑗-th column is 

calculated as: 

 [𝒀𝑛]𝑗 =
[𝒀𝑠]𝑗

max
𝑖

[𝒀𝑠]𝑖𝑗
 (7) 

Finally, since 𝒀𝐿 is already known and does not need to be estimated, the refined label 

matrix is calculated as: 
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 𝒀𝑟 = [𝒀𝐿 , 𝟎𝑐×𝑛𝑈] + 𝒀𝑛⨀[𝟎𝑐×𝑛𝐿 , 𝟏𝑐×𝑛𝑈] (8) 

where ⨀ is the element-wise product of two matrices.  

Step 3: semi-supervised model update by pseudo-labeling.  

As discussed above, the effectiveness of semi-supervised learning stems from the 

comprehensive exploration on both labeled and unlabeled instances, in which the unla-

beled instances with high predictive confidence are assigned with pseudo-labels and 

recommended to the learner as additional training data. The predictive confidence is 

the key measurement for selection of unlabeled instances. For the 𝑗-th instance, its pre-

dictive confidence is conveniently calculated as: 

 𝑐𝑗 = max
𝑖

[𝒀𝑛⨀[𝟎𝑐×𝑛𝐿 , 𝟏𝑐×𝑛𝑈]]
𝑖𝑗

 (9) 

which naturally filters out the labeled instances. Since 𝒀𝑛 is dependent on  𝒀𝑝 and 𝑾, 

both individual classification prediction and collective local correlation are effectively 

integrated in the semi-supervised learning strategy. Based on the predictive confidence 

defined in (9), reliable and informative unlabeled instances can be selected and recom-

mended for model update. The pseudo-label �̂�𝑗 associated with the 𝑗-th instance is de-

fined as: 

  (�̂�𝑗)
𝑖

= {

1, 𝑖 = arg max
𝑖

[𝒀𝑛⨀[𝟎𝑐×𝑛𝐿 , 𝟏𝑐×𝑛𝑈]]
𝑖𝑗

0, 𝑖 ≠ arg max
𝑖

[𝒀𝑛⨀[𝟎𝑐×𝑛𝐿 , 𝟏𝑐×𝑛𝑈]]
𝑖𝑗

 (10) 

Using the pseudo-labeled instances as additional training data, the learning model ℋ𝜃  

is re-trained, which brings about updated 𝒀𝑝 and 𝒀𝑟.  

5 Experiments 

To validate the effectiveness of SSL-LC, we apply it to classification tasks on malware 

[7] and patent [6] dataset respectively, in comparison with the following methods: 

 Supervised learning (SL), which trains classifier based on the labeled dataset 𝑻 =
(𝑿𝐿 , 𝒀𝐿), and arrives at individual prediction 𝒀𝑝 accordingly.. 

 Supervised learning with local correlation (SL-LC), which further refines the pre-

diction with 𝑾 and obtains 𝒀𝑟. 

 Semi-supervised learning (SSL), which selects pseudo-labeled instances 𝑹 based 

on unrefined prediction 𝒀𝑝, and updates classifier based on 𝑻⋃𝑹. 

Experiment 1: Comparison of Different Number of Labeled Instances. Firstly, we 

compare the classification performance with different number of labeled instances, i.e. 

|𝑻|. The classification performance is illustrated in Fig. 1 (1). 

Detailed analysis of experimental results are as follows, where “>” stands for “out-

perform(s)”. 
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 SL-LC > SL, SSL-LC > SSL. Under the instructive guidance of local correlation, 

the individual prediction on a single instance can be further refined via collective 

representation. Therefore, the classification results are more coherent to the in-

trinsic data distribution and less vulnerable to overfitting with local correlation 

refinement. 

 SSL > SL, SSL-LC > SL-LC. Compared with supervised learning, semi-super-

vised learning further leverages the unlabeled instances to extend the training da-

taset, and thus receives higher classification performance.  

 When the number of labeled instances is large enough, the difference between the 

four methods is negligible. It is indicated that the proposed SSL-LC is especially 

helpful for classification problems with insufficient labeled instances.  

Experiment 2: Comparison of Different Number of Recommended Instances. We 

further compare the classification performance with different number of recommended 

instances, i.e. 𝐾, where SL and SL-LC are treated as special cases of SSL and SSL-LC 

with 𝐾 = 0. The classification performance is illustrated in Fig. 1 (2). 

As we can see, at first, the classification accuracy improves with the increase of 𝐾, 

because the model can learn from more and more instances. However, when 𝐾 is large 

enough, further increase will lead to deterioration of classification performance. This 

results from the incorporation of the less confident pseudo-labeled instances, which 

inevitably brings about unreliable model.  

  

Fig. 1. The classification performance with different number of (1) labeled instances and (2) 

recommended instances. 

6 Conclusion 

In this paper, we have proposed an effective semi-supervised learning framework based 

on local correlation. Compared with traditional semi-supervised learning methods, the 

contributions of the work are as follows. Firstly, both the explicit prior knowledge and 

the implicit data distribution are integrated into a unified learning procedure, where the 

individual prediction from the dynamically updated learning model is refined by col-

lective representation. Secondly, robust local correlation, rather than pair-wise similar-

ity, is leveraged for model augment, which is formulated as a column-wise sparse ma-

trix optimization problem. Last but not least, effective optimization is designed, in 
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which the optimal solution is progressively reached in an iterative fashion. Experiments 

on multiple classification tasks indicate the effectiveness of the proposed algorithm. 
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